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Two-loop metric counterterms for nonlinear two-dimensional bosonic 6-model with affine
metric target manifold are calculated. The correlation of the metric and affine connection
is derived from conformal invariance condition for nonlinear s-model which is considered
as a dissipative system. Examples of non-flat non-Riemannian manifolds resulting in
trivial metric beta-function are suggested.

1. Introduction

String theory in a curved space is a consistent quantum theory if the quantum
nonlinear s-model’>? defined on this manifold is conformally invariant,® i.e. the
renormalization group B-functions are trivial.3* Since the conformal anomaly of
the nonlinear o-model depends on geometrical structures of the target manifold,
the requirement of conformal invariance of the o-model imposes restrictions on
consistent structures. )

Different geometrical structures can be defined on a manifold. In the bosonic
case a metric and a connection structures are used. Riemannian manifolds are
usually considered as a target manifolds for nonlinear s-model.»'? Connection of
the Riemannian manifold is uniquely constructed from metric, i.e. the “strong”
correlation between the connection and metric structures is postulated. In general
these structures are not correlated.® Therefore it was suggested to obtain correlation
between the metric and connection as a result of the uv finiteness (or conformal
invariance) condition for nonlinear ¢-model.®

The o-model action depends only on the metric. Therefore it is surprising that
the counterterms of the ¢-model with affine metric manifold differ from that on a
Riemannian manifold.” This difference cannot be reduced to the metric redefinition
caused by infinitesimal coordinate transformation? or to the nonlinear renormal-
ization of the quantum fields.® In order to resolve this paradox we briefly review
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the relationship between the geometrical structures of the manifold and the equation
of motion.
Let us consider the equation of test particle motion on a generic manifold

du"/dt—Q'.(q,u) =0, &)

where ¢' are the coordinates and u' = dg’/dt (i = 1,...,n) are velocities. We
suggest that these equations are invariant under general coordinate transformations
and that for simplicity Q*(g,u) are homogeneous functions of second order in u. It
is known that if the Helmholtz conditions are satisfied there exists local Lagrange
function and Eq. (1) can be derived from the least action principle. In this case there
are matrix multipliers®? such that Eq. (1) becomes Euler-Lagrange equation. The
special case is Q*(q,u) = —[4;]u*u', where [%;] is a Christoffel symbol for matrix
multipliers, the n-dimensional target space is Riemannian manifold and Eq. (1)
defines the usual one-dimensional nonlinear o-model. On the other hand, it is
known that Lagrange function uniquely defines the metric structure on the (n +1)-
dimensional configuration space.!’ Thus the equation of motion derived from the
action principle is equivalent to the geodesic equation on a metric manifold. The
connection on the metric manifold can be naturally defined as Christoffel symbol
of the metric. As a result the motion of the system subjected to potential forces is
equivalent to free motion of the test particle on the metric manifold, i.e. manifold
with correlated connection and metric.

If the Helmholtz conditions are not satisfied, the equation of motion (1) can be
represented as a motion of particle subjected to dissipative forces Qf, on the metric
manifold with metric structure defined by the Lagrangian

ddt: - Qp(a,w) — Qale,w) = —(97")7 D L(q,u) - Qia(g,w) = 0, (2)

where Dj; is the Euler-Lagrange operator, L(q,u) is the Lagrange function and
9ij (g, v) is the matrix multiplier.® Dissipative force for the one-dimensional ¢-model
with affine metric target manifold is defined by the connection defect Q¥ =
—Dj;(q)u*u!. If the free motion of the test particle on the manifold is defined
by Eq. (2) then this manifold is non-metric. This manifold is usually referred to
as a generalized path space!?13 and allows naturally to define connection with the
coefficients T'%;(g,u) = (—1/2)(8°Q*/0u*0u'). In the generalized path space the
connection is not correlated with the metric on this space. As a result, the motion
of the systems subjected to dissipative forces on the metric manifold is equivalent to
the free motion of the test particle on the non-metric (generalized path) manifold.

The affine metric manifold® is a simple example of the generalized path space
with a metric structure. Thus consistent approach to the nonlinear ¢-model with
affine metric target manifold leads to a generalization of the usual o-models which
represents a particle subjected to dissipative forces. Analogously, the motion of
a string in affine metric curved space is equivalent to the motion of the string
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subjected to dissipative forces on a Riemannian manifold.}* For this reason the
consistent theory of the bosonic string in the curved affine metric space is a quantum
dissipative theory. -

The equation of motion and the geodesic equation on a non-metric manifold
can be derived from Sedov variational principle!® which is the generalization of the
action principle:

8S(q) +6W(g) =0. (3)
Here S(q) is the holonomic functional usually referred to as the action and W(q) is
the nonholonomic functional (i.e. §6'W # 6'6W). From Eq. (2) the nonholonomic
functional has the form

SW = /dt&W = /dth,(q,u)g;jéqj, 4)

i.e. nonholonomic functional is defined by the connection defect. Nonholonomic
functional W is characterized by the following properties in the phase space:
(1) [W,px) = W and [W, ¢*] = —W:, 1.e. the variation of the functional W is defined
by W = W} 5¢* + W: Spr. The brackets are the generalized (variational) Poisson
brackets!®1* which coincide with the usual Poisson brackets for holonomic functions.
(2) J[Z, W, Z]) = Jla £ 0if k # [ where J[A, B,C] = [A[BC]]+[B[CA]] +[C[AB]];
k=1,...,2nand Z; = ¢’ and Znyi =pi if i =1,... n. The Jacobian Jy; charac-
terizes deviation from the condition of integrability. W is the nonholonomic object
if one of the Jacobians Jy; is not trivial. Note that the classical phase space equation
of motion for dissipative systems has the form dZ;/dt = [Z}, H — W] and Liouville
equation for dissipative systems!?:16 is

n
%p(q,p, t) = —Q(q,p)p(g,p,t),  where  Qg,p) =D Jl¢,W,p]. (5)
i=1

The quantum description of the dissipative systems without well known
ambiguities,1910.21.14 without violation of the canonical commutation relations
and outside the framework of quantum kinetics was suggested in Refs. 16 and
14. This approach dees not violate Heisenberg algebra because it generalizes the
canonical quantization by introducing the operator of the nonholonomic quanti-
ties in addition to the usual associative operators of momentum, coordinate and
holonomic functions. Contrary to the usual heuristical and therefore ambiguous
generalization?®2! the generalization of von Neumann equation was derived from
dissipative Liouville equation.1?+16

In Ref. 16 the conformal anomaly of the trace of the energy momentum tensor
for closed bosonic string on the affine metric manifold was considered and from the
conformal invariance it was proved that the metric and dilaton 3-functions of the
o-model on affine metric target manifold must be trivial as usual.

In this letter two-loop uv metric counterterms and the S-function for two-
dimensional nonlinear o-model on the affine metric field manifold are calculated.
The correlation between the connection and the metric on the manifold are derived
from the vanishing condition for the S-function.
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2. Loop Calculations

Now let us consider the closed bosonic string theory in curved space-time. The
worldsheet swept by the string is described by the map X (z) from a two-dimensional
parameter space N into n-dimensional space-time manifold M, i.e. X(z): N — M.
The two-dimensional parameters are # = (7,0). The map X(z) is given by space-
time coordinates X*(z). The classical equation of motion for the closed bosonic
string on the n-dimensional affine metric curved space-time has the form

u/T9" 8, X + T4 (X)0, X* /59" 8,X =0, (6)

where g#¥(z) is the two-dimensional metric tensor; I'};(X) is the affine connection,
which can be represented in the form [{,]+ Di,; [4,] is the Christoffel symbol for the
metric G;;j(X); D§,(X) is the connection defect which can be written in the form®

Dju(X) = (=1/2)G" (Kju + Kjur — Kutj) + 2Qiy + Qi )

where Ky;; = V;Gy is non-metricity tensor and Qi, is torsion. The equation of
motion (9) is an equation of two-dimensional geodesic flow on the affine metric
manifold (the two-dimensional analog of the geodesic). It is well known that this
equation cannot be derived from the action principle. Note that the Riemannian

geodesic flow (D%, = 0) can be derived from this variational principle with action
defined by

1 .
S(X) = — / d*zGu(X)0,X* /g 9" 8, X" . (8)

The affine metric geodesic flow Eq. (9) can be derived from the Sedov variational
principle if the variation of the nonholonomic functional has the form

§W = / d2z6W = _%a, / 4% Dini(X)9,X* /798, X'6X . (9)

The holonomic and nonholonomic functionals define a closed bosonic string propa-
gating in the affine metric curved space-time.

- In loop calculation we use the generating functional for connected Green func-
tions in the phase space path-integral form for the non-Hamiltonian (dissipative)
systems suggested in Refs. 16 and 14. This generating functional is written in the
form

k

zZ(J,9) = —iln/DXDP exp i/dzz(Pk%*H+W+ %Q+K(J)),

where K(J) is the source term and A = 1. To perform the calculation of the on-
shell uv counterterms in one- and two-loop order for the c-model we use the affine

metric covariant background field expansion in normal coordinates!®7? and a new
generating functional Z(Xj, g, J). The covariant background field method?14 in the
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phase space is defined by the usual expansion of the coordinates X k(z). Note that
the background field method can be considered as conservative model approximation
for the quantum dissipative models. The generating functional Z (Xo,9,J) is defined
by

exp iZ(Xo,9,J) =/D£DP exp i/dzz(Pk%X"—H+W+%Q+Jk£"), (10)

where X = X(Xo,£); X§(z) is the solution of the classical equation of motion;
£¥(z) is a covariant field which is the tangent vector to the affine metric geodesic
connecting X% and X*.

We obtain the Hamiltonian, nonholonomic functional and omega function in the
conformal gauge as a power series in the field £*(z):

2ra'H = —%GH(X)PI:PI - %le(X)X,kX” , (11)
2ra' W = %A’{'PkPI + %A%,X”‘X", Q =2D¥(X)P,, (12)
where X' = X¥(Xo,£); D¥(X) = D§(X)GY(X); X** = (dX*)/(do); P is the

canonical momentum. The background field expansions of the A-operators are
written as

A} = 2Df(Xo)é + O(€?); A} = —2Dim(Xo)é* + O(¢€2). (13)
To obtain all the one- and two-loop counterterms, we need to expand Hamil-
tonian, nonholonomic functional and omega function to the fourth order in the

quantum fields £°(z). Integration over momentum P is Gaussian. It is easy to
derive the path-integral form for the generating functional:

Z(Xo,9,J) = —z'ln/Df exp i/deA(X(Xo,g)), (14)
where
o’ A(X) = —% [G + Agdh (XF + iDF(X))(X! +iD!(X))

+ (G + A% X* X" + %5(0) Indet[(G™' + A1)~ (15)

N =

and X* = (dX*)/(dr), G is the metric. Note that D¥(X), A1, A? are equal to
zero for the usual nonlinear o-model. The full expression for A(X(Xo,£)) and the
metric B-function for general affine metric manifold are complicated. Therefore,
let us consider the special form of the non-metricity tensor: Kjj; = Niji = Ngjy,
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where N1y = N,.'sz,)jn and Q;;y = 0 and let us write the terms of A(X) which

give the non-trivial simple poles two-loop metric counterterms only:

1
A(Xo,§) = 5 (1/2)0,°0,6" + Baii€2€2 0, X 0, X} + Japc£20,€°0,6°

al
+ CapetOp X €€ 0,6 + Lapcab®€°0,£°9,6¢
+ Fabcdfafbaufcnlwavfd] ) (16)

where
Jabe = (1/3)1\/",'1“6:.,‘31{‘32c ,
Bask = [(1/2)Rigisy — (1/8)Npii Njyprleied ,
Caba = [(2/3)R(k/ij/1) - (1/6)Npi(1Nk)pj]Cieg er,
Lasea = [(1/6)Rex iy + (1/8)NpiijaNiyjyplesei et el
Fijur = (1/2)NpaNpjreiei kel

In the conformal gauge k#” tensor has the form «#¥ = (k"7,&7%,£%?) = (~1,0,0).
We use the following notations:

@kA’. = vai + Q;:iAn = 6kAi - F?ki)A" = Ai;k y
B ey = (1/2)(Bjxi + Buj),

and szl) is the symmetric part of the affine connection.

Note that the expression for A(Xy,£) accounts for the additional non-metric
terms. It is known that propagator of the quantum fields ¢¥(z) is not standard.
Therefore, we introduce an n-bein ef(X) and define £%(z) = el&*(z), where
Vief = 0. After this modification the kinetic terms become V€8V 42, where
Vu€® = 8,6° + Ag.eb 8, Xkee. This mixed covariant derivative for the affine met-
ric manifold M and the Minkowski space N involves the Schouten—Vranceanu
connection f&abc, which is equal to the Ricci rotation coefficient and the object
Wi, = Agcei which is the spin connection? on the Riemannian manifold. Note
that in addition to the diagrams in Ref. 7 we take into account the diagrams
whose external background field lines involve the Schouten-Vranceanu connection.
Contrary to the usual nonlinear o-model? these diagrams must not cancel'® and
give the tensor contribution. This contribution appears because of the relation

Aapyrey = (=1/2)(Kiji + 2Qqijy))ekedel.
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The irreducible one-loop diagram (Fig. 1) produces the following divergence:

B
—(p2¢ /47€) Baar1 0y XEB X} .

Fig. 1.

The non-trivial uv two-loop divergences of order 1/¢ are caused by the graphs
of Figs. 2-4. These divergences are

(1% /167%€)Capyer Cappei O XE0u X (Fig. 2)
— (4% /167%€)(Lectap) + Liasyee) Blanyi0u XED, X (Fig. 3a)
(1% [167%€)((~1/2) Feetary + (F1 + (1/2)) Flapyee) B(as)uiOu X& 0, X} (Fig. 3b)
(1?¢ /167°€)((3/2)Ja(se) Baaki + JaqvayBeart — 2Js(ad) Bedrt
+ 2Jg(ac) Boar1) Ja(se)0u X 50 X} (Fig. 4)

c [/ \ ¢
N4

Fig. 2.

LFO J?

Figs. 3a-b Fig. 4.

The divergent integrals are calculated using the dimensional regularization (in
n = 2 — 2¢ dimensions) with the minimal subtraction and the general prescrip-
tion for contraction of the two-dimensional «*” tensor'® k#'7,, = f(n) where
f(n) = 1+ fie+ O(e?) and 7, is the two-dimensional Minkowski metric. Different
prescriptions may correspond to different renormalization schemes and thus the cor-
responding results should be related through redefinition of the couplings in analogy
with the Riemannian two-dimensional nonlinear o-model with the Wess—Zumino
term.?? To distinguish between ir and uv divergences we introduce an auxiliary
mass term.
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The two-loop pole divergences produced by the one-loop counterterms can be
derived from

2¢
ALO = B (PLu0,E%0,6 + Mot €?), (17)
where

Py = —Bccijeie{s Mg = [(—1/6)-R(1/nn/1) - 2Nnm(iNj)nm]e;e£ .

The divergent parts of the graphs (Figs. 5a-b) are

— (4% /167%€) Pias) B(asyr10u X§ 0, X} (Fig. 5a)

(1% /167%€) M(ay) B(ab)e10u X 0, X} (Fig. 5b)

PM BB

Figs. 5a-b

Then the two-loop metric S-function? for the bosonic nonlinear two-
dimensional o-model with affine metric target manifold has the form

B = (@)(1/8)Num@t Niyam — (1/2)Rixpunsny] + ()2 [(1/2)((2/3) Rey(avysv
~ (1/8)Nn(e/(aNoy/yn )(2/3) Recavyy = (2/3) R acyr)
+ (1/6)Naj@Ney/eyn = (1/6)Na(ejaNoyma) + (1/2)Rexcavyy
— (1/8)Nu(ay(x Ny /530 J(1/8) R(ay(nmyy5) — (1/6) R j(aty /)
= ((151/72) + (1/2) f1) Nm(a Noyam)] - (18)

This metric S-function leads to the well known equation!:? on the Riemannian
manifold (N;;; = 0 and Qi; = 0).
It is easy to see the condition which ensure the uv finiteness of the theory. The
one- and two-loop parts of the metric 8-function for two-dimensional nonlinear o- -
model with affine metric target manifold M vanish if the correlation between the
affine connection and the metric on the manifold M is given by:

ViGij = Niji = N, Qujn =0,

) . 1
VaNii; = NpNpsps Boanm = 786Ny

These conditions have no f; dependence and define non-flat space, i.e. Riemannian
curvature tensor is nonzero. Note that the contribution to the metric S-function
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from the o-model action (8) is zero in all loops if the affine metric manifold with
the non-metricity tensor K;j; and torsion tensor Q',;, is defined by

Rkijl = Rk,‘jl - 2@[J/kaﬂ] - 2Q?[1/an/j] - 0, @kGij = K,’jk - 2Q(ij)k = 0 .

These equations define the affine metric manifold which is not flat.
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