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Fractals are measurable metric sets with non-integer Hausdorff dimensions. If electric
and magnetic fields are defined on fractal and do not exist outside of fractal in Euclidean
space, then we can use the fractional generalization of the integral Maxwell equations.
The fractional integrals are considered as approximations of integrals on fractals. We
prove that fractal can be described as a specific medium.
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1. Introduction

The theory of integrals and derivatives of non-integer order goes back to Leib-

niz, Liouville, Riemann, Grunwald and Letnikov.1,2 Fractional analysis has found

many applications in recent studies in mechanics and physics. The interest in frac-

tional integrals and derivatives has been growing continuously during the last few

years because of numerous applications. In a short period of time the list of ap-

plications has been expanding. It includes chaotic dynamics,3,4 physics of fractal

and complex media,5–9 physical kinetics,3,10–12 plasma physics,13,14 astrophysics,15

long-range dissipation,16,17 non-Hamiltonian mechanics,18,19 theory of long-range

interactions.20–22

The new type of problem has increased rapidly in areas in which the fractal

features of a process or the medium impose the necessity of using non-traditional

tools. In order to use fractional derivatives and fractional integrals for media on

fractal, we must use some continuous model.8 We propose to describe the medium

on fractal by a fractional continuous model,8 where all characteristics and fields are

defined everywhere in the volume but they follow some generalized equations, which

are derived by using fractional integrals. In many problems the real fractal structure

can be disregarded and the medium on fractal can be described by some fractional

continuous mathematical model. The order of the fractional integral is equal to

the fractal dimension. Fractional integrals can be considered as approximations
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of integrals on fractals.23,24 In Ref. 24, authors proved that integrals on a net of

fractals can be approximated by fractional integrals. In Ref. 18, we proved that

fractional integrals can be considered as integrals over the space with non-integer

dimension up to numerical factor. This interpretation follows from the well-known

formulas for dimensional regularizations.29

In Sec. 2, a brief review of Hausdorff measure, Hausdorff dimension and integra-

tion on fractals suggested to fix notation and provide a convenient reference. The

connection integration on fractals and fractional integration is discussed. In Sec. 3,

the fractional electrodynamics on fractals is considered. Fractional generalization

of the integral Maxwell equations is suggested. Finally, a short conclusion is given

in Sec. 4.

2. Integration on Fractal and Fractional Integration

2.1. Hausdorff measure and Hausdorff dimension

Fractals are measurable metric sets with fractal Hausdorff dimension. The main

property of fractal is non-integer Hausdorff dimension. Let us consider a brief re-

view of Hausdorff measure and Hausdorff dimension to fix notation and provide a

convenient reference.

Consider a measurable metric set (W, µH) with W ⊂ R
n. The elements

of W are denoted by x, y, z, . . . , and represented by n-tuples of real numbers

x = (x1, x2, . . . , xn) such that W is embedded in R
n. The set W is restricted by the

conditions: (a) W is closed; (b) W is unbounded; (c) W is regular (homogeneous,

uniform) with its points randomly distributed.

The diameter of a subset E ⊂ W ⊂ R
n is

d(E) = diam(E) = sup{d(x, y) : x, y ∈ E} ,

where d(x, y) is a metric function of two points: x and y ∈ W .

Let us consider a set {Ei} of subsets Ei such that dim(Ei) < ε ∀ i, and W ⊂
⋃∞

i=1 Ei. Then, we define

ξ(Ei, D) = ω(D)[diam(Ei)]
D = ω(D)[d(Ei)]

D (1)

for non-empty subsets Ei of W . The factor ω(D) depends on the geometry of Ei,

used for covering W . If {Ei} is the set of all (closed or open) balls in W , then

ω(D) =
πD/22−D

Γ(D/2 + 1)
. (2)

The Hausdorff dimension D of a subset E ⊂ W is defined25–28 by

D = dimH(E) = sup{d ∈ R : µH(E, d) = ∞} = inf{d ∈ R : µH(E, d) = 0} . (3)

The Hausdorff measure µH of a subset E ⊂ W is defined25–28 by

µH(E, D) = ω(D) lim
d(Ei)→0

inf
{Ei}

∞
∑

i=1

[d(Ei)]
D . (4)

Note that µH(λE, D) = λDµH(E, D), where λ > 0 and λE = {λx, x ∈ E}.
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2.2. Function and integrals on fractal

Let us consider the functions on W :

f(x) =

∞
∑

i=1

βiχEi
(x) , (5)

where χE is the characteristic function of E:

χE(x) =

{

1 if x ∈ E

0 if x 6∈ E .

The Lebesgue–Stieltjes integral for (5) is defined by

∫

W

f dµ =

∞
∑

i=1

βiµH(Ei) . (6)

Therefore
∫

W

f(x)dµH (x) = lim
d(Ei)→0

∑

Ei

f(xi)ξ(Ei, D)

= ω(D) lim
d(Ei)→0

∑

Ei

f(xi)[d(Ei)]
D . (7)

It is possible to divide R
n into parallelepipeds

Ei1 ···in
= {(x1, . . . , xn) ∈ W : xj = (ij − 1)∆xj

+ αj , 0 ≤ αj ≤ ∆xj , j = 1, . . . , n} . (8)

Then

dµH(x) = lim
d(Ei1···in )→0

ξ(Ei1 ···in
, D)

= lim
d(Ei1···in )→0

n
∏

j=1

(∆xj)
D/n =

n
∏

j=1

dD/nxj . (9)

The range of integration W can be parametrized by polar coordinates with r =

d(x, 0) and angle Ω. Then Er,Ω can be thought of as spherically symmetric covering

around a center at the origin. In the limit, the function ξ(Er,Ω, D) gives

dµH(r, Ω) = lim
d(Er,Ω)→0

ξ(Er,Ω, D) = dΩD−1rD−1dr . (10)

Let us consider f(x) that is symmetric with respect to some center x0 ∈ W ,

i.e. f(x) = const. for all x such that d(x, x0) = r for arbitrary values of r. Then the

transformation

W → W ′ : x → x′ = x − x0 (11)



July 6, 2006 10:41 WSPC/146-MPLA 02097

1590 V. E. Tarasov

can be performed to shift the center of symmetry. Since W is not a linear space,

(11) need not be a map of W onto itself. The map (11) is measure-preserving. Then

the integral over a D-dimensional metric space is
∫

W

f dµH =
2πD/2

Γ(D/2)

∫ ∞

0

f(r)rD−1 dr . (12)

This integral is known in the theory of the fractional calculus.1 The right Riemann–

Liouville fractional integral is

ID
− f(z) =

1

Γ(D)

∫ ∞

z

(x − z)D−1f(x)dx . (13)

Equation (12) is reproduced by

∫

W

f dµH =
2πD/2Γ(D)

Γ(D/2)
ID
− f(0) . (14)

Relation (14) connects the integral on fractal with integral of fractional order.

This result permits to apply different tools of the fractional calculus1 for the

fractal medium. As a result, the fractional integral can be considered as an in-

tegral on fractal (fractional Hausdorff dimension set) up to the numerical factor

Γ(D/2)/[2πD/2Γ(D)].

Note that the interpretation of fractional integration is connected with fractional

dimension.18 This interpretation follows from the well-known formulas for dimen-

sional regularizations.29,30 The fractional integral can be considered as an integral

in the fractional dimension space up to the numerical factor Γ(D/2)/[2πD/2Γ(D)].

In Ref. 23 was proved that the fractal spacetime approach is technically identical

with dimensional regularization.

The integral defined in (7) satisfies the translational invariance property:
∫

W

f(x + x0)dµH (x) =

∫

W

f(x)dµH (x) (15)

since dµH(x − x0) = dµH(x) as a consequence of homogeneity. The integral (7)

satisfies the scaling property:
∫

W

f(λx)dµH (x) = λ−D

∫

W

f(x)dµH (x) (16)

since dµH(x/λ) = λ−D dµH(x).

2.3. Multi-variable integration on fractal

The integral in (12) is defined for a single variable but not multiple variables. It

is only useful for integrating spherically symmetric functions. We consider multiple

variables by using the product spaces and product measures.

Let us consider a collection of n = 3 measure spaces (Wk, µk, D) with k = 1, 2, 3,

and form a Cartesian product of the sets Wk producing the space W = W1 ×
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W2 × W3. The definition of product measures and application of Fubini’s theorem

provides a measure for the product set W = W1 × W2 × W3 as

(µ1 × µ2 × µ3)(W ) = µ1(W1)µ2(W2)µ3(W3) . (17)

The integration over a function f on the product space is
∫

f(r)d(µ1 × µ2 × µ3) =

∫∫∫

f(x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3) . (18)

In this form, the single-variable measure from (12) may be used for each coordinate

xk, which has an associated dimension αk:

dµk(xk) =
2παk/2

Γ(αk/2)
|xk |

αk−1dxk , k = 1, 2, 3 . (19)

The total dimension of W = W1 × W2 × W3 is D = α1 + α2 + α3.

Let us reproduce the result for the single-variable integration (12), from the

product space W1 × W2 × W3. We take a spherically symmetric function f(r) =

f(x1, x2, x3) = f(r), where r2 = (x1)
2+(x2)

2+(x3)
2 and to perform the integration

in spherical coordinates (r, φ, θ), we use
∫ π/2

0

sinµ−1 x cosν−1 x dx =
Γ(µ/2)Γ(ν/2)

2Γ((µ + ν)/2)
(20)

where µ > 0, ν > 0. Then Eq. (18) becomes
∫

dµ1(x1)dµ2(x2)dµ3(x3)f(r) =
2πD/2

Γ(D/2)

∫

f(r)rD−1 dr . (21)

This equation describes integration over a spherically symmetric function in a D-

dimensional space and reproduces the result (12).

3. Electrodynamics on Fractal

3.1. Electric charge of fractal set

Let us consider the electric charge that is distributed on the measurable metric set

W with the fractional Hausdorff dimension D. Suppose that the density of charge

distribution is described by the function ρ(r, t). In this case, the total charge is

defined by

QD(W ) =

∫

W

ρ(r, t)dVD , dVD = dµ1(x1)dµ2(x2)dµ3(x3) = c3(D, r)dV3 , (22)

where dV3 = dx dy dz for Cartesian coordinates, dimH(W ) = D = α1 + α2 + α3,

and

c3(D, r) =
8πD/2|x|α1−1|y|α2−1|z|α3−1

Γ(α1)Γ(α2)Γ(α3)
. (23)

As a result, we get Riemann–Liouville fractional integral1 up to numerical factor

8πD/2. Note that the final equations that relate the physical variables have the
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form that are independent of numerical factor in the function c3(D, r). However,

the dependence of r is important to these equations.

Equation (22) describes the charge that is distributed in the volume and has

the fractal dimension D by fractional integrals. There are many different definitions

of fractional integrals.1 For the Riemann–Liouville fractional integral, the function

c3(D, r) is

c3(D, r) =
|x|α1−1|y|α2−1|z|α3−1

Γ(α1)Γ(α2)Γ(α3)
, (24)

where x, y, z are Cartesian’s coordinates and D = α1 + α2 + α3, 0 < D ≤ 3. Note

that for D = 2, we have the distribution in the volume. In general, this case is not

equivalent to the distribution on the two-dimensional surface. For ρ(r) = ρ(|r|), we

can use the fractional integrals with

c3(D, r) =
23−DΓ(3/2)

Γ(D/2)
|r|D−3 . (25)

If we consider the ball region W = {r : |r| ≤ R}, and stationary spherically

symmetric distribution of charged particles (ρ(r, t) = ρ(r)), then

QD(R) = 4π
23−DΓ(3/2)

Γ(D/2)

∫ R

0

ρ(r)rD−1 dr .

For the homogeneous case, ρ(r, t) = ρ0, and

QD(R) = 4πρ0
23−DΓ(3/2)

Γ(D/2)

RD

D
∼ RD .

The distribution of charged particles is homogeneous if all regions W and W ′ with

equal volumes VD(W ) = VD(W ′) have the same total charges on these regions

QD(W ) = QD(W ′).

For charged particles that are distributed with a constant density over a fractal

with Hausdorff dimension D, the electric charge Q satisfies the scaling law Q(R) ∼

RD, whereas for a regular n-dimensional Euclidean object we have Q(R) ∼ Rn.

3.2. Electric current for fractal

For charged particles with density ρ(r, t) flowing with velocity u = u(r, t), the

resulting current density J(r, t) is

J(r, t) = ρ(r, t)u(r, t) .

The electric current I(S) is defined as the flux of electric charge. Measuring the

field J(r, t) passing through a surface S = ∂W gives

I(S) = ΦJ (S) =

∫

S

(J(r, t), dS2) , (26)
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where dS2 = dS2n is a differential unit of area pointing perpendicular to the surface

S, and the vector n = nkek is a vector of normal. The fractional generalization of

(26) is

I(S) =

∫

S

(J(r, t), dSd) , (27)

where

dSd = c2(d, r)dS2 , c2(d, r) =
22−d

Γ(d/2)
|r|d−2 . (28)

Note that c2(2, r) = 1 for d = 2. The boundary ∂W has dimension d. In general,

the dimension d is not equal to 2 and is not equal to (D − 1).

3.3. Charge conservation for fractal

The electric charge has a fundamental property established by numerous experi-

ments: the velocity of charge change in region W bounded by the surface S = ∂W

is equal to the flux of charge through this surface. This is known as the law of

charge conservation:

dQ(W )

dt
= −I(S) ,

or, in the form

d

dt

∫

W

ρ(r, t)dVD = −

∮

∂W

(J(r, t), dSd) . (29)

In particular, when the surface S = ∂W is fixed, we can write

d

dt

∫

W

ρ(r, t)dVD =

∫

W

∂ρ(r, t)

∂t
dVD . (30)

Using the fractional generalization of the Gauss’s theorem (see the Appendix), we

get

∮

∂W

(J(r, t), dSd) =

∫

W

c−1
3 (D, r)

∂

∂xk
(c2(d, r)Jk(r, t))dVD . (31)

Substituting Eqs. (30) and (31) into Eq. (29) gives

c3(D, r)
∂ρ(r, t)

∂t
+

∂

∂xk
(c2(d, r)Jk(r, t)) = 0 . (32)

As a result, we obtain the law of charge conservation in differential form (32). This

equation can be considered as a continuity equation for fractal.
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3.4. Electric field and Coulomb’s law

For a continuous stationary distribution ρ(r′), the electric field at a point r is defined

by

E(r) =
1

4πε0

∫

W

r − r′

|r− r′|3
ρ(r′)dV ′

3 , (33)

where ε0 is a fundamental constant called the permittivity of free space. For Carte-

sian’s coordinates dV ′
3 = dx′dy′dz′. The fractional generalization of (33) is

E(r) =
1

4πε0

∫

W

r − r′

|r − r′|3
ρ(r′)dV ′

D , (34)

where dV ′
D = c3(D, r′)dV ′

3 . Equation (34) can be considered as Coulomb’s law for

a stationary distribution of electric charges on fractal.

3.5. Gauss’s law for fractal

The Gauss’s law tells us that the total flux ΦE(S) of the electric field E through a

closed surface S = ∂W is proportional to the total electric charge Q(W ) inside the

surface:

ΦE(∂W ) =
1

ε0
Q(W ) . (35)

The electric flux for the surface S = ∂W is

ΦE(S) =

∫

S

(E, dS2) ,

where E(r, t) is the electric field vector, and dS2 is a differential unit of area pointing

perpendicular to the surface S.

For the distribution on fractal, the Gauss’s law (35) states
∫

S

(E, dS2) =
1

ε0

∫

W

ρ(r, t)dVD , (36)

where ρ(r, t) is the density of electric charge that is distributed on fractal, dVD =

c3(D, r)dV3, and ε0 is the permittivity of free space.

If ρ(r, t) = ρ(r), and W = {r : |r| ≤ R}, then

Q(W ) = 4π

∫ R

0

ρ(r)c3(D, r)r2 dr = 4π
23−DΓ(3/2)

Γ(D/2)

∫ R

0

ρ(r)rD−1 dr . (37)

For the sphere S = ∂W = {r : |r| = R},

ΦE(∂W ) = 4πR2E(R) . (38)

Substituting (37) and (38) into (35), we get

E(R) =
23−DΓ(3/2)

ε0R2Γ(D/2)

∫ R

0

ρ(r)rD−1 dr .

For homogeneous (ρ(r) = ρ) distribution,

E(R) = ρ
23−DΓ(3/2)

ε0DΓ(D/2)
RD−2 ∼ RD−2 .
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3.6. Magnetic field and Biot–Savart law

The Biot–Savart law relates magnetic fields to the currents, which are their sources.

For a continuous distribution, the law is

B(r) =
µ0

4π

∫

W

[J(r′), r − r′]

|r − r′|3
dV ′

3 , (39)

where [, ] is a vector product, J is the current density, µ0 is the permeability of free

space. The fractional generalization of Eq. (39) is

B(r) =
µ0

4π

∫

W

[J(r′), r − r′]

|r − r′|3
dV ′

D . (40)

This equation is Biot–Savart law written for a steady current with fractal distribu-

tion of electric charges. The law (40) can be used to find the magnetic field produced

by any distribution of steady currents on fractal.

3.7. Ampere’s law for fractal

The magnetic field in space around an electric current is proportional to the electric

current, which serves as its source. In the case of static electric field, the line integral

of the magnetic field around a closed loop is proportional to the electric current

flowing through the loop. The Ampere’s law is equivalent to the steady state of the

integral Maxwell equation in free space, and relates the spatially varying magnetic

field B(r) to the current density J(r).

Note that, as mentioned in Ref. 13, Liouville, who was one of the pioneers in

developing fractional calculus, was inspired by the problem of fundamental force

law in Ampere’s electrodynamics and used fractional differential equation in that

problem.

The Ampere’s law states that the line integral of the magnetic field B along the

closed path L around a current given in MKS by
∮

L

(B, dl) = µ0I(S) ,

where dl is the differential length element. For the distribution of particles on the

fractal, I(S) is defined by (27). For the cylindrically symmetric distribution,

I(S) = 2π

∫ R

0

J(r)c2(d, r)r dr = 4π
22−d

Γ(d/2)

∫ R

0

J(r)rd−1 dr ,

where we use c2(d, r) from Eq. (28). For the circle L = ∂W = {r : |r| = R}, we get
∮

L

(B, dl) = 2πRB(R) .

As a result,

B(R) =
µ02

2−d

RΓ(d/2)

∫ R

0

J(r)rd−1 dr .
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For the homogeneous case, J(r) = J0 and

B(R) = J0
µ02

2−d

dΓ(d/2)
Rd−1 ∼ Rd−1 .

3.8. Fractional integral Maxwell equations

Let us consider the fractional integral Maxwell equations. The Maxwell equations

are the set of fundamental equations for electric and magnetic fields. The equations

can be expressed in integral form known as Gauss’s law, Faraday’s law, the absence

of magnetic monopoles, and Ampere’s law with displacement current. In MKS,

these become
∮

S

(E, dS2) =
1

ε0

∫

W

ρ dVD ,

∮

L

(E, dl1) = −
∂

∂t

∫

S

(B, dS2) ,

∮

S

(B, dS2) = 0 ,

∮

L

(B, dl1) = µ0

∫

S

(J, dSd) + ε0µ0
∂

∂t

∫

S

(E, dS2) .

Let us consider the fields that are defined on fractal only. The hydrodynamic and

thermodynamics fields can be defined in the fractal media.8,9 Suppose that the

electromagnetic field can be defined on fractal as an approximation of some real

case with fractal medium. If the electric field E(r, t) and magnetic fields B(r, t) can

be defined on fractal and do not exist outside of fractal in Euclidean space E3, then

we must use the fractional generalization of the integral Maxwell equations in the

form:
∮

S

(E, dSd) =
1

ε0

∫

W

ρ dVD , (41)

∮

L

(E, dlγ) = −
∂

∂t

∫

S

(B, dSd) , (42)

∮

S

(B, dSd) = 0 , (43)

∮

L

(B, dlγ) = µ0

∫

S

(J, dSd) + ε0µ0
∂

∂t

∫

S

(E, dSd) . (44)

The fractional integrals are considered as approximation of integrals on fractals.23,24

Using the fractional generalization of Stokes’s and Gauss’s theorems (see the

Appendix), we can rewrite Eq. (44) in the form
∫

W

c−1
3 (D, r) div(c2(d, r)E)dVD =

1

ε0

∫

W

ρ dVD , (45)
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∫

S

c−1
2 (d, r)(curl(c1(γ, r)E), dSd) = −

∂

∂t

∫

S

(B, dSd) , (46)

∫

W

c−1
3 (D, r) div(c2(d, r)B)dVd = 0 , (47)

∫

S

c−1
2 (d, r)(curl(c1(γ, r)B), dSd) = µ0

∫

S

(J, dSd) + ε0µ0
∂

∂t

∫

S

(E, dSd) . (48)

As a result, we obtain

div(c2(d, r)E) =
1

ε0
c3(D, r)ρ , (49)

curl(c1(γ, r)E) = −c2(d, r)
∂

∂t
B , (50)

div(c2(d, r)B) = 0 , (51)

curl(c1(γ, r)B) = µ0c2(d, r)J + ε0µ0c2(d, r)
∂E

∂t
. (52)

Note that the law of absence of magnetic monopoles for the fractal leads us to

div(c2(d, r)B) = 0. It can be rewritten as

div B = −(B, gradc2(d, r)) .

In the general case (d 6= 2), the vector grad(c2(d, r)) is not equal to zero and the

magnetic field satisfies div B 6= 0. If d = 2, we have div(B) 6= 0 only for non-

solenoidal field B. Therefore the magnetic field on the fractal is similar to the

non-solenoidal field. As a result, the field on fractal can be considered as a field

with some “fractional magnetic monopole” qm ∼ (B,∇c2).

3.9. Fractal as effective medium

The Maxwell equations (49)–(52) on fractal can be considered as the equations for

medium

div(D) = ρeff
free , (53)

curl(Eeff) = −
∂

∂t
Beff , (54)

div(Beff) = 0 , (55)

curl(H) = Jeff +
∂D

∂t
. (56)

The effective Maxwell equations (53)–(56) prove that fractal creates some po-

larization and magnetization. In the equations, we use some effective fields

Eeff(r, t) = c1(γ, r)E(r, t) , Beff(r, t) = c2(d, r)B(r, t) . (57)

The fields Eeff and Beff mean that electromagnetic fields E and B of particles are

changed by fractal.
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Equations (53)–(56) have the effective free charge and current densities:

ρeff
free(r, t) = c3(D, r)ρ(r, t), Jeff(r, t) = c2(d, r)J(r, t) . (58)

We can interpret the existence of ρeff
free and Jeff in the equations as an effect of

change of the free electric charge and current densities by fractal. This change

exists in addition to the effect of appearance the dipole charges and polarization

or magnetization currents. The fractal can be considered as a medium that has the

electrical and magnetic permittivities in the form

ε = c2(d, r)c−1
1 (γ, r), µ = c2(d, r)c−1

1 (γ, r) . (59)

The fields D and H are related to Eeff and Beff by the usual equations:

D = εε0E
eff , H =

1

µµ0
Beff . (60)

Note that the continuity equation (32) for fractal can be presented by

∂ρeff(r, t)

∂t
+ div(Jeff(r, t)) = 0 . (61)

As a result, the fractal can be considered as a specific medium that changes

the fields, free charges and currents in addition to the creation of polarization and

magnetization.

4. Conclusion

Fractals are measurable metric sets with non-integer Hausdorff dimensions. We

consider the electric and magnetic fields that are defined on fractal and does not

exist outside of fractal in Euclidean space. For charged particles that are distributed

with a constant density over a fractal with Hausdorff dimension D, the electric

charge Q satisfies the scaling law Q(R) ∼ RD, whereas for a regular n-dimensional

Euclidean object we have Q(R) ∼ Rn. This property can be used to measure the

fractal Hausdorff dimension D.

The fractional integrals can be used to describe electromagnetic fields on frac-

tals. These integrals are considered as approximations of integrals on fractals. The

fractional generalizations of integral Maxwell equations for fractal set are derived.

The magnetic field on fractal can be considered as a field with some “fractional

magnetic monopole”.

We can interpret the equations for electromagnetic fields on fractal as an ef-

fect of creation of some polarization and magnetization by fractal. Moreover, the

electromagnetic fields are also changed by fractal. From the generalized Maxwell

equations, we can see the effect of change of the free electric charge and current

densities by fractal. This change exists in addition to the effect of appearance the

dipole charges and polarization or magnetization currents. The electrical permit-

tivity ε and the magnetic permittivity µ of fractal are defined by the Hausdorff

measure and dimension of fractal.
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Appendix A. Fractional Gauss’s Theorem

Let us derive the fractional generalization of the Gauss’s theorem
∫

∂W

(J(r, t), dS2) =

∫

W

div(J(r, t))dV3 , (A.1)

where the vector J(r, t) = Jkek is a field, and

div(J) = ∂J/∂r = ∂Jk/∂xk .

Here, we mean the sum on the repeated index k from 1 to 3. Using

dSd = c2(d, r)dS2 , c2(d, r) =
22−d

Γ(d/2)
|r|d−2 ,

we get
∫

∂W

(J(r, t), dSd) =

∫

∂W

c2(d, r)(J(r, t), dS2) .

Note that c2(2, r) = 1 for d = 2. Using (A.1), we get
∫

∂W

c2(d, r)(J(r, t), dS2) =

∫

W

div(c2(d, r)J(r, t))dV3 .

The relation dV3 = c−1
3 (D, r)dVD allows us to derive the fractional generalization

of the Gauss’s theorem:
∫

∂W

(J(r, t), dSd) =

∫

W

c−1
3 (D, r) div(c2(d, r)J(r, t))dVD .

Analogously, we can get the fractional generalization of Stokes’s theorem in the

form
∮

L

(E, dlγ) =

∫

S

c−1
2 (d, r)(curl(c1(γ, r)E), dSd) ,

where

c1(γ, r) =
21−γΓ(1/2)

Γ(γ/2)
|r|γ−1 .
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