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In this paper we consider the electric multipole moments of fractal distribution of
charges. To describe fractal distribution, we use the fractional integrals. The fractional
integrals are considered as approximations of integrals on fractals. In the paper we com-
pute the electric multipole moments for homogeneous fractal distribution of charges.
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1. Introduction

Integrals and derivatives of fractional order have found many applications in recent
studies in science. The interest in fractals and fractional analysis has been growing
continually in the last few years. Fractional derivatives and integrals have numer-
ous applications: kinetic theories;! ™3 statistical mechanics;*~% dynamics in complex
media;""!! electrodynamics!?~1% and many others. The new type of problem has
increased rapidly in areas in which the fractal features of a process or the medium
imposes the necessity of using non-traditional tools in smooth physical models. In
order to use fractional derivatives and fractional integrals for fractal distribution,
we must use some continuous medium model.”® We propose to describe the frac-
tal distribution by a fractional continuous medium,”® where all characteristics and
fields are defined everywhere in the volume but they follow some generalized equa-
tions which are derived by using fractional integrals. In many problems the real
fractal structure of a medium can be disregarded and the fractal distribution can
be replaced by some fractional continuous mathematical model. By smoothing of
microscopic characteristics over the physically infinitesimal volume, we transform
the initial fractal distribution into a fractional continuous model”® that uses the
fractional integrals. The order of the fractional integral is equal to the fractal di-
mension of distribution. The fractional integrals allow us to take into account the
fractality of the media.” Fractional integrals are considered as approximations of
integrals on fractals.'® It was proved that integrals on the net of fractals can be
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approximated by fractional integrals.!® In Refs. 4 and 5, we proved that fractional
integrals can be considered as integrals over the space with the fractional dimension
up to a numerical factor.

In this paper, we consider electric multipole moments of the fractal distribution
of charges. Fractal distribution is described by the fractional continuous model.” 20
In the general case, the fractal distribution cannot be considered as a continuous
distribution. There are domains that are not filled by particles. We suggest’ to
consider the fractal distribution as a special (fractional) continuous distribution.
We use the procedure of replacement of the distribution with fractal dimension by
some continuous model that uses fractional integrals. The suggested procedure can
be considered as a fractional generalization of the Christensen approach.1?

In Sec. 2, the density of electric charge for fractal distribution is considered.
In Sec. 3, we consider the electric multipole expansion. In Sec. 4, the examples of
electric dipole moment for fractal distribution of charges are derived. In Sec. 5, we
consider the electric quadrupole moment of fractal distribution of charges. In Sec. 6,
the examples of electric quadrupole moments of charged fractal parallelepiped are
computed. In Sec. 7, the examples of electric quadrupole moments of charged fractal
ellipsoid are computed. Finally, a short conclusion is given in Sec. 8.

2. Electric Charge of Fractal Distribution

Let us consider a fractal distribution of charges. For example, we can assume that
charged particles with a constant density are distributed over the fractal. In this
case, the number of particles N(R) enclosed in a volume with characteristic size R
satisfies the scaling law

N(R) ~ R", 1)

whereas for a regular n-dimensional Euclidean object we have N (R) ~ R™.
For charged particles with number density n(r, t), we have that the charge den-
sity can be defined by

p(r, t) = qn(r, t), (2)

where ¢ is the charge of particle (for example, ¢ is an electron charge), and r =
ze1 + yes + zes. The total charge of region W is then given by the integral

QW) = /W p(r, )V = q /W n(r, )dVs 3)

ie., QW) = ¢N(W), where N(W) is a number of particles in the region W. The
fractional generalization of this equation can be written in the following form:

QW) = /W o(r,t)dVp = q/W n(r,t)dVp, (4)

where D is a fractal dimension of the distribution, and dVp is an element of D-
dimensional volume such that

dVp = Cs3(D,r)dVs . (5)
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For the Riesz definition of the fractional integral,!® the function C3(D,r) is
defined by the relation

3—-D
Cs(D,x) = %%Q)Irll"?ﬂ (6)

The initial points of the fractional integral'® are set to zero. The numerical factor in
Eq. (6) has this form in order to derive the usual integral in the limit D — (3 —0).
Note that the usual numerical factor v; }(D) = ['(1/2)/(2P%3/2I(D/2)), which is
used in Ref. 18, leads to v3 (3 — 0) = ['(1/2)/(237%/20(3/2)) = 1/(47%/?) in the
limit D — (3 — 0).

For the Riemann-Liouville fractional integral,'® the function C3(D,r) is defined
by

4|D/3-1
Ca(Dyr) = '””FZQ(’T:” ()

Here we use Cartesian’s coordinates z, y, and z. In order to have the usual di-
mensions of the physical values, we can use vector r, and coordinates z, y, z as
dimensionless values.

Note that the interpretation of fractional integration is connected with the non-
integer dimension.*® This interpretation follows from the well known formulas for
dimensional regularizations. The fractional integral can be considered as an integral
in the noninteger dimension space up to the numerical factor I'(D/2)/(27P/2T(D)).

If we consider the ball region W = {r : |r| < R}, Riesz fractional integral (6),
and spherically symmetric distribution of charged particles (p(r,t) = p(r)), then
we have

3-D R
QW) = 471'2P—(£g—§l)/(; p(r)yrP=1dr. (8)

For the homogeneous (p(r) = pg) fractal distribution, we get
4mpy 2°~PT(3/2
QW) = Po (3/2)
D T(D/2)
If D = 3, we have Q(W) = (47/3)poR3.
If we consider the Riemann-Liouville fractional integral (7) for the ball region
W, and spherically symmetric distribution (p(r,t) = p(r)), then we have

RP ~ RP. (9)

3 R
Q) = sxp T |, PO, (10)
For the homogeneous (p(r) = pg) fractal distribution, we get
2p03(D/6
QW) = DI‘3F()3)/3§)1‘<D)/2) R ~ RY. (11)

If D = 3, we get the usual expression Q(W) = (47/3)poR3.
The fractal distribution of charged particles is called a homogeneous fractal
distribution if the power law Q(R) ~ RP does not depend on the translation of
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the region. The homogeneity property of the distribution can be formulated in the
following form: For all regions W and W’ such that the volumes are equal V(W) =
V(W’), we have that the number of particles in these regions are equal N(W) =
N(W'). Note that the wide class of the fractal media satisfies the homogeneous
property. In Refs. 7 and 8, the continuous medium model for the fractal distribution
was suggested.

3. Electric Multipole Expansion for Fractal Distribution of
Charges

It is known that a multipole expansion is a series expansion of the effect produced
by a given system in terms of an expansion parameter which becomes small as the
distance away from the system increases. Therefore, the leading one of the terms
in a multipole expansion are generally the strongest. The first-order behavior of
the system at large distances can therefore be obtained from the first terms of
this series, which is generally much easier to compute than the general solution.
Multipole expansions are most commonly used in problems involving the electric
and magnetic fields of charge and current distributions, and the propagation of
electromagnetic waves.

To compute one particular case of a multipole expansion, let R = Xyej be the
vector from a fixed reference point to the observation point; r = Zxex be the vector
from the reference point to a point in the distribution; and s = R —r be the vector
from a point in the distribution to the observation point. The law of cosine then
yields

s2=r24+R?*-2rR cos ¥, (12)
where s = |s|, 7 = |r|, R = |R], and 0 is the polar angle, defined such that
cos § = (r,R)/(rR). (13)

s—R\/l—ZLcosO—l—i (14)
N R R2’
Now define € = r/R, and £ = cos 6, then

1 1 '
- = 70— 2 + €2) 712, (15)

Using Eq. (12), we get

But the right hand side of Eq. (15) is the generating function for Legendre polyno-
mials P,(£) by the following relation:

(1—2e£+ )72 = i €"Pr(§), (16)

n=0

so, we have the equation

% - % i (%)npn(cos 8). (17)
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Any physical potential that obeys a (1/s) law can therefore be expressed as a
multipole expansion

1 < 1 n
- L P, : 1
= n§=0: . /Wr (cos 8)p(r)dV (18)

The n = 0 term of this expansion, called the monopole term, can be pulled out by
noting that Po(z) =1, s0

/ P, (cos 0)p(r)dVp . (19)

47r80 R

The nth term
1 1
= Tres BT /W r™ Py (cos 0)p(r)dVp (20)
is usually named according to the following: n — multipole, 0 — monopole, 1 - dipole,
2 ~ quadrupole.

4. Electric Dipole Moment of Fractal Distribution of Charges

An electric multipole expansion is a determination of the voltage V' due to a collec-
tion of charges obtained by performing a multipole expansion. This corresponds to
a series expansion of the charge density p(r) in terms of its moments, normalized
by the distance to a point R far from the charge distribution. In MKS, the electric
multipole expansion is given by Eq (18):

47r50 Z Rn+1 / Pr(cos 0)p(r)dVp, (21)

where P, (cos ) is a Legendre polynomial.

The first term arises from Py(£) = 1, while all further terms vanish as a result
of P, (&) being a polynomial in £ for n > 1, giving P,(0) = 0 for all n > 1.

Set up the coordinate system so that § measures the angle from the charge-
charge line with the midpoint of this line being the origin. Then the n = 1 term is
given by

11
~ dneg R?

_ 1
- 471’60R2

_ 1 (r,R)
" 4megR2? /W R pir)dVp

1
- /W(r, R)o(r)dVp

- ﬁ ( /W rp(r)dVD,R) . (22)

/ TP (cos 8)p(r)dVp
w

/ r cos 8p(r)dVp
w
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For a continuous charge distribution, the electric dipole moment is given by

p® = /W rp(r)dVa, (23)

where r points from positive to negative. Defining the dipole moment for the fractal
distribution by the equation

p® = /W rp(r)dV (24)

then gives

1 (PP}, R) 1 pP) cos a
o 47!'60 R3 o 471'60 R2 ’

(25)
where we use

cos a = (p(D),R)/(p(D)R), pP) = \ (pz D))2 + (P(D))2 + ( (D)) (26)

Let us consider the example of electric dipole moment for the homogeneous
(p(r) = po) fractal distribution of electric charges in the parallelepiped region W:

0<z<A, 0<y<B, 0<2<C. (27)

In the case of the Riemann-Liouville fractional integral, we have pa(;D) in the form:

(D) _ aya-1,a-1_ PO(ABC)* A
= 5 [ io [y [ dset Fa  @arn’ &

where a = D/3. The electric charge of parallelepiped region (27) is defined by

QW) =po [ Vo =L (29)

Therefore, we have the dipole moments for fractal distribution in parallelepiped in
the form

(D)
25 a+1Q() (30)
By analogy with these equation, we can derive
a
PP = —=QW)B, P = —ZQW)C. (31)
Using a/(a+ 1) = D/(D + 3), we get
2D
(D) — p3) 32
P =p53P (32)
where p® = ]p(3)| are the dipole moment for the usual 3-dimensional homoge-

neous distribution. For example, the relation 2 < D < 3 leads us to the following
inequality

0.8 <pP/p® < 1. (33)
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5. Electric Quadrupole Moment of Fractal Distribution of Charges
There are also higher-order terms in the multipole expansion that become smaller
as R becomes large. The electric quadrupole term in MKS is given by

e /W r“Py(cos 8)p(r)dVp

11 (3 4, 1
= T B Wr (2005 0 2),o(r)dVD

- % 21? /W (%(R, r)? — Tz) p(r)dVp . (34)

The electric quadrupole is the third term in an electric multipole expansion,
and can be defined in MKS by

1 1 XX,
~ dneo 2R3 Zl ; lel ’ (35)
where ¢¢ is the permittivity of free space, R is the distance from the fractal distri-
bution of charges, and Qg; is the electric quadrupole moment, which is a tensor.
Note that X} are Cartesian’s coordinates of the vector R, and z;, are coordinates
of the vector r.
The electric quadrupole moment is defined by the equation

Qr = /W(395k$l — r%81)p(r)dVp , (36)

where z; = z,y, or z. From this definition, it follows that

3
Qu=Qu, and > Qu=0. 37)
k=1
Therefore, we have Q,, = —Qzz — Qyy- In order to compute the values
QD = [ @2~ ~ v, (38)
w
O = [ (2 + 2~ Hp(r)avo, (39)
w
QR = [ (= =y +2:)p0)dV (40)
we consider the following expression
Qa,7) = | (aa® + 47 +122)p(w)dV (41)
w

Using Eq. (41), we have
QR =Q2,-1,-1), Q¥ =Q(-1,2,-1), QP =Q(-1,-1,2). (42)

The example of electric quadrupole moment for the parallelepiped and ellipsoid
regions are considered in Secs. 6 and 7.
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6. Quadrupole Moment of Charged Fractal Parallelepiped

Let us consider the example of electric quadrupole moment for the homogeneous
(p(r) = po) fractal distribution of electric charges in the parallelepiped region (27).
If we consider the region W in the form (27), then we get

po(ABC)*

m[dz‘lg + ,BBZ + ’702] , (43)

Qa, 8,7) =

where we use the Riemann-Liouville fractional integral,'® and the function C3(D, r)
in the form

_ lzyzo? _
Cs3(D,r) = T’ a=D/3. (44)
The electric charge of the region W is
(ABC
Po/ dVp = pol #T5(a )) . (45)

If D = 3, we have Q(W) = pgABC. Using Egs. (43) and (45), we get the following
equations:

a
a+2

Qa, B,y) = QW)(aA® + BB +7C?). (46)

If D=3, then we have a/(a +2) = 1/3. As the result, we have electric quadrupole
moments Q ) of fractal distribution in the region W:

D 3
© - 22 o, n

where Q,(jc) are moments for the usual homogeneous distribution (D = 3). By anal-
ogy with these equations, we can derive Q;cllj) for the case k # l. These electric
quadrupole moments are

QP = QQS;), (k#1). (48)

(D+3)

Using inequality 2 < D < 3, we get the relations for diagonal elements

0.75 < Q¥ <1, (49)
and nondiagonal elements

0.64 < Q7 /Q® <1, (50)

where k # [.
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7. Quadrupole Moment of Charged Fractal Ellipsoid

Let us consider the example of electric quadrupole moment for the homogeneous
{(p(r) = po) fractal distribution in the ellipsoid region W:
2 2 2
x y z
If we consider the region W in the form (51), then we get expression (41) in the
form

8po(ABC)*

Qe B,7) = m [0 A®Zy(a) + BB?Za(a) + vC*Z3(a)], (52)
where a = D/3, and Z;(a), i = 1,2,3 are defined by
Zi(a) = S(a+1,a-1)S(a—-1,2a+ 1), (53)
Zy(a) =8S(a—1,a+1)S(a—1,2a+1), (54)
Z3(a) =S(a—1,a—1)S(a+1,2a —1). (55)

Here we use the following function:
n/2+1/2)['(m/2+1/2)
2I'(n/2+m/2+1) '

Note that Zi{(a) = Zz(a) = Zs(a). Using these equations, we get the following
relation:

(56)

S(n,m) = /07r/2 dz cos™(z) sin™(z) = il

_ 2po(ABC)® T'?(a/2)[(a/2 + 1)

2 2 2
Qe B,7) = Bat2) T@TGa2il) (aA? 4+ BB? +4C?). (57)
Using I'(8 + 1) = BT'(8), we have
_ 2p0(ABC)® 1_‘3((1/2) 2 2 2
Qla, B,7) = 33a12) T@l(a/2) (aA® + BB* +~C7). (58)
If D = 3, we obtain
dmpgABC

Qe f,7) = T (@A + B +4C%).. (59)

The total charge of the ellipsoid region W is defined by

_ o 2T%(a/2)

QW) = po /W dVp = po(ABC) 3aT5(a)T(3a/2) (60)
If D = 3, we have the total charge Q(W) = (47/3)poABC. Here we use I'(1/2) =

N

Using Eqgs. (58) and (60), we can derive the electric quadrupole moments (42)
for fractal ellipsoid. As the result, we have

D
Q(a,ﬂ,7)=3D+6

Q(W)(aA? + BB? + ~C?). (61)
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If D = 3, then we have the well known relation:
Q(a, B,7) = (1/5)Q(W)(ad’? + BB? +~C?). (62)
If 2 < D < 3, then we have
5

5 < Q2% < 1. (63)

The nondiagonal elements of electric quadrupole moment are defined by the
following equations:

Qzy = 3po [y zydVD, Qzz = 3po [y, z2dVp,

(64)
Qyz =3po fW yzdVp .
Using these equations, we can derive the nondiagonal elements in the forms:
6p0(ABC)® T'(a/2)[%(a/2+1/2)
(D) _ 2P0
' =332 DP@rGeztl) D (65)
6p0(ABC)® T'(a/2)T%(a/2 + 1/2)
(D) —
2 = 3413 D@Gaz+l) 0 (66)
6p0(ABC)® T(a/2)[%(a/2 + 1/2)
(D) —
o 3a12  T(@)T(Ba2+1) 2C (67)
Using I'(8 + 1) = ST'(B) and Eq. (60), we get the following equations:
6Q(W) I'2(a/2+1/2)
(D) —
it 3a+2 T?(a/2) AB, (68)
6Q(W) I'*(a/2 +1/2)
(D) _
R P B 107 N (69)
6Q(W) I'2(a/2+1/2)
(D} —
@y 3a+2 I'%(a/2) BC. (70)
As the result, we have
579 T%(D/6+1/2
(D) _ (D/6+1/ )QS) , (71)

K= Dy2  I2(D/6)
where k # 1. Here we use I'(1/2) = /m. If we consider 2 < D < 3, then we get
0.6072 < Q5 /QY < 1. (72)

8. Conclusion

In this paper, we use the fractional continuous model for fractal distribution of elec-
tric charges. The fractional continuous models for fractal distribution of particles
can have wide applications. This is due in part to the relatively small number of
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parameters that define a fractal distribution of great complexity and rich structure.
In many cases, the real fractal structure of matter can be disregarded and the distri-
bution of particles can be replaced by some fractional continuous model.”® In order
to describe the distribution with noninteger dimension, we must use the fractional
calculus. Smoothing of the microscopic characteristics over the physically infinitesi-
mal volume transforms the initial fractal distribution into the fractional continuous
model that uses the fractional integrals. The order of the fractional integral is equal
to the fractal dimension of the distribution. The fractional continuous model for
the fractal distribution allows us to describe the dynamics of a wide class fractal
media.3®? One of the dynamical equation of physics is a Liouville equation. Note
that the Liouville equation is a cornerstone of statistical mechanics. The fractional
generalization of the Liouville equation was suggested in Refs. 4 and 6. The frac-
tional generalization of the Liouville equation allows us to derive the fractional
generalization of the Bogoliubov equations.® Using the fractional analog of the Li-
ouville equation? and Bogoliubov equations,®® we can derive the description of a
fractal distribution as a fractional system. Fractional systems can be considered as
a special case of non-Hamiltonian systems.*® Note that non-Hamiltonian systems
can have stationary states of the Hamiltonian systems.19~24
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