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The Chapman–Kolmogorov equation with fractional integrals is derived. An integral
of fractional order is considered as an approximation of the integral on fractal. Frac-
tional integrals can be used to describe the fractal media. Using fractional integrals, the
fractional generalization of the Chapman–Kolmogorov equation is obtained. From the
fractional Chapman–Kolmogorov equation, the Fokker–Planck equation is derived.
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1. Introduction

Integrals and derivatives of the fractional order goes back to Leibniz, Liouville, Rie-

mann, Grunwald, and Letnikov.1 Fractional analysis has found many applications

in recent studies in mechanics and physics. The interest in fractional integrals and

derivatives has been growing continually during the last few years because of nu-

merous applications. In a fairly short period of time, the list of such applications

has become long. It includes chaotic dynamics,2, 3 mechanics of fractal and com-

plex media,4–6 physical kinetics,2, 7, 8 plasma physics,9–11 astrophysics,12 long-range

dissipation,13, 14 non-Hamiltonian mechanics,15, 16 and long-range interaction.17–19

The natural question arises: What could be the physical meaning of the frac-

tional integration? This physical meaning can be following: the fractional integra-

tion can be considered as an integration in some noninteger-dimensional space. If

we use the well-known formulas for dimensional regularizations,20 then we get that

the fractional integration can be considered as an integration in the fractional di-

mension space15 up to the numerical factor Γ(α/2)/[2πα/2Γ(α)]. This interpretation

was suggested in Ref. 15. Fractional integrals can be considered as approximations

of integrals on fractals.21, 22 In Ref. 22, authors proved that integrals on a net of

fractals can be approximated by fractional integrals. Using fractional integrals, we

derive the fractional generalization of the Chapman–Kolmogorov equation.23, 24 In

this paper, the generalization of the Fokker–Planck equation for fractal media is

derived from the fractional Chapman–Kolmogorov equation.

In Sec. 2, a brief review of the Hausdorff measure, the Hausdorff dimension

and integration on fractals is carried out to fix notation and provide a convenient
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reference. The connection of integration on fractals and fractional integration is

discussed. We derive the fractional generalization of the average values equation. In

Sec. 3, the fractional Chapman–Kolmogorov equation is derived by using fractional

integration. In Sec. 4, the fractional Fokker–Planck equation for the fractal me-

dia is derived from the suggested fractional Chapman–Kolmogorov equation. The

stationary solutions of the Fokker–Planck equation for fractal media are derived.

2. Integration on Fractal and Fractional Integration

Fractals are measurable metric sets with a non-integer Hausdorff dimension. Let us

consider a brief review of the Hausdorff measure and the Hausdorff dimension in

order to fix notation and provide a convenient reference.

2.1. Hausdorff measure and Hausdorff dimension

Consider a measurable metric set (W, µH). The elements of W are denoted by

x, y, z, . . . , and represented by n-tuples of real numbers x = (x1, x2, . . . , xn) such

that W is embedded in Rn. The set W is restricted by the conditions: (i) W is

closed; (ii) W is unbounded; (iii) W is regular (homogeneous, uniform) with its

points randomly distributed.

The metric d(x, y) as a function of two points x and y ∈ W can be defined by

d(x, y) =

n
∑

i=1

|yi − xi| . (1)

The diameter of a subset E ⊂ W ⊂ Rn is

d(E) = diam(E) = sup{d(x, y) : x, y ∈ E} ,

Let us consider a set {Ei} of non-empty subsets Ei such that dim(Ei) < ε, ∀i,

and W ⊂ ⋃∞
i=1 Ei. Then, we define

ξ(Ei, D) = ω(D)[diam(Ei)]
D = ω(D)[d(Ei)]

D . (2)

The factor ω(D) depends on the geometry of Ei, used for covering W . If {Ei} is

the set of all (closed or open) balls in W , then

ω(D) =
πD/22−D

Γ(D/2 + 1)
. (3)

The Hausdorff dimension D of a subset E ⊂ W is defined25, 26 by

D = dimH(E) = {sup{d ∈ R : µH(E, d) = ∞} = inf{d ∈ R : µH(E, d) = 0} . (4)

From (4), we obtain µH(E, d) = 0 for d > D; and µH(E, d) = ∞ for d < D.

The Hausdorff measure µH of a subset E ⊂ W is:25, 26

µH(E, D) = lim
ε→0

inf
{Ei}

{

∞
∑

i=1

ξ(Ei, D) : E ⊂
⋃

i

Ei, d(Ei) < ε ∀i

}

, (5)
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or

µH(E, D) = ω(D) lim
d(Ei)→0

inf
{Ei}

∞
∑

i=1

[d(Ei)]
D . (6)

If E ⊂ W and λ > 0, then µH(λE, D) = λDµH(E, D), where λE = {λx, x ∈ E}.

2.2. Function and integrals on fractal

Let us consider the functions

f(x) =
∞
∑

i=1

βiχEi
(x) , (7)

where χE is the characteristic function of E: χE(x) = 1 if x ∈ E, and χE(x) = 0 if

x 6∈ E.

The Lebesgue–Stieltjes integral for (7) is defined by
∫

W

fdµ =

∞
∑

i=1

βiµH(Ei) . (8)

Therefore
∫

W

f(x)dµH (x) = lim
d(Ei)→0

∑

Ei

f(xi)ξ(Ei, D)

= ω(D) lim
d(Ei)→0

∑

Ei

f(xi)[d(Ei)]
D . (9)

It is always possible to divide Rn into parallelepipeds:

Ei1...in
= {(x1, . . . , xn) ∈ W : xj

= (ij − 1)∆xj + αj , 0 ≤ αj ≤ ∆xj , j = 1, . . . , n} . (10)

Then

dµH(x) = lim
d(Ei1···in )→0

ξ(Ei1 ···in
, D) = lim

d(Ei1···in )→0

n
∏

j=1

(∆xj)
D/n =

n
∏

j=1

dD/nxj .

(11)

The range of integration W may also be parametrized by polar coordinates with

r = d(x, 0) and angle Ω. Then Er,Ω can be thought of as spherically symmetric

covering around a center at the origin. In the limit, the function ξ(Er,Ω, D) gives

dµH(r, Ω) = lim
d(Er,Ω)→0

ξ(Er,Ω, D) = dΩD−1rD−1dr . (12)

Let us consider f(x) that is symmetric with respect to some point x0 ∈ W ,

i.e. f(x) = const for all x such that d(x, x0) = r for arbitrary values of r. Then the

transformation

W → W ′ : x → x′ = x − x0 (13)
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can be performed to shift the center of symmetry. Since W is not a linear space,

the transformation (13) need not be a map of W onto itself, and (13) is measure-

preserving. Then the integral over a D-dimensional metric space is
∫

W

fdµH = λ(D)

∫ ∞

0

f(r)rD−1dr , (14)

where λ(D) = 2πD/2/Γ(D/2). This integral is known in the theory of the fractional

calculus.1 The right Riemann–Liouville fractional integral is

(ID
− f)(z) =

1

Γ(D)

∫ ∞

z

(x − z)D−1f(x)dx . (15)

Then Eq. (14) is reproduced by

∫

W

fdµH =
2πD/2Γ(D)

Γ(D/2)
(ID

− f)(0) . (16)

Equation (16) connects the integral on the fractal with the integral of fractional

order. This result permits us to apply different tools of the fractional calculus1 for

the fractal medium. As a result, the fractional integral can be considered as an

integral on fractal up to the numerical factor Γ(D/2)/[2πD/2Γ(D)].

Note that the interpretation of fractional integration is connected with fractional

dimension.15 This interpretation follows from the well-known formulas for dimen-

sional regularizations.20 The fractional integral can be considered as an integral in

the fractional dimension space up to the numerical factor Γ(D/2)/[2πD/2Γ(D)]. In

Ref. 21, it was proved that the fractal space-time approach is technically identical

to the dimensional regularization.

2.3. Properties of integrals

The integral defined in Eq. (9) satisfies the properties:

(i) Linearity:
∫

W

(af1 + bf2)dµH = a

∫

W

f1dµH + b

∫

W

f2dµH , (17)

where f1 and f2 are arbitrary functions; a and b are arbitrary constants.

(ii) Translational invariance:
∫

W

f(x + x0)dµH(x) =

∫

W

f(x)dµH (x) , (18)

since dµH(x − x0) = dµH(x) as a consequence of homogeneity (uniformity).

(iii) Scaling property:
∫

W

f(λx)dµH (x) = λ−D

∫

W

f(x)dµH(x) , (19)

since dµH(x/λ) = λ−DdµH(x).
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It is well-known20, 27 that conditions (17)–(19) define the integral of the function

f(x) = exp(−ax2 + bx) up to normalization:
∫

W

exp(−ax2 + bx)dµH (x) = πD/2a−D/2 exp(b2/4a) . (20)

For b = 0, Eq. (20) is identical to the result that can be derived from Eq. (16) and

is obtained directly without conditions (17)–(19).

2.4. Fractional average values

The usual average value

〈A〉1 =

∫ +∞

−∞

A(x)ρ(x)dx (21)

can be written as

〈A〉1 =

∫ y

−∞

A(x)ρ(x)dx +

∫ ∞

y

A(x)ρ(x)dx . (22)

Using

(Iα
+A)(y) =

1

Γ(α)

∫ y

−∞

A(x)dx

(y − x)1−α
, (23)

(Iα
−A)(y) =

1

Γ(α)

∫ ∞

y

A(x)dx

(x − y)1−α
, (24)

the average value (22) can be present by

〈A〉1 = (I1
+Aρ)(y) + (I1

−Aρ)(y) . (25)

The fractional generalization of Eq. (25) is

〈A〉α(y) = (Iα
+Aρ)(y) + (Iα

−Aρ)(y) . (26)

Equation (26) can be rewritten as

〈A〉α(y) =

∫ ∞

0

[(Aρ)(y − x) + (Aρ)(y + x)]dµα(x) , (27)

where

dµα(x) =
|x|α−1dx

Γ(α)
=

dxα

αΓ(α)
. (28)

Here, we use

xα = β(x)(x)α = sgn(x)|x|α , (29)

where β(x) = (sgn(x))α−1. The function sgn(x) is equal to +1 for x ≥ 0, and −1

for x < 0.

To have the symmetric limits of the integral, we consider Eq. (27) in the form

〈A〉α(y) =
1

2

∫ +∞

−∞

[(Aρ)(y − x) + (Aρ)(y + x)]dµα(x) . (30)
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If α = 1, then we have the usual equation for the average value.

Let us introduce some notations to simplify Eq. (30). We define the integral

operators

Îα
x f(x) =

1

2

∫ +∞

−∞

[f(x) + f(−x)]dµα(x) . (31)

Then Eq. (30) has the form

〈A〉α = Îα
x A(x)ρ(x) . (32)

We will use the initial points that are set to zero (y = 0). Note that the frac-

tional normalization condition is a special case of this definition of average values:

〈1〉α = 1.

3. Fractional Chapman Kolmogorov (FCK) Equation

The Chapman–Kolmogorov equation23, 24 may be interpreted as the condition of

consistency of distribution functions of different orders. Kolmogorov23, 24 derived

a kinetic equation using a special scheme and conditions that are important for

kinetics. Let W (x, t; x0, t0) be a probability density of having a particle at the

position x at time t if the particle was at the position x0 at time t0 ≤ t.

Denote by ρ(x, t) the distribution functions for the given time t. Let us consider

two well-known identities

ρ(x, t) =

∫ +∞

−∞

dx′W (x, t|x′, t′)ρ(x′, t′),

∫ +∞

−∞

ρ(x, t) = 1 . (33)

Using the notation (31), we can rewrite (33) in the form

ρ(x, t) = Î1
x′W (x, t|x′, t′)ρ(x′, t′), Î1

xρ(x, t) = 1 .

Then the fractional generalization of (33) is

ρ(x, t) = Îα
x′W (x, t|x′, t′)ρ(x′, t′) . (34)

This equation is the definition of the conditional distribution function W (x, t|x′, t′)

referring to different time instants. The normalization conditions for the functions

W (x, t|x′, t′) and ρ(x, t) are

Îα
x W (x, t|x′, t′) = 1, Îα

x ρ(x, t) = 1 . (35)

Substituting into the right-hand side of Eq. (34) the value of ρ(x′, t′) expressed via

the distribution ρ(x0, t0) at an earlier time,

ρ(x′, t′) = Îα
x0

W (x′, t′|x0, t0)ρ(x0, t0) , (36)

we obtain the integral relation which includes the intermediate point x′,

ρ(x, t) = Îα
x′ Îα

x0
W (x, t|x′, t′)W (x′, t′|x0, t0)ρ(x0, t0) . (37)

Using Eq. (37), and Eq. (34) in the form

ρ(x, t) = Îα
x0

W (x, t|x0, t0)ρ(x0, t0) , (38)
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we derive a closed equation for transition probabilities

Îα
x0

W (x, t|x0, t0)ρ(x0, t0) = Îα
x′ Îα

x0
W (x, t|x′, t′)W (x′, t′|x0, t0)ρ(x0, t0) .

Since the equation holds for arbitrary ρ(x0, t0), we may equate the integrand. As

the result, we obtain the fractional Chapman–Kolmogorov (FCK) equation

W (x, t|x0, t0) = Îα
x′W (x, t|x′, t′)W (x′, t′|x0, t0) . (39)

This equation can be used to describe the Markov-type process in the fractal

medium that is described by the continuous medium model.5

4. Fokker Planck Equation from FCK Equation

4.1. Derivations of the Fokker Planck equation

Let us consider the fractional average value (32). Using Eq. (34) in the form

ρ(x, t) = Îα
x0

W (x, t|x0, t0)ρ(x0, t0) , (40)

we get

〈A〉α = Îα
x A(x)Îα

x0
W (x, t|x0, t0)ρ(x0, t0) . (41)

We can rewrite Eq. (41) as

〈A〉α = Îα
x0

ρ(x0, t0)Î
α
x A(x)W (x, t|x0 , t0) . (42)

We assume that A = A(xα), and use the Taylor expansion

A(xα) = A(xα
0 + ∆xα)

= A(xα
0 ) +

(

∂A(xα)

∂xα

)

x0

∆xα +
1

2

(

∂2A(xα)

(∂xα)2

)

x0

(∆xα)2 + · · · , (43)

where xα = sgn(x)|x|α is defined by Eq. (29), ∆xα = xα − xα
0 , and

∂

∂xα
=

|x|1−α

α

∂

∂x
. (44)

If we use the usual Taylor expansion, then the integration by parts in Eq. (42) is

more complicated. For the expansion (43), the integration by parts in (42) can be

realized in the simple form,

Îα
x B(x)

∂A(xα)

∂xα
=

∫ +∞

−∞

dxα

αΓ(α)
B(x)

∂A(xα)

∂xα

= (B(x)A(x))
+∞
−∞ −

∫ +∞

−∞

dxα

αΓ(α)
A(xα)

∂B(x)

∂xα
.
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Substituting Eq. (43) in Eq. (42), we get

〈A〉α = Îα
x0

A(xα
0 )ρ(x0, t0)Î

α
x W (x, t|x0, t0)

+ Îα
x0

(

∂A(xα)

∂xα

)

x0

ρ(x0, t0)Î
α
x ∆xαW (x, t|x0, t0)

+
1

2
Îα
x0

(

∂2A(xα)

(∂xα)2

)

x0

ρ(x0, t0)Î
α
x (∆xα)2W (x, t|x0, t0) + · · · . (45)

Let us introduce the function:

Pn(x0, t, t0) = Îα
x (∆xα)nW (x, t|x0, t0) . (46)

Using Eqs. (46) and (35), Eq. (45) gives

〈A〉α = Îα
x0

A(xα
0 )ρ(x0, t0) + Îα

x0

(

∂A(xα)

∂xα

)

x0

ρ(x0, t0)P1(x0, t, t0)

+
1

2
Îα
x0

(

∂2A(xα)

(∂xα)2

)

x0

ρ(x0, t0)P2(x0, t, t0) + · · · . (47)

Substitution of Eq. (32) in the form

〈A〉α = Îα
x0

A(xα
0 )ρ(x0, t) ,

into Eq. (47) gives

Îα
x0

A(x0) (ρ(x0, t) − ρ(x0, t0)) = Îα
x0

(

∂A(x)

∂xα

)

x0

ρ(x0, t0)P1(x0, t, t0)

+
1

2
Îα
x0

(

∂2A(x)

(∂xα)2

)

x0

ρ(x0, t0)P2(x0, t, t0) + · · · .

(48)

Then we use the so-called Kolmogorov condition,23, 24 and assume that the following

finite limits exist:

lim
∆t→0

P1(x, t, t0)

∆t
= a(x, t0), lim

∆t→0

P2(x, t, t0)

∆t
= b(x, t0), lim

∆t→0

Pn(x, t, t0)

∆t
= 0 ,

where n = 3, 4, . . . , and ∆t = t − t0. It is due to the Kolmogorov conditions that

irreversibility appears at the final equation. Multiplying both sides of Eq. (48) by

1/∆t and considering the limit ∆t → 0, we obtain

Îα
x0

A(xα
0 )

(

∂ρ(x0, t)

∂t

)

t0

= Îα
x0

(

∂A(xα)

∂xα

)

x0

ρ(x0, t0)a(x0, t0)

+
1

2
Îα
x0

(

∂2A(xα)

(∂xα)2

)

x0

ρ(x0, t0)b(x0, t0) .
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Integrating by parts, we obtain

Îα
x

∂A(xα)

∂xα
ρ(x, t)a(x, t) = −Îα

x A(xα)
∂(ρ(x, t)a(x, t))

∂xα
, (49)

Îα
x

∂2A(xα)

(∂xα)2
ρ(x, t)b(x, t) = Îα

x A(xα)
∂2(ρ(x, t)b(x, t))

(∂xα)2
. (50)

Here, we use

lim
x→±∞

ρ(x, t) = 0 .

Then

Î
α

xA(xα)

(

∂ρ(x, t)

∂t
+

∂(ρ(x, t)a(x))

∂xα
− 1

2

∂2(ρ(x, t)b(x))

(∂xα)2

)

= 0 .

Since the function A = A(xα) is an arbitrary function, we then have

∂ρ(x, t)

∂t
+

∂(ρ(x, t)a(x, t))

∂xα
− 1

2

∂2(ρ(x, t)b(x, t))

(∂xα)2
= 0 , (51)

that is the Fokker–Planck equation that corresponds to the FCK equation. This

equation is derived from the fractional generalization of the average value and

fractional normalization condition, which uses the fractional integrals.

4.2. Stationary solutions

For the stationary case, the Fokker–Planck equation (51) is

∂(ρ(x, t)a(x, t))

∂xα
− 1

2

∂2(ρ(x, t)b(x, t))

(∂xα)2
= 0 . (52)

This equation can be rewritten as

∂

∂xα

(

ρ(x, t)a(x, t) − 1

2

∂(ρ(x, t)b(x, t))

∂xα

)

= 0 . (53)

Then

ρ(x, t)a(x, t) − 1

2

∂(ρ(x, t)b(x, t))

∂xα
= const . (54)

Supposing that the constant is equal to zero, we get

∂(ρ(x, t)b(x, t))

∂xα
=

2a(x, t)

b(x, t)
(ρ(x, t)b(x, t)) . (55)

The solution of Eq. (55) is

ln(ρ(x, t)b(x, t)) =

∫

2a(x, t)

b(x, t)
dxα + const . (56)

As the result, we obtain

ρ(x, t) =
N

b(x, t)
exp 2

∫

a(x, t)

b(x, t)
dxα , (57)
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where the coefficient N is defined by the normalization condition.

Let us consider the special cases of the solution (57).

(i) If a(x) = k and b(x) = −D, then the Fokker–Planck equation (51) has the form

∂ρ(x, t)

∂t
+ k

∂ρ(x, t)

∂xα
+

D

2

∂2ρ(x, t)

(∂xα)2
= 0 , (58)

and the stationary solution is

ρ(x, t) = N1 exp

(

−2k|x|α
D

)

. (59)

(ii) If a(x) = k|x|β and b(x) = −D, then

∂ρ(x, t)

∂t
+ k

∂|x|βρ(x, t)

∂xα
+

D

2

∂2ρ(x, t)

(∂xα)2
= 0 . (60)

The stationary solution is

ρ(x, t) = N2 exp

(

−2αk|x|α+β

(α + β)D

)

. (61)

If α + β = 2, we have

ρ(x, t) = N2 exp

(

−αk

D
x2

)

. (62)

(iii) If

a(x) =
∂U(x)

∂xα
=

|x|1−α

α

∂U(x)

∂x
,

and b = −D, then

ρ(x, t) = N4 exp

(

−U(x)

D

)

.

Let us consider Eq. (51) with a(x) = k|x|α and b = −D. The general solution

can be presented as

ρ(x, t) =

+∞
∑

n=0

√

k

2nn!πD
e−kx2α/DHn(xα

√
k/D)e−nktAn ,

where

An =

√

1

2nn!
Îα
x p(x, 0)Hn(xα

√

k/D) .

The stationary solution is

ρ(x) =

(

k

πD

)1/2

e−kx2α/D .
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5. Conclusion

The concept of fractional integration provides an approach to describe the fractal

media. The fractional integrals can be used in order to formulate the dynamical

equations in the fractal media. The fractional integration approach is potentially

more useful for the physics of fractal media than traditional methods that use the

integer integration. Using fractional integrals, we derive the fractional generalization

of the Chapman–Kolmogorov equation. This equation can be used to describe the

Markov-type process in the fractal medium that is described by the continuous

medium model.5 The fractional Chapman–Kolmogorov equation can have a wide

application since it uses a relatively small number of parameters that can define

a fractal medium of great complexity and rich structure. In this paper, we derive

the Fokker–Planck equations for the fractal media from the suggested fractional

Chapman–Kolmogorov equation.
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