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The Weyl quantization rules that allow one to obtain quantum analogs of

equations of motion for a wide class of dynamical systems with flat phase space
are considered.

Let a system have n degrees of freedom and its phase space be a real linear space with dimensionality
2n. Observables are functions A(g,p), where ¢,p € R™. Quantization is usually understood as a single
procecure (i, 2] where any classical observable, i.e., a real function A(q,p), is associated with a relevant
quantum obscrvable, i. e., a self-adjoint operator A(4, ). In this case, the function A(q, p) itself is called a
symbel of the operator A(qg, ).

W assume that evolution of a classical system in a flat phase space R?" is described by the differential
equation

d a 4
EA(q,p) =L (q,p, 3%’ 5;) A(q, p), (1)

where A(g,p) is a smooth function defined in space R?" and describing a classical observable, and
C (q, P, 5‘9;, 5‘?5) is a linear differential operator defined in the space of smooth functions. In order to obtain
evolution equations fot quantum systems, one should specify the rules making it possible to quantize classical
equations of motion (1) of the corresponding differential operators. In defining these rules, one often tries
to write the cquations of motion in a Hamiltonian form [3-6], i.e. in terms of the Poisson bracket with a
certain Hamilton function. However, in the general case, it is difficult to determine whether the Hamilton
function exists, and, if it does, whether it is unique, and to find its explicit form if it exists and is unique [7].
Therefore, for classical dynamical systems of a general form, quantization is more conveniently carried out
starting from equations of motion. In the present paper, we propose the rules for Weyl quantization of
evolution equations of classical dynamical systems with flat phase space.

1. LIE-JORDAN ALGEBRAS

Let the sct of observables form a linear space Mg over the field of real numbers R. For the observables
from Moy, we define two bilinear multiplication operations denoted by symbols - and o and satisfying the
conditions

(1) <My, -> is a Lie algebra:

A-B=-B-A, (A-B)-C+(B-C)-A+(C-A)-B=0;
(2} < Mg, 0> is a special Jordan algebra:
AoB=BoA, ((AocA)oB)oA=(AoA)o(BoA);
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(3) the differentiation identity for the Jordan algebra and the relation identity for associators are
fulfilled:
A- (BoC)=(A-B)oC+Bo(A-C),
hz
(AoB)oC—Ao(BoC) = z((A-B)-c—A-(BC)).

In this case, the Lie-Jordan algebra is said to be defined [8, 9]. We shall also assurne that tlcre exists
a unity I in Mg such that Aol = 4 and A1 = 0. We denote as M a free Lie-Jordan a'gebra over the
field of real numbers R with unity I and generators ¢* and p*, where k = 1,...,n and

¢ p=6dul, ¢ ¢ =0, p*-p=0. (2)

For the classical observables A{q, p) and B(q, p), these operations can be defined in terins of the Poisson
bracket in R?*" and ordinary multiplication of functions,

A(g,p) - B(g,p) = {Alg,p), Blg,p)},

A(q,p) o B(g,p) = A(Q,P)B(q,p). 3)

For the quantum observables A = A(4,p) and B=8B (4, p) operations of Lie and Jordan multiplization are
defined in the form of coinmutator and anticommutator,

- 1

A.-B=1(iB-BA), Aoﬁzgmmém. . (4)

ik
2. MULTIPLICATION ALGEBRA FOR THE LIE-JORDAN ALGEBRA

For any element A € M, we define two operators of left (Lf{) and two operators of right (R%)
multiplications, which self-map M by the following rules:

LXC’:AOC, L,C=A-C,

RIC:C’OA, R,C=C-A

for any C € M. These maps are endomorphisms of the algebra M module. A subalgebra of the aigebra
of endomorphisms of module M, generated by various operators Li and Ri, is called the multiplication
algebra [10] of the Lie-Jordan algebra M and is denoted by A(M). Algebras generated by all operators of
left and right multiplications of the Lie-Jordan algebra coincide with A(M) since L% = +RE.

The identities which the Lie-Jordan algebras meet lead to the relations for the multiplication operators.
To obtain them, one should use the complete linearization [10] of the identities that define the algebra, and
the properties of the Jordan multiplication commutativity and the Lie multiplication anticomrnutativity.

Theorem 1. Multiplication algebra A(M) for the Lie-Jordan algebra M is defined by

(1) the Lie relations
Lip=L;L5 - LzL3,
(2) the Jordan relations
+
L(AoB)oC + LELELI + LILEL:E = LIOBL?’," + LZOC‘LI + L:ocLﬁ?
+ +rtr+ _ +r4 +r+
L(AoB)oC + LBLzLA + LjLéL-l- - LzI’:oB + LBLAOC + LALBOC’
LEL g + LpL o + Li L o0 = LhopLé + Lhoc Li + Lioc b
(3) the mized relations

Lip=L3LE~LLy, Ly =LiLp+LEL, ()
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L. p=LiL} -5 LsL% Lj;Lj—LjLE:—-Z-LA_B. (6)

. For the algebra of classical observables E=0.
' From these relations, the following statements result.
Corollary 1. If the Jordan algebra is generated by the set X = {z*}, then the corresponding
multiplication algebra is generated by the set of operators {L:k, L:’,, ozm| gk, 2™ € X}.
Corollary 2. If the Lie algebra is generated by the set X = {z*}, then the corresponding
multiplication algebra is generated by the set of operators {L_,| ¢ e X}.
~ Corollary 3. If the Lie-Jordan algebra M is gencrated by the set X = {z*}, then the corresponding
multiplication algebra A(M) is generated by the set of operators {L:,e,L;k| z* € X).
Note that, in the latter statement, we mention the set of operators {L:k,L;kIzk € X}, and not the
set {LF,, LT, ., L. |z* z' € X}, and this is due to first relation of (6).
Making use of the properties of generators (2) and relation (5), one easily proves the following theorem
Theorem 2. If the Lie-Jordan algebra M with unity I is generated by the set X = {q*,p*,I|
k=1,...,n}, whose elements meet r(’latwns (2), the corresponding multiplication algebra A(M) is generated
by the 3m‘ of operators {L -, L% o L | ¢*,p%, I € X}, that satisfy the commutation relations

(L, LT = 6uLf,

A A (7)
(L%, L%] = (L%, I%) = (L, L%) =
= +
(L%, %) = [LF, LE] =, 9
(L%, IF] = (L3, LF] = 0.

Note that the given commutation relations for the generators {L:E Lf,,,LIiI ¢ ., p*, I € X} of the

multiplication algebra A(M) are the same for classxcal and quantum observablos Relations (7), (8) define
the Lie algebra, generated by operators Lq,,, Lp,,, Li The evident statement follows from Theorem 2: any

element £ of ‘he multiplication algebra A(M) of the Lie-J ordan algebra M can be written as a polynomial
E(L I k,Li) in the multiplication operators {Lq,,, Lik, LI }.

3. WEYL QUANTIZATION

Correspondence between operators A = A(g,p) and symbols A(q,p) is completely determined by the
formulas that express the symbols of operators Gk A, Agk, Pk A, Ap* in terms of the symbol of the operator A.
Weyl quantization mw is said to be defined if these formulas have the form

h 9 k2
my (( +1—La—k) A(q,p)) =¢* 4,

1 A g
Tw ((q" - 12_‘ 51—)7;) A(q,p)) = Agk,

ih 0\ ,, i
™w ((P + %ﬂ) A(q,p)) = Ap*

for any A = mw (A(g,p)). The proof of validity of these formulas can be found in [11].
Deinition (3) implies that the operators L} and L acting on classical observables are defined by the
formulas
L}B(g,p) = Al9,p)B(g,p),

A (11)
L, B(g,p) = {A(q,p), B(¢,p)}-
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By virtue of definition (4), the operators ﬁj and f/; are expressed as

T N PN P 1 2a A
LiB = 5(AB+BA), I3B= =(AB -~ BA).
Making use of the multiplication operators Li and f)ﬁ, we rewrite formulas (9) and (10) in the form

w(L;t,,A) = .Ef,,/i, 7rw(L::,, A) = ﬁ:,,/i.

Since these relations are valid for any A = 7y (A), we can define the Weyl quantization of the nniltiplication
operators L;t,, and L::,, in the following manner:

mw(Lh) =L, mw(Lh) = I3, (12)

These relations define the Weyl quantization of the generating operators of the multiplication algebra of the
Lie-Jordan algebra of classical observables.
From definition (11) for classical observables, we get

LiAlg,p) =¥ Alg,p), LiA(g,p) = P Ag,p) (13)
and 0A(4,7) 2A(,)
- — q,p —_ — q?p

quA(pr) = 6pk ’ LPh A(pr) = - aqk . . (14)

Expressions (13) and (14) enable the linear polynomial differentiation operator to be considered as an
element of the multiplication algebra of the Lie-Jordan algebra of classical observables. The following
theorem results. '

Theorem 3. The linear polynomial differentiation operator

d 0
c (Q,Pa 'a—q'y ‘a—p)

acting on the classical observables A(g,p) € M is an element of the multiplication algebra A(M) of the
Lie-Jordan algebra M of classical observables,

a 0 o
L (q,p,%,%) = ‘C(L;”L;-’"Lp ’I’q )

The proof evidently follows from the definition of the operators Lqi,‘ and Lf,, specified iu (13) and (14).

By virtue of (12) and commutation relations (7), (8), the Weyl quantization my associates the
differential operator £ (q,p, a—aq, 5‘3’7) in the functional space and the operator (ﬁj, I:j, —1:_;, E;), acting
in the operator space. Thus, the Weyl quantization of differential equations with polynomial operators [12]
that describe evolution of observables of dynamical system (1) is defined by the formula

Ja a oy s N
T (E (”’55’ 29;)) =c (L5, -1; 17).

Since the commutation relations for the operators L::,,, L:i and f}qi,,, ﬁ;f,, coincide, the following theorem
takes place.

Theorem 4. In the Weyl quantization, ordering of generating operators in the operator
L (L;I*', L, —I:;, I:;) 13 uniquely determined by ordering in the operator L (L;l*', Ly, -L;,L7).

Correspondence between polynomial differential operators and elements of the multiplication algebra
of the Lie-Jordan algebra of classical observables can be extended up to correspondence between onerators
of a more general form and elements of a certain (normalized involute) multiplication algebra [12!.
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4. QUANTIZATION OF A LORENZ-TYPE SYSTEM

Corsider an evolution equation for classical observable A;(q, p) for a classical dissipative Lorenz-type
system {13] of the form

d dA(q,p) 04:(q,p) 04:(q,p) 0A¢(q, )
il = (- e p) —py— 9oL P 92\LP) | 94214 P)
% Ae(q,p) = (—oq1+ op1) 0 +(rg1—p1 q1p2) Bp1 + (op2) B4z + (=bpz + q1p1) apz(ls)
This equation +sritten for the observables = = g1, ¥ = p1, and z = p; describes the classical dissipative
Lorens model [14, 15),

o =—oztoy, Y =rz—-y-—zz 2 =-bz+zy,

where ' = d=z(t)/dt. This model was proposed by Lorenz in [14], and it is the most known classical
dissipative system with a strange attractor. This system demonstrates a chaotic behavior [14, 15] when
parameters are chosen to be close to the values o = 10, r = 28, b= 8/3.

The differential operator £ for system (15) has the form

{ 9 _3_) - (= 9 i) O 9 9
c \qm‘ 3. 9p) = (—oq1 + crpl)aq1 + (rq1—p1 (111)2)61)1 + (cfpz)aq2 +{ P2+(11pl)ap2~

Rewriting this operator in terms of L% and LE | we obtain
q P

L= _(—UL; + UL;-I)L;I + (T‘L; - L;‘l - L:l L;-!)L;l - (O'L;-z)L;z + (—bL;’i + L;-I L;I;l)L;z'

The Weyl quantization of this operator leads to the following operator in the algebra of quantum observables:

£=—(~obf +oly) Iy + (nBf - B, - £, i) E; - (o1}) L7, + (-vEf, + B4 13 L,

Using the definition of the operators f,j, f,;, we get the quantum Lorenz-type equation

1

44 i[d(ﬁf+ﬁ§)_rﬁf 3
h

o . sl G. [. s
7 =7 5 -2—,/1:] —jhe [P1,Ae] + FP1o [fh,At] + =bpz 0 [qz,Ae]
)

4+ %61 o (132 o [lila/it]) hél ° (ﬁl ° [62’1&‘])'

We notice that the Weyl quantization leads just to the following form of the last two terms: Gk ©

-

(f); o [(jm, A]), each of which is equal to pjo ((jk o [(jm, ,;1] ) . However, they are not equal to (gx opr)o [(jm, /i],
which follows from (6).
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