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Abstract To describe non-local interactions of quan-
tum systems with environment we consider a frac-
tional generalization of the quantum Markovian equa-
tion. Quantum analogs of fractional Laplacian oper-
ator for coordinate and momentum spaces are sug-
gested. In phase-space form of quantum mechanics
we obtain fractional equations for Wigner distribution
function, where fractional Laplacian operators of the
Grünvald–Letnikov type are used.

Keywords Fractional dynamics · Open quantum
systems · Fractional Laplacian

1 Dynamics of open quantum systems

The natural dynamical description of open quantum
systems is in terms of the infinitesimal change of
the system. The infinitesimal motion is described by
some form of infinitesimal generator. The problem of
the non-Hamiltonian dynamics is to derive an explicit
form for this infinitesimal generator. It is concerned
with the problem of determining the most general ex-
plicit form of this superoperator. The problem was in-
vestigated by V. Gorini, A. Kossakowski, E.C.G. Su-
darshan [1, 2] and G. Lindblad [3, 4] for completely
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dissipative superoperators. Superoperator is an opera-
tor that acts on operators.

Lindblad has shown that there exists a one-to-one
correspondence between the completely positive norm
continuous semi-groups [5, 6] and completely dissipa-
tive generating superoperators. The structural theorem
of Lindblad gives the most general form of a com-
pletely dissipative superoperator: If L is a completely
dissipative superoperator on a W ∗-algebra M, then
there exist a completely positive superoperator K and
a self-adjoint operator H ∈ M such that

L = −L−
H + K − L+

K(I )
, (1)

where L−
A and L+

A are Lie and Jordan left multiplica-
tion superoperators [10]:

L−
AB = 1

i�
[A,B] = 1

i�
(AB − BA), (2)

L+
AB = 1

2
[A,B]+ = 1

2
(AB + BA). (3)

By the Kraus theorem [7, 8], completely positive
superoperators K on a W ∗-algebra M can be pre-
sented in the form

K(A) =
∞∑

k=1

V ∗
k AVk.

We can formulate the following statements:

1. The superoperators Φt = exp(t L) is completely
positive if and only if L has the form (1).
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2. If K is a completely positive superoperator on a
C∗-algebra M, and H ∈ M is self-adjoint super-
operator, then L defined by (1) is completely dissi-
pative.

From these statements and the Kraus theorem fol-
lows Lindblad’s structural theorem in the form: A ul-
traweakly continuous superoperator L on a W ∗-
algebra M is completely dissipative if and only if it
is of the form

L(A) = − 1

i�
[H,A]

+ 1

2�

∞∑

k=1

(
V ∗

k [A,Vk] + [
V ∗

k ,A
]
Vk

)
, (4)

where H,Vk,V
∗
k ,V ∗

k Vk ∈ M.
Note that the form of L is not uniquely deter-

mined by (4). The equation remains invariant under
the changes

Vk → Vk + akI,

H → H + 1

2i�

∞∑

k=1

(
a∗
kVk − akV

∗
k

)
,

where ak are arbitrary complex numbers.
As a corollary of Lindblad’s structural theorem, a

generating superoperator L of a completely positive
unity-preserving semi-group {Φt = exp(t L)|t ≥ 0} on
M can be written by (4). Using At = Φt(A), we ob-
tain the equation

d

dt
At = LAt,

where L is defined by (4). This is the quantum Marko-
vian equation (the Lindblad equation) for the quantum
observable A.

The Lindblad theorem gives the explicit form of
the generators of norm continuous quantum dynam-
ical semi-groups Φt = exp(t L) on the W ∗-algebras.
One can make the following more general statement
for C∗-algebra: Let L be a bounded real superopera-
tor on a C∗-algebra M such that L = LH +RH ∗ + K,
where H ∈ M, H ∗ is adjoint of H , and K is com-
pletely positive superoperator on M, the superopera-
tors LH and RH are left and right multiplications on
H . Then Φt = exp(t L) are completely positive super-
operators on M.

The Lindblad theorem gives the general explicit
forms of equations of motion, when we introduce the
following restrictions in the class of quantum non-
Hamiltonian systems: (1) L and Λ are bounded super-
operators. (2) L and Λ are completely dissipative su-
peroperators. The Lindblad result has been extended
by E.B. Davies [9] to a class of quantum dynami-
cal semi-group with unbounded generating superop-
erators.

2 Quantum Markovian fractional equations

The structural theorem of Lindblad can be formulated
in the form: Let L be a completely dissipative super-
operator on a W ∗-algebra M. Then the Liouville su-
peroperator Λ on the quantum states ρ is an adjoint
superoperator of L if and only if Λ is of the form

Λρ = 1

i�
[H,ρ] + 1

2�

∞∑

k=1

([
Vkρ,V ∗

k

] + [
Vk,ρV ∗

k

])
,

where H,Vk,V
∗
k ,V ∗

k Vk ∈ M, and ρ is a density ma-
trix operator.

This expression gives an explicit form of the most
general time evolution equation with bounded com-
pletely dissipative Liouville superoperator. In the the-
ory of open quantum systems, the quantum Liouville
equation has the form of Markovian master equation
for the density operator ρs(t) in the Schrödinger dy-
namical representation:

dρs(t)

dt
= Λρs(t), ρs(t) = Stρs(0).

Here St denotes the dynamical semi-group [5, 6, 10]
describing the evolution of the non-Hamiltonian quan-
tum system in Schrödinger representation. The super-
operator Λ is the infinitesimal generator of the dy-
namical semi-group St . Using the Lindblad theorem,
which gives the most general form of a bounded com-
pletely dissipative generator Λ, we obtain the explicit
form of the most general master equation of Marko-
vian type:

dρs(t)

dt
= 1

i�

[
H,ρs(t)

] + 1

2�

∞∑

k=1

([
Vkρs(t),V

∗
k

]

+ [
Vk,ρs(t)V

∗
k

])
, (5)

where H is the Hamiltonian operator of the system
and Vk , V ∗

k are bounded operators on a Hilbert space
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H. We make the assumption that the general form (5)
of the master equation with a bounded generator is
also valid for an unbounded generator. To study the
n-dimensional case, we consider the operators H , Vk ,
V ∗

k as functions of the observables Pk and Ql of the n-
dimensional quantum system with [Qk,Pl] = i�Iδkl ,
where I is the identity operator.

It is easy to see that

[
Vkρs,V

∗
k

] + [
Vk,ρsV

∗
k

]

= Vk

[
ρs,V

∗
k

] + [
Vk,V

∗
k

]
ρs + [Vk,ρs]V ∗

k

+ ρs

[
Vk,V

∗
k

]
. (6)

For simplicity, we assume that the operators Vk are
self-adjoint (V ∗

k = Vk) and

Vk = λk

√
2

�
Ak, (7)

where λk are real numbers. Then [Vk,V
∗
k ] = 0 and (5)

can be represented in the form

dρs(t)

dt
= 1

i�

[
H,ρs(t)

] − 1

�2

m∑

k=1

λ2
k

[
Ak,

[
Ak,ρs(t)

]]
.

(8)

Using the Lie multiplication superoperator L−
AB =

(1/i�)[A,B], we rewrite equation (8) as

dρs(t)

dt
= L−

H ρs(t) +
∞∑

k=1

λ2
k

(
L−

Ak

)2
ρs(t). (9)

To describe non-local properties of the interaction
of quantum systems with environment we should gen-
eralize this equation:

dρs(t)

dt
= L−

H ρs(t) +
∞∑

k=1

λk(α)
(
L−

Ak

)α
ρs(t). (10)

The transition from formula (9) to (10) implies the
substitution of the second order Lie derivative by the
fractional order Lie derivative. An argument support-
ing this substitution is related to the fact that in the
classical case presence of the long-range interaction
(non-locality) of power type leads to the appearance
of a space fractional derivative. To realize this gener-
alization we use the representation of the Grünvald–
Letnikov derivative in the form of the infinite series,

which is considered in Sect. 20.1 of [23, 24]:

Dα
x =

∞∑

j=1

(−1)j bjD
j
x , (11)

with the coefficients

bj =
∞∑

ν=j

(−1)ν
(

ν

j

)
aν, (12)

where

aν = a(ν)(1)

ν! , a(ξ) = ξα,

(
α

β

)
= Γ (α + 1)

Γ (α − β + 1)Γ (β + 1)
.

(13)

We use the fact that the superoperators L−
Ak

is a deriva-
tive of the first order on operator algebra M. Therefore
the fractional order Lie derivative should include the
infinite series with respect of the superoperators L−

Ak
,

such that

DNonLocal =
∞∑

j=1

(−1)j bj

(
L−

Ak

)j
. (14)

If the coefficients bj has the form (12) then we have
a Lie derivative of fractional order α in the Grünvald–
Letnikov form on operator algebra M:

DNonLocal = (
L−

Ak

)α
. (15)

As a result, we have quantum Markovian equation
for open quantum systems that are characterized by
a power-law non-local interaction with environment.
Therefore a generalization of (9) can be considered in
the form

dρs(t)

dt
= L−

H ρs(t) +
∞∑

k=1

λk(α)
(
L−

Ak

)α
ρs(t). (16)

Here we use dimensionless values. For the case α = 2,
(16) gives (9). Equation (16) can be called a quantum
Markovian fractional equation. It allows us to take into
account non-local properties of the interaction of open
quantum system with an environment. Note that frac-
tional dynamics of open quantum systems are consid-
ered also in [11–16]. Fractional dynamics is an appli-
cation of fractional calculus [25] to describe processes
with long-term memory, non-local and fractal proper-
ties.
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For simplicity, we also assume that

Ak = Pk, Ak+n = Qk, (k = 1, . . . , n),

Ak = 0, (k > 2n)
(17)

and

λk(α) = λQ(α), λk+n(α) = λP (α),

(k = 1, . . . , n). (18)

Then (9) can be represented in the form

dρs(t)

dt
= L−

H ρs(t) + λQ(α)

n∑

k=1

(
L−

Pk

)α
ρs(t)

+ λP (α)

n∑

k=1

(
L−

Qk

)α
ρs(t). (19)

Using the Weyl symbols and the phase-space repre-
sentation, we have classical limit of the superoperators

�α
Q =

n∑

k=1

(
L−

Pk

)α
, �α

P =
n∑

k=1

(
L−

Qk

)α (20)

in the form

(
�2

Q

)
W

=
n∑

k=1

∂2

∂q2
k

,
(
�2

P

)
W

=
n∑

k=1

∂2

∂p2
k

. (21)

As a result, superoperators (20) can be considered as
quantum analogs of fractional Laplacian operator in
the coordinate and momentum spaces.

Note that quantum analogs of fractional Laplacian
can be defined by using the generalized Taylor for-
mula [17, 18] and the Weyl quantization [19].

3 Quantum Markovian fractional equations in the
phase-space representation

The phase-space representation becomes transparent a
transition from quantum to classical mechanics. This
representation is suitable for considering quantum dy-
namics in situations where a good initial approxima-
tion comes from the classical dynamics and also for
deriving classical limits of quantum processes.

The phase-space function A(q,p) corresponding to
the operator A is given by the equation

A(q,p) =
∫

dzeipz/�

〈
q − 1

2
z|A|q + 1

2
z

〉
. (22)

The Weyl symbol C(q,p) of the product of operators
C = AB in terms of the Weyl symbols of A and B is
defined by the following relation:

C(q,p) = A(q,p)

(
exp

�P
2i

)
B(q,p), (23)

where P is the Poisson bracket operator given by

P =
←−
∂

∂p

−→
∂

∂q
−

←−
∂

∂q

−→
∂

∂p
. (24)

Here the arrows indicate in which direction the deriva-
tives act.

In general, a quantum system is described by a den-
sity operator ρs and the expectation value of an ob-
servable A(Q,P ) is

〈A〉 = Tr[Aρs]. (25)

In the phase-space representation, we have

〈A〉 =
∫

dp dqA(q,p)ρW (q,p), (26)

where the function A(q,p) is a symbol of the opera-
tor A(Q,P ), and ρW(q,p) is the Wigner distribution
function. The function ρW(q,p) represents the Weyl
symbol that is defined through the Fourier transform
of the off-diagonal elements of the density operator
(we consider the one-dimensional case) by

ρW(q,p) = 1

2π�

∫
dy

〈
q − y|ρs |q + y

〉
eipy/�, (27)

It is easy to see that (27) is a special case of (22)
for the density operator, i.e., ρW(q,p) is the phase-
space function which corresponds to the operator
ρs/2π�. Note that any real-valued distribution func-
tion ρW(q,p) can have negative values for some p

and q . The Wigner distribution function ρW(q,p) sat-
isfies the following properties:

(1) ρW(q,p) is real, but cannot be everywhere posi-
tive;

(2) ρW(q,p) has a unit trace, i.e.
∫

dp dqρW(q,p) =
Tr[ρs] = 1.

(3) ρW(q,p) is translation invariant and invariant
with respect to space and time reflections.

The Wigner distribution functions are useful to con-
sider the connection between classical and quantum
mechanics. It is known that the first of the Wigner



Fractional diffusion equations for open quantum system 667

distributions was introduced to study quantum correc-
tions to classical statistical mechanics. The Wigner
distribution function has found many applications in
statistical mechanics and quantum theory, and also in
areas such as quantum chemistry, density functional
theory, quantum optics, quantum chaos.

For a Hamiltonian quantum system we have the
following phase-space equation which determines the
time evolution of the Wigner distribution function:

i�
∂ρW (t, q,p)

∂t

= H(q,p)

(
exp

�P
2i

)
ρW(t, q,p)

− ρW(t, q,p)

(
exp

�P
2i

)
H(q,p), (28)

where H(q,p) is the Weyl symbol of the Hamiltonian
operator H of the system. Note that if we take the
� → 0 limit of this equation, we obtain the classical
Liouville equation.

In the force free case (H(q,p) = p2/2m), we have
the equation

∂ρW (t, q,p)

∂t
= − p

m

∂ρW(t, q,p)

∂q
. (29)

The time evolution of the Wigner distribution func-
tion corresponding to the Lindblad master equation,
can be obtained from (28) by adding in the right-hand
side the Weyl symbol of the non-Hamiltonian part of
equation, i.e., the sum of commutators. As a result, we
have the following evolution equation for the Wigner
distribution:

∂ρW (t, q,p)

∂t

= −2

�
H(q,p)

(
sin

�P
2

)
ρW(t, q,p)

+ 1

2�

∑

k

((
exp

�P
2i

)
ρW(t, q,p)

(
exp

�P
2i

)
Vk

− Vk

(
exp

�P
2i

)
Vk

(
exp

�P
2i

)
ρW(t, q,p)

− ρW(t, q,p)

(
exp

�P
2i

)
Vk

(
exp

�P
2i

)
Vk

)
,

(30)

where Vk are the Weyl symbol of the operators Vk .
Let us consider a phase-space representation of

quantum Markovian fractional equation. If the oper-
ators Vk are taken of the form (7), (17), then the frac-
tional equation for the Wigner distribution has the
form

∂ρW (t, q,p)

∂t

= −2

�
H(q,p)

(
sin

�P
2

)
ρW(t, q,p)

+ λQ(α)

n∑

k=1

Dα
qk

ρW (t, q,p)

+ λP (α)

n∑

k=1

Dα
pk

ρW (t, q,p), (31)

where Dα
qk

and Dα
pk

are fractional derivatives of the
Grünvald–Letnikov type.

The first term on the right-hand side generates the
evolution in phase space of a Hamiltonian system
and gives the Poisson bracket and the higher deriva-
tives containing the quantum contribution. The fol-
lowing terms represent the contribution from the non-
Hamiltonian terms.

For Hamiltonian system with H(q,p) = T (p) +
U(q), where U(q) is an analytic function, (31) takes
the form

∂ρW

∂t
= − p

m

∂ρW

∂q
+ ∂U

∂q

∂ρW

∂p

+
∞∑

n=1

(−1)n(�)2n

22n(2n + 1)!
∂2n+1U(q)

∂q2n+1

∂2n+1ρW

∂p2n+1

+ N(ρW), (32)

where we have introduced the notation

Nα(ρW ) = λQ(α)

n∑

k=1

Dα
qk

ρW (t, q,p)

+ λP (α)

n∑

k=1

Dα
pk

ρW (t, q,p). (33)

In the term (33) we have fractional Laplacian of the
Grünvald–Letnikov type. For α = 2, we have the usual
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term

N2(ρW ) = λQ(2)

n∑

k=1

∂2ρW

∂q2
k

+ λP (2)

n∑

k=1

∂2ρW

∂p2
k

. (34)

In this case, we have the Laplacian of the integer order.
The following remarks should be noted.

(1) If (32) had only the first two terms on the right-
hand side, ρW(t, q,p) would evolve along the
classical flow in phase space.

(2) The infinite sum in (32) together with the first two
terms make up the unitary part of the evolution.
Hence, up to corrections of order �

2, unitary evo-
lution corresponds to approximately classical evo-
lution of the Wigner function.

(3) The higher corrections can often be assumed as
negligible and give structures on small scales.
There are, however, important examples where
they cannot be neglected, e.g., in chaotic systems.
From (32) it is clear that, as a consequence of the
quantum correction terms with higher derivatives,
the Wigner function of a nonlinear system does
not follow the classical Liouville flow. The higher
derivative terms are generated by the nonlineari-
ties in the potential U(q).

(4) The term (33) containing λQ(α) and λP (α) are
the anomalous diffusive [20, 22] terms and pro-
duce an expansion of the volume elements. The
anomalous diffusion terms are responsible for the
destruction of interference, by erasing the struc-
ture of the Wigner function on small scales.

(5) We have two well-known limits in which (32) can
go over into a classical equation:
(a) U is at most quadratic in q;
(b) the limit � → 0.

The anomalous diffusion terms, allows us to get a third
classical limit. In the limit of large λP (α) the diffusive
smoothing becomes so effective that it damps out all
the momentum-derivatives in the infinite sum and (32)
approaches the Liouville equation with anomalous dif-
fusion [20, 22], an equation of fractional Fokker–
Planck type [20, 21]. This is an example of how
macroscopic objects start to behave classically (deco-
herence), since the diffusion coefficients are roughly
proportional to the size of these objects. Thus an ob-
ject will evolve according to classical dynamics if it
has a strong interaction with its environment.

4 Examples of the quantum Markovian fractional
equation

Let us consider some special cases of quantum Marko-
vian fractional equation in the phase-space representa-
tion.

(1) In the case of a free particle, i.e., U(q) = 0, (32)
takes the form:

∂ρW

∂t
= − p

m

∂ρW

∂q
+ Nα(ρW ). (35)

(2) For the linear potential U = γ q (for example,
γ = mg for the free fall or γ = eE for the motion in a
uniform electric field), we have

∂ρW

∂t
= − p

m

∂ρW

∂q
+ γ

∂ρW

∂p
+ Nα(ρW ). (36)

(3) For harmonic oscillator U = mω2q2/2, and (32)
takes the form:

∂ρW

∂t
= − p

m

∂ρW

∂q
+ mω2q

∂ρW

∂p
+ Nα(ρW ). (37)

Since the coefficients are linear in the variables q and
p and the diffusion coefficients are constant with re-
spect to q and p, (35)–(37) describe a fractional analog
of Ornstein–Uhlenbeck process. Equations (35)–(37)
are exactly fractional equations of the Fokker–Planck
type.

Note that not every function ρ(0, q,p) on the phase
space is the Weyl symbol of a density operator. Hence,
the quantum mechanics appears now in the restrictions
imposed on the initial condition ρW(0, q,p) for (32).
The most frequently used choice for ρW(0, q,p) is a
Gaussian function and (35)–(37) preserve this Gaus-
sian type, i.e., ρW(t, q,p) is always a Gaussian func-
tion in time, so that the differences between quantum
and classical mechanics are completely lost in this rep-
resentation of the master equation.

(4) It is easy to see that the potential U(q) of the
finite polynomial form gives the sum with finite num-
ber of the terms. As an example, we can consider an
anharmonic oscillator with the potential

U(q) = mω2q2/2 + cq4. (38)

In this case, (32) becomes
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∂ρ

∂t
= − p

m

∂ρW

∂q
+ (

mω2q + 4cq3)∂ρW

∂p

− c�
2q

∂3ρW

∂p3
+ Nα(ρW ). (39)

Equation (39) has one term with third derivative, as-
sociated with the nonlinear potential (38). In fact, the
first three terms on the right-hand side of (39) give the
usual Wigner equation of an isolated anharmonic os-
cillator. The third derivative term is of order �

2 and
is the quantum correction. In the classical limit, when
this term is neglected, the Wigner equation becomes
the fractional Fokker–Planck equation.

(5) If we use the periodic potential U(q) =
U0 cos(kq), then

∂2n+1U

∂q2n+1
= (−1)nk2n ∂U

∂q
, (40)

and we obtain the equation

∂ρW

∂t
= − p

m

∂ρW

∂q
+ 1

�k

∂U

∂q

(
ρW(t, q,p + �k/2)

− ρW(t, q,p − �k/2)
) + Nα(ρW ). (41)

Equation (41) takes a simpler form when �k is large
compared to the momentum spread �p of the parti-
cle being considered, i.e., when the spatial extension
of the wave packet representing the particle is large
compared to the spatial period of the potential. For the
condition �k 
 �p, we have (ρW (t, q,p + �k/2) −
ρW(t, q,p − �k/2))/�k ≈ 0 for all p. As a result the
term Nα(ρW ) with fractional Laplacian gives an im-
portant contribution to the Wigner distribution func-
tion. Equation (41) is then reduced to (35) for a free
particle moving in an environment.

Using the cases (1)–(3), we see that for Hamilto-
nians at most quadratic in q and p, that the equa-
tion of motion of the Wigner distribution contains
only the classical part and the contributions from the
non-Hamiltonian properties of the system and obeys
classical fractional Fokker–Planck equations of mo-
tion (35)–(37). In general, the potential U has terms
of order higher than q2 and one has to deal with a
partial differential equation of order higher than two
or generally of infinite order. When the potential de-
viates only slightly from the harmonic potential, one
can take the classical limit � → 0 in (32) as the
lowest-order approximation to the quantum dynamics

and construct higher-order approximations that con-
tain quantum corrections to the classical behavior us-
ing the perturbation technique.

(6) Equation (32) can be written in the form

∂ρW

∂t
= − p

m

∂ρW

∂q
+ ∂Ueff

∂q

∂ρW

∂p
+ Nα(ρW ), (42)

where the effective potential is defined as

∂Ueff

∂q

∂ρW

∂p

= ∂U

∂q

∂ρW

∂p

+
∞∑

n=1

(−1)n
(�)2n

22n(2n + 1)!
∂2n+1U(q)

∂q2n+1

∂2n+1ρW

∂p2n+1
.

(43)

Then the phase-space points move under the influence
of the effective potential Ueff. We note that (43) indi-
cates that only when at least an approximate solution
for ρ is known, the effective potential can be deter-
mined. If U does not deviate much from the harmonic
potential, the zeroth-order approximation for ρW can
be taken as that resulting from classical propagation.
The main limitation of the effective potential method
is that it can be applied only to systems whose behav-
ior is not much different from that of the harmonic os-
cillator or the free particle.

Phase-space representation of fractional quantum
dynamics provides a natural framework to study the
consequences of the chaotic dynamics and its inter-
play with decoherence. Equation (32) can be applied
in order to investigate the process of decoherence for
quantum chaos. Since decoherence induces a transi-
tion from quantum to classical mechanics, it can be
used to find the connection between the classical and
quantum chaotic systems. In this case U(q) is the po-
tential of a classically chaotic system, coupled to the
external environment.

(7) Note that the power series involving third and
higher derivative terms sometimes may be neglected.
The anomalous diffusion terms may smooth out the
Wigner function, suppressing contributions from the
higher-order terms. When these terms can be ne-
glected, the Wigner function evolution equation (32)
then becomes

∂ρW

∂t
= − p

m

∂ρW

∂q
+ ∂U

∂q

∂ρW

∂p
+ Nα(ρW ). (44)



670 V.E. Tarasov

In the case of a thermal bath and if

λQ(α) = 0, λP (α) = 2mγkBT ,

equation (44) becomes the Kramers equation

∂ρW

∂t
= − p

m

∂ρW

∂q
+ ∂U

∂q

∂ρW

∂p
+2mγkBT Dα

pρW . (45)

Here we have fractional Laplacian with respect of mo-
mentum only.

The phase-space formulation of quantum dynamics
is an alternative to the standard operator formulation of
equation for quantum states. The main difficulty with
the phase-space formulation is that the time develop-
ment of the phase-space Wigner distribution is given
in terms of an infinite-order partial differential equa-
tion (see (32)). This difficulty is a result of the fact that
superoperator Λ is not a Weyl ordered superoperator.
If Λ is a Weyl ordered superoperator [10], then we
obtain a finite-order differential equation for Wigner
distribution ρW(q,p). The Weyl ordered superopera-
tor Λ gives an operator equation with Weyl ordered
operators [10]. As a result, the correspondent equation
for the Wigner distribution function is finite order.

It is interesting to find a stationary solution of these
equations by analogy with the stationary states of open
quantum systems [26]. The positive solutions of frac-
tional equations [27] play an important role in quan-
tum theory.
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