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• Liouville equation for lattice phase-space with long-range jumps is suggested.
• Continuous limit of lattice Liouville equation gives fractional Liouville equation.
• Fractional Liouville equation is used to describe media with power-law nonlocality.
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a b s t r a c t

In this paper we propose a lattice analog of phase-space fractional Liouville equation. The
Liouville equation for phase-space lattice with long-range jumps of power-law types is
suggested.Weprove that the continuum limit transforms this lattice equation into Liouville
equation with conjugate Riesz fractional derivatives of non-integer orders with respect to
coordinates of continuum phase-space. An application of the fractional Liouville equation
with these Riesz fractional derivatives to describe properties of plasma-like nonlocalmedia
is considered.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A consistent formulation of the nonlocal statistical mechanics was first constructed by Vlasov in Refs. [1,2]. Fractional
calculus [3–9] has a lot of applications in physics [10–16] and it allows us to take into account fractional power-law
nonlocality of continuously distributed systems. Using the fractional calculus, we can consider fractional differential
equations for conservation of probability in generalized phase spaces. The Liouville equation with phase-space fractional
derivatives allows us to formulate fractional statistical mechanics that describes systems with power-law nonlocality. The
fractional statistical mechanics can be considered as a special form of the nonlocal statistical mechanics [13]. It should be
noted that the use of the fractional derivative of non-integer order is actually equivalent to using an infinite number of
derivatives of integer orders, which can be arbitrarily large values (see Lemma 15.3 in Ref. [3]).

We note that fractional Liouville and Bogoliubov equations are discussed in Refs. [17–23]. There are two different types
of approaches to space-fractional generalization of the Liouville equation:

(1) The first approach to generalization of the Liouville equation in the framework of fractional dynamics has been suggested
in Refs. [17–20]. This generalization is derived from the normalization condition with the fractional integration over
phase-space coordinates. This fractional normalization condition is interpreted as an equation in fractional-dimensional
phase-space or in phase-space with fractional powers of phase-space coordinates. We should note that the fractional
Liouville equations, which are suggested in Refs. [17–20], do not contain fractional derivatives of non-integer orders.
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(2) The second approach, which is based on the Liouville equation with fractional-order derivatives, has been suggested in
Refs. [21,22,13], where the Caputo type of fractional derivatives is used. To obtain this equation, we use the conservation
of probability for a fractional differential volume element of the phase space. The suggested fractional Liouville equation
is used to derive the fractional kinetics equations. The Bogoliubov hierarchy equations with fractional derivatives with
respect to phase space coordinates are derived in Refs. [21,22]. The Vlasov equation and the Fokker–Planck equation
with the Caputo fractional derivatives are also obtained from the fractional Liouville equations. In Ref. [23] the Liouville
equation with the Caputo fractional derivatives is used to describe media with spatial dispersion of power-law type
that is considered in Ref. [24]. We should note that this phase-space fractional Liouville equation is considered only for
Caputo fractional derivatives.

As it was shown in Refs. [25–27] (see also Refs. [28–38]), the continuum equations with fractional derivatives can be di-
rectly connected to lattice models with long-range properties. Long-range interaction and properties are important for dif-
ferent problems in statistical mechanics [39–41], in kinetic theory and non-equilibrium statistical mechanics [42,43], in the
theory of non-equilibrium phase transitions [44,45]. A connection between the dynamics of lattice system with long-range
properties and the fractional continuum equations is proved by using the special transform operation [25–27] and it has
been applied to different subjects [32–38].

In this paper, we propose the Liouville equation for lattice phase-space. This Liouville equation describes fractional
dynamics of a distribution function on an unbounded homogeneous lattice with long-range jumps from one site to other
sites. We prove that continuous limit of the suggested lattice Liouville equation gives the fractional Liouville equation for
continuum phase-space. This fractional Liouville equation contains generalized conjugate Riesz derivatives of non-integer
orders with respect to coordinates and momenta. As an example, we consider an application of the fractional Liouville
equation with these Riesz derivatives to describe properties of plasma-like nonlocal media.

2. Liouville equation for lattice with long-range jumps

In statistical mechanics [46], the basic concept is the ensemble that is a set of classical systems identical in nature, which
are subjected to forces determined by identical laws [47], but distributed in phase-space. We can state that the statistical
ensemble is a set of independent systems identical in equations of motion, but differing in their initial conditions [48]. It
is usually assumed that the systems are continuously distributed in the phase-space. In this paper, we consider systems of
particles that are distributed in lattice phase-space. Note that the statistical method should be used not only for systems
with a very large number of particles. It is necessary to use this method in every case, even that of a single particle in the
simplest possible conditions [49]. In the Liouvillian picture, we can describe the dynamics of a statistical ensemble in the
phase-space points (sites) through which the ensemble points move. In this case, properties of the ensemble are assigned
to points (sites) in phase-space at each given time, without an attempt to identify the individual system of the ensemble. In
this paper, we consider a statistical ensemble on the lattice phase-space.

Let us consider a system of classical identical N spinless point particles, which are characterized by the phase-space
coordinates qs,k and ps,k with s = 1, . . . ,N, k = 1, 2, 3. As a lattice analog of continuum phase-space for this systemwewill
use an unbounded lattice in 6N-dimensional Euclidean phase-space R6N . The lattice is characterized by space periodicity.
For unbounded phase-space lattice we define 6N non-coplanar vectors a1, . . . , a6N , that are the shortest vectors by which
a lattice can be displaced such that it is brought back into itself. For simplification, we consider a lattice with mutually
perpendicular lattice vectors aj. We choose the Cartesian coordinate system such that the directions of the axes coincide
with the vector aj, such that ej = aj/|aj| are the basis vectors of the Cartesian coordinate system in R6N . This simplification
means that we consider 6N-dimensional analog of the primitive orthorhombic Bravais lattice.

Choosing the coordinate origin at one of the sites, all phase-space lattice sites can be numbered by the vectors nq =

(n1, . . . , n3N) and np = (n3N+1, . . . , n6N), where nj (j = 1, . . . , 6N) are integer. The position of a lattice site is defined by
the vector

x(n) = x(nq)+ x(np) =

6N
j=1

njaj, (1)

where

x(nq) =

3N
j=1

njaj, x(np) =

6N
j=3N+1

njaj. (2)

Considering the statistical ensemble on the phase-space lattice, the N-particle system is represented by a point-particle,
which is moved through the lattice sites. This lattice particle, which is a lattice analog of theN-particle system, will be called
the lattice quasi-particle. We assume that it can be localized in the sites of the phase-space lattice, i.e. the positions of the
quasi-particle coincide with the lattice sites. Then the vectors nq and np can be used to describe the quasi-particle. We will
consider long-range jumps of the quasi-particle on the lattice phase-space.
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The distribution function of lattice quasi-particle, which is the probability density to be in the lattice site, will be denoted
by ρ(nq,np, t) = ρ(n1, . . . , n6N , t), where the vectors nq and np define the site. We can use the notation ρL(nq,np, t)
instead of ρ(nq,np, t) to emphasize that it is a lattice function. The function ρ(nq,np, t) satisfies the conditions

+∞
n1=−∞

. . .

+∞
n6N=−∞

ρ(n1, . . . , n6N , t) = 1, ρ(n1, . . . , n6N , t) ≥ 0 (t ∈ R). (3)

In the lattice, any particle of the N-particle system is described by the six numbers

n(s) = (ns, ns+1, ns+2, n3N+s, n3N+s+1, n3N+s+2), (s = 1, . . . ,N). (4)

Since we assume that the system consists of the identical N particles, the function ρ(n1, . . . , n6N , t) has the symmetry with
respect to permutations n(s)←→ n(s′), where 1 ≤ s, s′ ≤ N . We also can define reduced s-particle distribution functions
by the equation

ρs(nq,np, t) =


n(s+1)

. . .

n(N)

ρ(nq,np, t), (5)

whereρs(nq,np, t)depends on the vectorsn(1), . . .n(s)only. In the case s = N , we can see thatρN(nq,np, t) = ρ(nq,np, t).
Let us consider the equation for distribution function on unbounded homogeneous phase-space lattice in the form

∂ρ(nq,np, t)
∂t

+

3N
j=1

D−L,q


αj

j

 
Vj(mq,mp, t) ρ(mq,mp, t)



+

6N
j=3N+1

D−L,p


βj

j

 
Fj(mq,mp, t) ρ(mq,mp, t)


= J(nq,np, t), (6)

where the lattice function ρ(nq,np, t) is the probability density to find the quasi-particle at site (nq,np) at time t . In Eq. (6),

the term J(nq,np, t) describes an external source. The lattice operators D−L,q


αj
j


and D−L,p


βj
j


are defined by

D−L


αj

j


f (mq,mp, t) =

1

a
αj
j

+∞
mj=−∞

K−αj
(nj −mj) f (mq,mp, t), (7)

where we have D−L


αj
j


= D−L,q


αj
j


for j = 1, . . . , 3N and D−L


αj
j


= D−L,p


βj
j


with βj = αj for j = 3N + 1, . . . , 6N . The

kernel K−αj
(nj−mj) of the operator (7) describes the quasi-particle long-range jumps with length nj−mj on the phase-space

lattice. If K−αj
(nj − mj) > 0, then the kernel characterizes the jump to the site with nj from all other sites with mj ≠ nj.

If K−αj
(nj − mj) < 0, then the kernel describes the reverse process. In Eq. (6), the parameters αj (and βj) are positive real

numbers that characterize how quickly the intensity of the jumps in the lattice decrease with increasing the jump length
|nj − mj|. These parameters also can be considered as degrees of the power-law spatial dispersion in the lattice [32,34].
Eq. (6) is the lattice fractional Liouville equation that describes long-range jumps on 6N-dimensional phase-space lattice.

Let us consider the kernel K−αj
(nj −mj) in the form

K−αj
(nj −mj) = −

παj+1 (nj −mj)

αj + 2 1F2


αj + 2

2
;
3
2
,
αj + 4

2
;−

π2 (nj −mj)
2

4


, αj > −2, (8)

where 1F2 is the Gauss hypergeometric function [50]. Note that expression (8) can be used not only for αj > 0, but also for
some negative values of−2 < αj < 0. In the kernel notation, theminus is used tomark that it is the odd functions of integer
variable n ∈ Z such that K−αj

(nj −mj) = −K−αj
(mj − nj) for all nj,mj ∈ Z and j = 1, . . . , 6N .

The discrete Fourier transform

K̂−αj
(kj) =

+∞
nj=−∞

e−ikjnjK−αj
(nj) = −2 i

∞
nj=1

K−αj
(nj) sin(kjnj) (9)

of the kernels K−αj
(nj) defined by (8) has the form

K̂−αj
(kj) = i sgn(kj) |kj|αj . (10)

Note that the function (8) can obtained by the equation

K−αj
(n) = −

1
π

 π

0
kαj sin(n k) dk (11)
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that is the inverse relation to Eq. (9). For integer values of αj, we can get simpler equations instead of (8). For example, we
have

K−1 (n) =
(−1)n

n
, K−2 (n) =

(−1)n π

n
+

2(1− (−1)n)
π n3

, K−3 (n) =
(−1)n π2

n
−

6 (−1)n

n3
, (12)

where (1− (−1)n) = 2 for odd n, and ((−1)n − 1) = 0 for even n.
In the general case, we can consider the kernels

K̂−αj
(kj) = i sgn(kj) |kj|αj + o(|kj|αj), (kj → 0), (13)

where the little-o notation o(|kj|αj) means the terms that include higher powers of |kj| than |kj|αj . The form (13) means that
we consider lattices with weak spatial dispersion [32]. If we use condition (13) instead of (10), then we can consider wider
class of kernels to describe the long-range lattice jumps. As an example of the kernel with (13), we give

K−αj
(n) =

(−1)(n+1)/2 (2[(n+ 1)/2] − n) Γ (αj + 1)
2αj Γ ((αj + n)/2+ 1)Γ ((αj − n)/2+ 1)

, (14)

where the brackets [ ]mean the integral part, i.e., the floor function that maps a real number to the largest previous integer
number. The expression (2[(n+ 1)/2] − n) is equal to zero for even n = 2m, and it is equal to 1 for odd n = 2m − 1.
Note that the kernel (14) is a real valued function since we have zero, when the expression (−1)(n+1)/2 becomes a complex
number. It is easy to see that we can use Eq. (14) for all integer values n ∈ Z.

For a wide class of physical N-particles systems, we can use
Vj(mq,mp, t) = Vj(mp), Fj(mq,mp, t) = Fj(mq, t). (15)

These conditions mean that Vj are components of the lattice analog of the particle velocity vector, and Fj are components of
the lattice analog of the force vector that is independent of the particle momenta. In this case, the Liouville equation (6) can
be rewritten in the form

∂ρ(nq,np, t)
∂t

+

3N
j=1

Vj(mp) D−L,q


αj

j


ρ(mq,mp, t)+

6N
j=3N+1

Fj(mq, t) D−L,p


βj

j


ρ(mq,mp, t) = J(nq,np, t). (16)

In the general case, the usual Leibniz rule for the lattice fractional derivative D−L does not hold if αj ≠ 1. This means that we
have the inequality

D−L,q


αj

j

 
f (mq) g(mq)


≠ f (mq) D−L,q


αj

j


g(mq)+ g(mq) D−L,q


αj

j


f (mq). (17)

This property is analogous to the characteristic property of derivatives of all fractional orders and all integer orders
αj ≠ 1 [51].

3. Fractional Liouville equation for phase-space continuum

In this section, we use themethods suggested in Refs. [25–27,13] to derive a fractional Liouville equation for phase-space
continuum with power-law non-localities.

Let us define a transform operation that allows us to derive the fractional Liouville equation for continuum phase-space
from the Liouville equation for lattice phase-space (6).

Definition. The lattice-continuum transform operation TL→C is the combination

TL→C = F −1 ◦ Lim ◦ F∆ (18)

of the following three operations:

(1) The operation F∆ is the discrete Fourier transform fL(nq,np) → F∆{fL(nq,np)} = f̂ (kq, kp) of the lattice function
f (nq,np) that is defined by

f̂ (kq, kp) = F∆{fL(nq,np)} =

+∞
n1=−∞

. . .

+∞
n6N=−∞

fL((nq,np)) e−i (k,x(n)), (19)

where (k, x(n)) = (kq, x(nq))+ (kp, x(np)),

x(n) =

6N
j=1

nj aj, x(nq) =

3N
j=1

nj aj, x(np) =

6N
j=3N+1

nj aj,

and aj = 2π/kj0 is distance between lattice particle in the direction aj. Eq. (19) means that we consider the lattice func-
tion fL(nq,np) as discrete Fourier coefficients of some function f̂ (kq, kp) for kj ∈ [−kj0/2, kj0/2], where j = 1, . . . , 6N .
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(2) The operation Lim is the passage to the limit f̂ (kq, kp)→ Lim{f̂ (kq, kp)} = f̃ (kq, kp), where we use aj → 0 (or kj0 →
∞). It allows us to derive the function f̃ (kq, kp) from f̂ (kq, kp), where f̃ (kq, kp) is the Fourier integral transform of the
continuum function fC (q, p), and f̂ (kq, kp) is the discrete Fourier transform of the lattice function fL(nq,np), where

fL(nq,np) =


6N
j=1

(2π/kj0)


fC (x(nq), x(np)),

and njaj = 2πnj/kj0 → qj for j = 1, . . . , 3N and njaj = 2πnj/kj0 → pj for j = 3N + 1, . . . , 6N .
(3) The operation F −1 is the inverse integral Fourier transform f̃ (kq, kp)→ F −1{f̃ (kq, kp)} = fC (q, p) that is defined by

fC (q, p) = F −1{f̃ (kq, kp)} =
1

(2π)6N


+∞

−∞

dk1 . . .


+∞

−∞

dk6N ei
6N

j=1 kjxj f̃ (kq, kp). (20)

For simplification, we will use notations f (nq,np) for fL(nq,np) and f (q, p) for fC (q, p). From the context it will be clear
which function is considered.

We use the lattice-continuum transform operation TL→C for the lattice functions f (mq,mp, t), for the product of
two lattice functions (f (mq,mp, t) g(mq,mp, t)) and for lattice fractional derivatives of the functions, i.e. g(nq,np, t) =

D−L


αj
j


f (mq,mp, t). The operation TL→C can be applied not only for lattice functions but also for lattice operators. The

operation TL→C allows us to map of lattice derivative D−L


αj
j


into a phase-space continuum fractional derivative D−C


αj
j


that is defined in the Appendix.

Proposition. The lattice-continuum transform operation TL→C maps the fractional Liouville equation for phase-space
lattice (6) with the lattice operators (7) into the fractional Liouville equation for phase-space continuum

∂ρ(q, p, t)
∂t

+

3N
j=1

D−C,q


αj

j

 
Vj(q, p, t) ρ(q, p, t)


+

6N
j=3N+1

D−C,p


βj

j

 
Fj(q, p, t) ρ(q, p, t)


= J(q, p, t), (21)

where D−C,q


αj
j


and D−C,p


βj
j


are the continuum fractional derivatives with respect to phase-space coordinates qj and pj that

are defined by (80) for 0 < αj < 1, by Eq. (83) for αj > 1, and by Eq. (85) for integer odd αj (see Appendix). The functions
ρ(q, p, t), Vj(q, p, t), F(q, p, t), J(q, p, t) are defined by the equations

ρ(q, p, t) = TL→C

ρ(nq,np, t)


, J(q, p, t) = TL→C


J(nq,np, t)


, (22)

Vj(q, p, t) = TL→C

Vj(nq,np, t)


, Fj(q, p, t) = TL→C


Fj(nq,np, t)


. (23)

Proof. Applying the discrete Fourier transform F∆ to the first term of the lattice Liouville equation (6), we obtain

F∆


∂ρ(nq,np, t)

∂t


=

∂F∆


ρ(nq,np, t)


∂t

=
∂ρ̂(kq, kp, t)

∂t
, (24)

where

ρ̂(kq, kp, t) = F∆


ρ(nq,np, t)


. (25)

Analogously, we can see that

TL→C


∂ρ(nq,np, t)

∂t


=

∂TL→C

ρ(nq,np, t)


∂t

=
∂ρ(q, p, t)

∂t
, (26)

where ρ(q, p, t) is defined by (22).
The discrete Fourier transform F∆ of the second term of (6), gives

F∆


3N
j=1

D−L


αj

j

 
Vj(mq,mp, t)ρ(mq,mp, t)



=

3N
j=1


+∞

nj=−∞

e−ikj nj aj D−L


αj

j

 
Vj(mq,mp, t)ρ(mq,mp, t)



=

3N
j=1

1

a
αj
j


+∞

nj=−∞

+∞
mj=−∞

e−ikj nj aj K−αj
(nj −mj)


Vj(mq,mp, t)ρ(mq,mp, t)


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=

3N
j=1

1

a
αj
j

 +∞
n′j=−∞

e−ikj n
′
j ajK−αj

(n′j)
+∞

mj=−∞


Vk(mq,mp, t)ρ(mq,mp, t)


e−ikj mj aj


=

3N
j=1

1

a
αj
j


K̂−αj

(kj aj)

V̂j(kq, kp, t) ∗ ρ̂(kq, kp, t)


q


, (27)

where K̂−αj
(kj aj) is defined by (8), and n′j = nj − mj. The symbol (∗)q denotes the convolution with respect to kq that is

defined by the equation
f̂ (kq, kp, t) ∗ ĝ(kq, kp, t)


q
=


+k0/2

−k0/2

3N
j=1

dk′j f̂ (k
′

q, kp, t) ∗ ĝ(kq − k′q, kp, t). (28)

Similarly, the transform F∆ of the third term of (6) gives

F∆


6N

j=3N+1

D−L


αj

j


ρ(mq,mp, t)


=

6N
j=3N+1

1

a
βj
j


K̂−βj

(kj aj)

V̂j(kq, kp, t) ∗ ρ̂(kq, kp, t)


p


, (29)

where (∗)p denotes the convolution with respect to kp that is defined by the equation
f̂ (kq, kp, t) ∗ ĝ(kq, kp, t)


p
=


+k0/2

−k0/2

6N
j=3N+1

dk′j f̂ (kq, k′p, t) ∗ ĝ(kq, kp − k′p, t). (30)

As a result, the Liouville equation has the form

∂ρ̂(kq, kp, t)
∂t

+

3N
j=1

K̂−αj
(kj aj)


V̂j(kq, kp, t) ∗ ρ̂(kq, kp, t)


q

+

6N
j=3N+1

K̂−βj
(kj aj)


F̂j(kq, kp, t) ∗ ρ̂(kq, kp, t)


p
= Ĵ(kq, kp, t), (31)

where the symbols (∗)q and (∗)p denote the convolution with respect to kq and kp respectively.
Then we use

K̂−αj
(aj kj) = i sgn(kj) |aj kj|αj , (j = 1, . . . , 3N), (32)

K̂−βj
(aj kj) = i sgn(kj) |aj kj|βj , (j = 3N + 1, . . . , 6N). (33)

The limit aj → 0 gives

K̃−αj
(kj) = lim

aj→0

1

a
αj
j

K̂−αj
(kj aj) = i kj |kj|αj−1 (j = 1, . . . , 3N), (34)

K̃−βj
(kj) = lim

aj→0

1

a
βj
j

K̂−βj
(kj aj) = i kj |kj|βj−1 (j = 3N + 1, . . . , 6N). (35)

The ‘‘hat’’-kernel K̂−αj
(kj) is the discrete Fourier transform F∆ of the kernel of the lattice operator. The equation that

defines K̂−αj
(kj) has the form

F∆


D−L


αj

j


f (mq,mp, t)


=

1

a
αj
j

K̂−αj
(kj aj) f̂ (kq, kp, t), (36)

where f̂ (kq, kp, t) = F∆{f (mq,mp, t)}.
The ‘‘tilde’’-kernel K̃−αj

(kj) is the Fourier integral transform F of the continuum derivative. The equation that defines

K̃−αj
(kJ) is

F


D−C


αj

j


f (q, p, t)


=

1

a
αj
j

K̃−αj
(kj aj) f̃ (kq, kp, t), (37)

where f̃ (kq, kp, t) = F {f (q, p, t)}.
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As a result, the limit aj → 0 for (31) gives the Liouville equation in the form

∂ρ̃(kq, kp, t)
∂t

+

3N
j=1

K̃−αj
(kj)


Ṽj(kq, kp, t) ∗ ρ̃(kq, kp, t)


q

+

6N
j=3N+1

K̃−βj
(kj)


F̃j(kq, kp, t) ∗ ρ̃(kq, kp, t)


p
= J̃(kq, kp, t), (38)

where

K̃−αj
(kj) = i kj |kj|αj−1, (j = 1, . . . , 3N), (39)

K̃−βj
(kj) = i kj |kj|βj−1, (j = 3N + 1, . . . , 6N), (40)

and

ρ̃(kq, kp, t) = Lim ρ̂(kq, kp, t) J̃(kq, kp, t) = Lim Ĵ(kq, kp, t). (41)

The inverse Fourier transform of (38) gives the fractional Liouville equation (21). As a result, we prove that the lattice
fractional Liouville equation (6) is transformed by the operation TL→C into the continuum fractional Liouville equation (21).

This ends the proof.

4. Fractional Liouville equation for Hamiltonian systems

For a wide class of physical N-particle systems we can use

Vj(q, p, t) = Vj(p), (j = 1, . . . , 3N) (42)

Fj(q, p, t) = Fj(q, t), (j = 3N + 1, . . . , 6N). (43)

For Hamiltonian systems with potential forces, we have

Vj(p) =
∂T (p)

∂pj
, (j = 1, . . . , 3N) (44)

Fj(q) = −
∂U(q)

∂qj
, (j = 3N + 1, . . . , 6N), (45)

where the Hamiltonian is H(q, p) = T (p) + U(q), the function U(q) is the generalized potential of the force, and T (p) is
the generalized kinetic energy term. For simple case, we have Vj(p) = pj/M . Conditions (42) and (43) mean that Vj are
components of the particle velocity, and Fj are components of the force vector that is independent of the particle momenta.
In the cases (42) and (43), the fractional Liouville equation for phase-space continuum can be written in the form

∂ρ(q, p, t)
∂t

+

3N
j=1

Vj(p) D−C,q


αj

j


ρ(q, p, t)+

6N
j=3N+1

Fj(q, t) D−C,p


βj

j


ρ(q, p, t) = J(q, p, t). (46)

As a special case, we also can consider fractional Hamiltonian systems [52,53,13], where

Vj(q, p, t) = D−C,p


βj+3N

j+ 3N


Hα,β(q, p), (j = 1, . . . , 3N), (47)

Fj(q, p, t) = −D−C,q


αj−3N

j− 3N


Hα,β(q, p), (j = 3N + 1, . . . , 6N), (48)

where Hα,β(q, p) is the generalized Hamiltonian function [52]. In this case, the fractional Liouville equation can be
represented in the form

∂ρ(q, p, t)
∂t

+ {Hα,β(q, p), ρ(q, p, t)}α,β = J(q, p, t), (49)

where { , }α,β is the fractional Poisson brackets

{f (q, p), g(q, p)}α,β =

3N
j=1


D−C,p


β3N+j

3N + j


f (q, p, t) D−C,q


αj

j


g(q, p, t)

−D−C,q


αj

j


f (q, p, t) D−C,p


β3N+j

3N + j


g(q, p, t)


. (50)
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If all αj = 1 and βj = 1, then (50) is the usual Poisson brackets, and (49) is the usual Liouville equation for classical Hamil-
tonian systems.

If we use (nq,np) instead of (q, p), and D−L,q, D−L,p instead of D−C,q, D−C,p in Eqs. (42)–(50), then we get the correspondent
lattice analogs of the considered equations.

5. Fractional Liouville equation for nonlocal media

As an example of application of the fractional Liouville equation with conjugate Riesz fractional derivatives, we consider
description of non-local plasma-like continuum.

For simplification, we consider an isotropic collisionless nonlocal plasma-like media, where all αj = α and βj =

1, J(q, p, t) = 0 and Vj(p) = pj/M . In this case, the N-particle distribution function ρ(q, p, t) is the product of one-particle
reduced distribution function ρ1(x, p, t),

ρ(q, p, t) =
N

s=1

ρ1(xs, ps, t), (51)

where we use usual space coordinates xs =
3

j=1 ejxsj and ps =
3

j=1 ejpsj instead of the generalized phase-space coordi-
nates q = (q1, . . . , q3N) and p = (p1, . . . , p3N). Here ej are the basis vectors of the Cartesian coordinate system in R3. The
distribution function ρ1(x, p, t) describes a probability density to find the particle in the phase volume d3xd3p.

In this case, the fractional Liouville equation (46) for the one-particle distribution function ρ1 takes the form

∂ρ

∂t
+

3
j=1

Vj(p) D−C,x


α

j


ρ1 +

3
j=1

F3+j(x, t)
∂ρ1

∂pj
= 0, (52)

where we use

D−C,p


1

3N + j


=

∂

∂pj
. (53)

Let us apply this Liouville equation with space-fractional derivatives D−C,x


α

j


to describe properties of nonlocal media.

In the absence of the force field, the Liouville equation (52) gives

∂ρ

∂t
+

3
j=1

Vj(p) D−C,x


α

j


ρ = 0. (54)

The solution of this equationwill be denoted byρ0(x, p, t). For aweak force field, we can use the charge distribution function
in the form

ρ1 = ρ0 + δρ, (55)
where ρ0 is the stationary isotropic homogeneous distribution function unperturbed by the fields, and δρ describes the
change of ρ0 by the fields. In the linear approximation with respect to field perturbation, we have

∂δρ

∂t
+

3
j=1


Vj(p) D−C,x


α

j


δρ + F3+j(x, t)

∂ρ0

∂pj


= 0. (56)

If we consider plasma-like media, then the force is the Lorentz force F = qE + q[V, B], where q is the charge of a particle
that moves with velocity V = p/M in the presence of an electric field E and a magnetic field B.

In an isotropic media, the distribution function depends only on the momentum, i.e. ρ0 = ρ0(|p|). In this case, the
direction of the vector ejD−C,x


α

j


ρ0 coincides with the vector p = MV, and its scalar product with [V, B] is equal to zero.

Therefore, the magnetic field does not affect the distribution function in the linear approximation (56). As a result, we have

∂δρ

∂t
+

3
j=1


Vj(p) D−C,x


α

j


δρ + q Ej(x, t)

∂ρ0

∂pj


= 0. (57)

The Fourier transform with respect to space and time gives

i
 3

j=1

sgn(kj) |kj|αVj − ω

δρ + q

3
j=1


Ej

∂ρ0

∂pj


= 0. (58)

If we take the X-axis along k, then we have k = (kx, 0, 0), and
3

j=1

sgn(kj) |kj|αVj = |kx|αVx,
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where kx > 0 and sgn(kx) = 1, since we use ex = k/|k|, and kx = |k|. In this case, Eq. (58) gives

i

|kx|αVx − ω


δρ + q

3
j=1


Ej

∂ρ0

∂pj


= 0. (59)

Then we have

δρ = −
q

i

|kx|αVx − ω

 3
j=1


Ej

∂ρ0

∂pj


. (60)

In an unperturbed plasma-like media, the charge density is equal to zero. The charge density that is perturbed by the
field is

ρcharge = q


+∞

−∞

δρ d3p = iq2


+∞

−∞

1
|kx|αVx − ω

3
j=1


Ej

∂ρ0

∂pj


d3p, (61)

where ρcharge is the bound charge density. The electric polarization vector P is defined by the relations

divP = −ρcharge, (62)

which has the Fourier transform in the form

i(k, P) = −ρcharge. (63)

The polarizationP defines the electric displacement fieldD by the equationD = ε0E+P, where ε0 is the electric permittivity.
Let the field E be parallel to k. Then P be parallel to k, and

P =

ε∥(|k|)− ε0


E, (64)

where ε∥(|k|) is the longitudinal permittivity. Substitution of (61) and (64) into (63) gives

(ε∥(|k|)− ε0) (k, E) = −q2


+∞

−∞

1
|kx|αVx − ω

3
j=1


Ej

∂ρ0

∂pj


d3p, (65)

where (k, E) is the scalar product of vectors k and E. Since we take the X-axis along the vector k, E = (Ex, 0, 0), and

(k, E) = kxEx = |k|Ex,
3

j=1


Ej

∂ρ0

∂pj


= Ex

∂ρ0

∂px
, (66)

where we can use |k| instead of kx.
Using the distribution function

ρ0(px) =


+∞

−∞

ρ0(|p|) dpy dpz, (67)

we get the following equation to calculate the longitudinal permittivity

ε∥(|k|) = ε0 −
q2

|k|


+∞

−∞

1
|kx|αpx/M − ω

∂ρ0(px)
∂px

dpx, (68)

where |kx| = |k| can be used. For isotropic homogeneous case, we can use an equilibrium distribution ρ0(px).
Let us consider a plasma-like medium with equilibrium Maxwell’s distribution

ρ0(px) =
Nq

√
2πMkBT

exp

−

p2x
2MkBT


, (69)

where kB is the Boltzmann constant. Then

∂ρ0(px)
∂px

= −
2pxNq

√
π (2MkBT )3/2

exp

−

p2x
2MkBT


, (70)

where Nq is the total number of particles per unit volume.
Using kx = |k|, Eq. (68) can be rewritten in the form

ε∥(|k|) = ε0 +
q2Nq

|k|1+α

2M
√

π(2MkBT )3/2


+∞

−∞

px
px −Mω/|k|α − i0

exp

−

p2x
2mkBT


dpx. (71)
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Using new variables

z =
px

√
2MkBT

, ξ =


M

2kBT
·

ω

|k|α
, (72)

Eq. (71) can be represented in the form

ε∥(|k|) = ε0 +
q2

|k|1+α

1
√

πkBT


+∞

−∞

z e−z
2

z − ξ − i0
dz, (73)

where
+∞

−∞

z e−z
2

z − ξ − i0
dz =

√
π + P.V .


+∞

−∞

ξ e−z
2

z − ξ
dz + iπξ e−ξ2 . (74)

It should be noted that k, x, kx and xj are dimensionless variables.
We consider Eq. (73) for two cases that are characterized by the large and small values of the variable ξ .

(1) For small values ξ ≪ 1, we have

P.V .


+∞

−∞

x e−z
2

z − ξ
dz = P.V .


+∞

−∞

ξ e−(y+ξ)2

y
dy

= P.V .


+∞

−∞

e−y
2

y−1ξ − 2ξ 2

− (y−1 + 2y)ξ 3
+ (2− (4/3)y2)ξ 4

+ · · ·


dy

= −2
√

π ξ 2
+
√

π ξ 4
+ · · · (ξ ≪ 1), (75)

where y = z− ξ , and we take into account that the integrals of the odd terms in y are zero. Substitution of (75) and (74)
into (73) gives

ε∥(|k|) = ε0 +
q2Nq

kBT |k|1+α
−

q2NqMω2

k2BT 2 |k|3α+1
+

q2NqM2ω4

4k3BT 3 |k|5α+1
+ · · · . (76)

In the case ξ ≪ 1, the imaginary part of the permittivity ε∥(|k|) is relatively small but it is not exponentially small,
because of the smallness of the phase volume, where the condition |k|αpx/M − ω = 0 holds.

(2) For large values ξ ≫ 1, we have

P.V .


+∞

−∞

x e−z
2

z − ξ
dz = −


+∞

−∞

e−z
2

1− z/ξ
dz = −


+∞

−∞

e−z
2


1+

∞
m=1


z
ξ

m


dz

= −
√

π −

√
π

2ξ 2
−

3
√

π

4ξ 4
− · · · (ξ ≫ 1), (77)

where we take into account that the integrals of the odd terms in z are zero also. Substituting (77) and (74) into (73),
we get

ε∥(|k|) = ε0 −
q2Nq

Mω2
|k|α−1 −

3q2NqkBT
M2ω4

|k|3α−1 + · · · . (78)

For Maxwell’s distribution, an exponentially small part of the charged particles has the velocity Vx = ω/|k| ≫ VT =√
kBT/m, where VT is the average velocity of charged particles. Therefore the imaginary part of the permittivity ε∥(|k|)

is exponentially small.

Eqs. (76) and (78) can be used to obtain the scalar potentials of electric field for the fractional nonlocal plasma-like
media [17,24].

6. Conclusion

In this paper, the Liouville equation for unboundedhomogeneous phase-space latticewith long-range jumps is suggested.
Using the methods proposed in Refs. [25–27], we prove that the continuous limit transforms the suggested Liouville
equation for lattice phase-space into the fractional nonlocal Liouville equation for continuum phase-space. This fractional
Liouville equation contains the generalized conjugate Riesz derivatives on non-integer orders with respect to phase-space
coordinates. As an example, we consider an application of the fractional Liouville equation with the Riesz derivatives of
non-integer orders to describe properties of plasma-like nonlocal media.
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We assume that the lattice fractional Fokker–Planck equation, which is suggested in Ref. [38], can be obtained from
the phase-space lattice Liouville equation that is proposed in this paper. The lattice Bogoliubov hierarchy equations can be
easily derived from the suggested lattice Liouville equation by using the reduced distribution functions. The corresponding
lattice hydrodynamic approximation can also be obtained from the lattice Bogoliubov hierarchy equations. It allows us
to formulate fractional-nonlocal statistical mechanics [21,13] on the lattice phase-space. The suggested lattice-continuum
transform operator allows us to have a correspondence between lattice fractional statistical mechanics and fractional
nonlocal statistical theory.

The fractional Bogoliubov hierarchy equations with derivatives of non-integer orders with respect to phase-space
coordinates can be obtained from the suggested fractional Liouville equation with Riesz fractional derivatives in the
same way as was done for the Liouville equation with Caputo derivatives in Refs. [21,22]. The Vlasov equation and the
Fokker–Planck equation with the fractional derivatives of the Riesz type can be also obtained from fractional Liouville
equations [38]. All these equations form a basis of fractional nonlocal statistical mechanics.

Appendix. Continuum fractional derivative of the Riesz type

Let us consider the continuum fractional derivative D−C


αj
j


of the Riesz type that has the property

F


D−C


αj

j


f (x)


(k) = i sgn(kj) |kj|αj(F f )(k) (αj > 0). (79)

For 0 < αj < 1 the operator D−C


αj
j


can be considered as the conjugate Riesz derivative [6] with respect to xj. Therefore,

the operator (79) can be called a generalized conjugate derivative of the Riesz type.
For 0 < αj < 1 the fractional operator (79) can be defined by the equation

D−C


αj

j


f (x) =

∂

∂xj


R1

R1−αj(xj − zj) f (x+ (zj − xj) ej) dzj, (0 < αj < 1), (80)

where ej is the basis of the Cartesian coordinate system. The function Rαj(x) is the Riesz kernel, that is defined by

Rαj(x) =

γ−11 (αj)|x|αj−1 αj ≠ 2n+ 1, n ∈ N,

−γ−11 (αj)|x|αj−1 ln |x| αj = 2n+ 1, n ∈ N.
(81)

The constant γ1(αj) has the form

γ1(αj) =


2αjπ1/2Γ (α/2)/Γ ((1− αj)/2) αj ≠ 2n+ 1,
(−1)(1−αj)/22αj−1π1/2 Γ (α/2) Γ (1+ [αj − 1]/2) αj = 2n+ 1,

(82)

where N ∈ N and αj ∈ R+. Note the distinction between the continuum fractional derivatives D−C


αj
j


and the Riesz

potential consists in the use of |kj|−αj instead of |k|−αj .
For αj > 1 the fractional operator (79) can be defined by the equation

D−C


αj

j


f (x) =

1
d1(m, αj − 1)

∂

∂xj


R1

1
|zj|αj

(∆m
zj f )(x) dzj, (1 < αj < m+ 1), (83)

where (∆m
zj u)(x) is a finite difference of order m of a function f (x) with the vector step zj = zj ej ∈ RN for the point

x =
N

j=1 xj ej ∈ RN . The centered difference

(∆m
zj f )(xj) =

m
n=0

(−1)n
m!

n! (m− n)!
f (x− (m/2− n) zj ej). (84)

The constant d1(m, αj) is defined by

d1(m, αj) =
π3/2Am(αj)

2αjΓ (1+ α/2)Γ ((1+ αj)/2) sin(πα/2)
,

where

Am(αj) = 2
[m/2]
s=0

(−1)s−1
m!

s!(m− s)!
(m/2− s)αj

for the centered difference (84). The constant d1(m, αj) is different from zero for all αj > 0 in the case of an even m and
centered difference (∆m

i u) (see Theorem 26.1 in Ref. [3]). Note that the derivative (83) does not depend on the choice of
m > αj − 1. Therefore, we can always choose an even number m so that it is greater than α1 − 1, and then we can use the
centered difference (84) for all positive real values of αj.
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For integer odd values of αj, we have

D−C


2m+ 1

j


f (x) = (−1)m

∂2m+1f (x)
∂x2m+1j

, (m ∈ N). (85)

Eq. (85) means that the fractional derivatives D−C


αj
j


of the odd orders αj are local operators represented by the usual

derivatives of integer orders. Note that the continuum derivative D−C

2m
j


, where m ∈ N, cannot be considered as a usual

local derivative ∂2m/∂x2mj . of the order 2m with respect to xj.
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