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The Sedov variational principle, which is the generalization of the least action principle

for the dissipative processes and the classical dissipative mechanics in the phase space are
used. The main points of the quantum dissipative dynamics suggested in the recent paper
" are considered. As an example of the dissipative quantum theory we discuss the non-
linear two-dimensional affine-metric sigma-model. The conformal anomaly of the energy
momentum tensor trace for the closed bosonic string on the affine-metric manifold is
"investigated. The two-loop metric beta-function for non-linear dissipative sigma-model
was calculated.

Variational Lagrangian and Hamiltonian mechanics describes the systems sub-
jected to the potential forces only [1]. The dissipative forces are beyond the sphere
of the variational principles [2-5]. For this reasor the statistical mechanics does not
describe the irreversible and dissipative processes. It is caused by the absence of
the Liapunov function in the phase space in the Hamiltonian mechanics ( Poincare-
Misra theorem [6]). To describe the dissipative and irreversible processes we must
introduce the additional postulate in statistical mechanics (for example, the Bogol-
ubov principle of weakening (relaxation) correlation [7] and the hypothesis of the
relaxation time hierarchy [8]). It is known that the initial point of the quantum me-
chanics formalism is Hamiltonian mechanics [9]. Therefore the quantum mechanics
and statistics describes the physical objects in the potential force fields only. The
Sedov L.I. suggests the variational principle [2-5] which is the generalization of the
least actional principle for the dissipative and irreversible processes. The Sedov
variational principle was used to consider dissipative systems in the phase space
[10] and to generalize the quantum dymamics for the dissipative and irreversible
. processes [10]. In this paper we consider the sigma-model approach [11,12] to the
quantum string theory [13] as an example of the dissipative quantum theory. The
conformal anomaly of the energy momentum tensor trace [11] for closed bosonic
string on the curved affine-metric manifold (i.e. in dissipative and nondissipative
background fields) is discussed. The two-loop metric ultraviolet renormalization
group beta-function [14] for two-dimensional non-linear dissipative bosonic sigma-
model suggested in [10] is obtained. The results are compared with the ultraviolet
two-loop metric counterterms for affine-metric sigma-model suggested in the papers
[15,18]. '

The classical equation of motion for the n-dimension nonlmear affine-metric
sigma-model has the form .

88, X* + ([} + Dy )8, X*/gg" 8, X' = 0. (1)
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where [};] is Christoffel symbol for the rhét;ic G.-,-(q).:; ‘Dipi(X) is a conmection
defect tensor [15,16]; g#”(z) is the n-dimensional metric tensor.” The equation of

motion (1) is an equation of the n-dimensional geodesic flow on the affine-metric
manifold (the n-dimensional analogue of the geodesic line). It is well known that
this equation can not be derived from the least action principle if the connection
defect is other then null. Note that the Riemannian geodesic flow can be derived
from this variational principle with the Lagrangian density defined by

1 N
L(X) = Eka:(X)a,,X"\/ig“"a,,X’. ()

The Sedov variational principle has the form: 6§S(X)+6W (X) = 0 , where S(X)
is the holonomic functional called action and W (X) is the nonholonomic functional.
The nonholonomic functionial is defined by the nonholonomic equation. Let us

. choose the variation of the nonholonomic functional in the form

W = — / d*z Dii(X) 8,X*\/gg" 8, X' 6X* 3)

Then the geodesic flow equation (1) can be derived from the Sedov variational
principle [17].The initial point of the dissipative quantum mechanics formalism [10]
is the classical dissipative mechanics in the phase space. Let us consider main points
of the dissipative analogue of the Hamiltonian dynamics :

1. If the coordinates z* (k = 1,...,2m), where =g andzHi=1,..m,wt
of the (2m+2)-dimensional extended phase space are connected by the equations
Sw — w,,(z,t)&z” = 0, where w;, is the vector function in phase space, we call the
dependence w on the coordinate q .and momentum p the holonomic-nonholonomic
function and denote w = w(g, p) € ®. If the vector functions satisfy the integrabil-
ity condition (8w (2))/(82') = (dwi(2))/(8z*), the coordinate w is the holonomic
function ( w € F~). If these vector functions don’t satisfy this condition, we call
the object w(g,p) the nonholonomic function or the Sedovian (w € F ).

2. Let us define the variational Poisson brackets for Va,b € ® in the form:

b= oo e %)
8= 5 o T b o ®

The basic properties of these Poisson brackets are following

1) Va,be @ [a,8] = —[b,a) € F, ‘

2) YaAbAceF ASla,b,c} =0,

3) Va,bc,e®: avbvce F  ASa,b,c,]120,

where AS[a,b,c] = [a, [b, c]] + [b, [¢, a]] + [c, [a, b]]. These properties for the holo-
nomic functions coincide with the definition of the usual Poisson brackets [1]. The
characteristic properties of the physical quantities are following v

1) Ipi,pl=1[¢',¢1=0 and ¢ p}=5;

2) [wpl=w{ and [wq¢]=-w,,

3) [[wr Pi]: pj] $ [[w) pj]’?i} and st q“]’ qJ] ; [[w’ qJ]’ qi] ’

4) [q.r[w!pj]]?-é [Pj,['-U,(I'H or. AS[q',w,pﬂ:Q} #£0. . .. .

The object Q¢ characterizes the deviation from the condition of integrability (5).

J
3. The dissipative analogues of the Hamiltonian equations of motion are

dg*
- dt

dA(t) _ BA(t)
dat ot

=l h—ul Bkl + (4D A -wl. )

4. The dissipative analogue of the Liouville equation [6) is
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dt.

_d_p = - Qp, where = ZQ‘ ZAS[q w,pJ ()]
i=1 i=] :

5. The additional statement for the Poincare—Misra theo:em [6] is following: -
?»The Liapunov function of the coordinate and momentum exists in the dissipative
‘Hamiltonian mechanics”. Let us define the function (g, p, t) = —Inp(q, p,t) and as-
sume Q > 0. The equation (6) shows that dn/dt = 2. and the function 7 satisfies the
relation dn/dt > 0. In the general case, any function f(g, p, t) which is the composite
function f(q,p,t) = g(p(q, p,t)) and satisfies the relation Q (8¢(p))/(8p) < 0 (Vi)
is the Liapunov function, that is (df)/(dt) > 0.’

The quantum dynamics for the systems defined by the holonomic and nonholo-
nomic functionals was suggested in the recent paper [10]. The main points of the
dissipative quantum mechanics are following

1. The operators of physical quantities are defined by the following relatlons

1) [@,@]=[P,P]=0 and [@F, P]—-th&

2) [W,P]= W] and W, Q] = —:hW‘ ,

3) [W,R],F] #([[W,F],P] and [[W, Q'],Q’] #[WeL,Q),i#s

4) (@, [W B #([P,[W,Q]] or AS[Q',W,P;]=9; #0,
where AS[A, B, C] = — ([A[BC]] + [B[CA]] + [C[AB]] )/ (52) and Q' = Q; Pt =
P, Wt=Ww,; Qt =Q; [A, B] = AB — BA. To satisfy these commutation rules the
operators of the nonholonomic quantities must be nonassociative. It is sufficient to
require that the operator W of the Sedovian satisfies the following conditions:

a) (WA)B)=(W(A'B) and (4(BW)=(ABW),

b) (A'W)A) 2 (A'(WA))if i#j; ((A'W)B)2 (A‘(WB’)) if £ B
where A and B are P or Q operators.

2. The state in the quantum dissipative mechanics can be represented by the
density operator p(t) as usual. This operator is defined by the usual conditions:
At = p(t) and Sp(p(t)) = 1 for fixed time point. The average of the physical
quantity A is defined by < A >= Sp(A(t)p(t)) for any fixed time moment. The
dissipative analogue of the Heisenberg equation for the operator of physical quantity
A(t) = A(Q, P,t) and the dissipative analogue of the Neumann (quantum Liouville)
equation for the ”density matrix” operator p(t) are written in the form

dA 84 dp
L= rm-w i
= T Al and

1
Py [P , 2 ]+ 4 ' (7)
2

where anticommutator [, ]+ is the consequence of the hermiticity for the density
operator p and for the operator §2. The solution of the first equation may be written
in the form

A(t) = S(t,te) A(to) Sf(t,to), where S(t,tq) = Texzp— %/ dr (H—-W)(r).(8)

T—exponent is defined as usua] {18], but with the followmg ﬁow chart ezp A =
1+ A+ 2(AA) + ;((AA)A) + & E((AA)A)A) +.

3. The time evolutlon of the physical quantlty operator is unitary and the
evolution of the density operator is nonunitary. Therefore the pure state at the
moment t = to'( p?(to) = p(to) ) is not a pure state at the next time moment.
We can define the entropy operator of the state [6] 8 = — Inp, which satisfies the
equation (ds)/(dt) =

4. The dxssxpatlve a.nalogue of the Schroedinger equatlon has the form

Sos(tito) = + los, (H=W)s] = > (s, ool | ®
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where the operator ps(t,to) is the Schroedinger repreqeﬁtqtion of operator py(t) =

p(t) i.e. ps(t,bo) = SH{t,to)pr (to)S(t, 1) and ps(to,to) = pu(te). Thersqlution of

" the equation (9) can be written in the form pg(t,%,) = Ug.(t,t’)ps(t' ,to)Us (¢, t'),.
where ’ _ .

» ! - A -
U;.(t,t') = Tezp — %/ dr (H-W — %n)s(r,tu). (10)
‘l

5. The important feature of the basis vectors [9] in the dissipative quantum
mechanics is the definition of these vectors at fixed time moment. It is caused by the
time dependence of the density operator and of the wave vectors in the Heisenberg
representation. That is [¢,1, > # [g,t2 >5 contrary to usual quantum mechanics
[9]. - It is easy to prove the following statements: ” 1. The basis vector unitary
transformed is a basis vector ; 2. There exists a unitary transformation for
any two basis vectors defined at the non equal time points.” Thus, Schroedinger,
representation of the basis vector [¢,,to >s= St(t—t¢)[g, ¢ > might be considered
as the unitary transformation of the basis vector, i.e. [g,to >p= ST(t —to)[g,t >x.
Note, that the trace of the operator can be defined in fixed time point only.

6. The Green’s function for the wave vector Schroedinger equation

Gs(a,d t—t) = < q,tls UL, t) [d', ¢ >s 6t - 1), (11)

using Faddeev method [19] is written in the Feynman representation as

t t d nh
Gs(a,q',t—t') = [ Dq Dp ezpz | dr (0% — h(g,p, 7) + w(g, P, 7) + =R1)-
hJ, dr 2

7. The usual Hamiltonian formulation of the damped harmenic oscillator, so
called Bateman-Morse-Feshbach damped.oscillator, needs at least twp deegrees of
freedom [20-21]. We consider [10] the one dimensional harmonic oscillator with
friction (6w = +ympbq). The eigenvalues E,, for the dissipative analogue of the
stationary Schroedinger equation for this oscillator in @ P-ordering and background
field approximation are written for AE, = E,; — E, in the form - '

AE,(w) = (hVw? — 2 when w? > 27%) and (0 when w? < 2¢%).  (12)

The life time for the state derived from Im(E,) = _,,} isT = % < oo. Note that

the jump in the point w = \/-2-7 is the purely quanfum dissipative effect.

Let us consider now the closed bosonic string theory [13] in curved space-time
{11,12] or more exactly the two-dimensional nonlinear sigma-model [14-18] and the
sigma-model approach to the string theory [11,12,26,10). The world sheet swept
out by the string is described by map X(2) from two-dimensional patameter space
N into m-dinensional space-time manifold M, ie., X(z) : N — M. The two-
dimensional parameters are £ = (7,¢) and the map X(z) is given by space-time
coordinates X*(x). Let us choose the holonomic functional in the form

S(X) = 5(G,@.9) = [ @ (LX) + & VIRD@) 8(0)  (13)

and the nonholonomic functional in the form (3), where o’ is the inverse of the string
tension; ®(X) is the dilaton field. The Lagrangian and Sedovian define a closed
bosonic string propagating in the presence of dissipative and nondissipative back-
ground fields or in curved affine-metric space-time. Let us choose a parametrization
~ for two-dimensional metric tensor g** in the form

Juv(z)dztdz" = ¢(z) ( n'-"(:l:)(cl'r)2 - ( do + m(:::)d'r;")2 ). (14)
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In this case the densities of the Hamiltonian without the dilaton field term, Sedovian
and Omega are rewritten in the form o

b= - 52'. GH(X)L I, + m O X" — gGkr(X)X"’X'I;' © (15)
w = -g—.(A’{']I;,'II, + ALX*X"), Q = 2n D*(X)IL, (16)
where D*(X) = D} (X) G¥(X) , X'* = (dX*)/(do) , I, is the canonical momen-

tum , A are tensorial integral operators, which can be written in the conditional
form of indefinite multiple integral §X* :

Ay =2 / 6X'Di(X), A} =-2 / 6X’ Din(X). an

Unfortunately we have no correct mathematical definition of these operators. This
difficulty can be removed by expressing the nonholonomic functional as a power
series in a covariant field £€*(z) which is the tangent vector to the geodesic line
containing X% and X* = Xt + f"(Xo,f). The background field expansions of the
A - operators are written in the form ' : '
Al'=2 DI'(Xo) € + O(6%), A2, = —2 Dyi(Xo) € + O(&%). (18)

The covariant background field method [40;44,21] in the phase space is defined by
the usual expansion of the coordinates X k(z) only. Note that the model defined
by (13) ( and (3) ) in the conformal gauge n = 1,m = 0 called two-dimensional
nonlinear (dissipative) sigma-model. Let us define the generating functional for
connected Green functions [18,19] in the form

»W(J,g) = —th In/ DXDu ezp-;; /dzz (Z1(X, 1L g) + Z2(X, 7)), (19)

o . . )
where Zy(X,M,g) = I —X* — h+w+ 12_9 + 32— IR (9)B(X).  (20)

Z3(X, J) is the source term discussed in [23-25]). We derive the covariant background
field expansion of Z;, Z, and define a new generating functional W (X, g, J ):

e:cp-hz-(W(Xo, 9, 7) + W(Xo)) = / DeDII ezp% / d*2(2)(X(Xo,€), 11, g) + Ju£%),

The functional integral over momentum II is Gaussian integral. It is easy to derive
the path integral form for the generating functional:

. .
W(Xo,0,9) = ~th In | DE eap™( AX(Xo,6) + M(X(X06))).  (21)
The effective action A(X) is written in the following form [10]

AX) = S(G,9,0) +S(D,g), where S(D,0)= 3" S(Dg),  (22)

1 -
Si=—2 / I’2A8, X /59" 8, X' = -W(X), (23),

/

. .
Sp=2 / d’z\F.,a,,X"ﬁn“"a,x‘, Sy = / 2\ /G(Vi,ug"* 8, X* + B(X)), (24)
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Fkl = [G_l'-l- A1]'—l“ -— [G <+ Azlu = 4Dinijnl€iEj + O(Es)) B (25)

Viu = %gwk"[G" + A7, D'(X), B(X) = -;-C"(m)[G’1 + A‘]Z.‘D"(X)b'(rx)
M(X) = / i’z %5(0) Indet(G~1(X) + A1) 1), (26)

k= (k7 k) = (27, 2ime ™), (27)

KM = (’cf‘r, n-ra’ naa) = (_n—2c—l’mn-2c—1’ _m2n—2c-1) (28)

and ‘D' (X) = G*G¥ Dy;;(X). Note that the effective action is conformally invari-
ant, because has no c(z) dependence. Account is to be taken of the parametriza-
tion of the two-dimensional tensors x*' and k* which are connected with the
parametrization of two-dimensional metric tensor g¢¥ , i.e. «k*’ = x*¥(g) and
k" = k*(g). ' , ‘

The energy-momentum tensor for the closed bosonic string is defined as usualy
[11,12,26] by T#*(z) = (~2//9)65(G, ®,9)/(69,v) In the general case, the objects
in S(D,g) are the nonholonomic objects. We use the covariant background field
method [22,15]. Therefore these objects are the power series in quantum fields
£*(z). Note that the background field expansion of the nonholonomic functionals
'and the two-dimensional metric variation of it are not commutative operations,
ie. (W(X))/(6g**) = 0 and (6W(Xo,€))/(6g"") # 0. Therefore the vacuum
expectation value of the energy-momentum tensor [26]

<T* () >= Neap(-=W(J,9)) / DE T (2) ezpy(A(X) + M(X))  (29)

can not be written in the form (—2/+/3)(6W(J, 9))/(8g,v) because we consider the
nonholonomic functionals as the background field power series. (In the opposite
case, we must prove the Gaussian momentum integration formulas for the tensorial
indefinite integral operator A in functional integral beyond the background field
method.) Let us define the two-metrical generating functional [10] in the form

W(g"",a", Xo,J) = —th In / Dﬁezp-;-(S(G, ®,9*")+ S(D,a*) + M(X)+ J,,E").

The usual functional W(g, Xo,J) is derived by W(g, Xo,J) = W(g,a,Xo,J)g=a-

The vacuum expectation value (29) can be written in the form
2. 6
\/E 6guv

It is easy to derive the conformal anomaly of the trace of the energy-momentum
tensor [11] for dissipative nonlinear sigma model in the form [10]

<T*(z)> = W(g,a, Xo, J)]g=a' ‘ (30)

1 - al . R
<Ty>= - B o xE0. X, + 5 BP0 B (31)
~ - ~ N o 1. s
where B =B8 +.., A* = A% + dVidViE - Zﬂg (GY+..) (32

and 3% = A5 +22/ Vu¥i@, ViVi = &V + (] + Diuy) Vi (33)

Let us take into account the background field expansion [22,15] of 8,X ko=
CF(Xo0,8) 8,X! and choose the following solution of the classical equation (1)
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of motion XX(z) = const. The vacuum expectation value for the law of energy-
momentum tensor change can be written in the usual form [12,26] < V*T,, >=0.
'It is easy to derive that the central charge of the Virasoro algebra [27] is propor-
tional to the dilatoq B -function as usualy [12]. The sufficient condition for the
validity of this relation [12] is B® = const and ﬁf’, = 0. Where 39 is defined by
the metric beta -function of the two-dimensional nonlinear dissipative sigma-model.
In the two-loop metric beta-function calculation we use affine-metric background .
field method [15,16], introduce an auxilliary mass term [28], the dimensional reg-
ularization 2 — n = 2 — 2¢ and the minimal subtraction with the general pre-
scription for contraction for the two-dimt_ansiona.l k*¥ tensor £**n,, = f(n) where
f(n) = 1+ fie + O(e?) and 7,, is two-dimensional Minkowski metric. Different
prescriptions may correspond to different renormalization shemes and thus their
results should be related tﬁrough redefenition of the couplings Gy, and-Fy; by anal-
ogy to Riemannian two-dimensional non-linear sigma-model with the Wess-Zumino
term [29]. It is known that propagator of the quantum fields ¢*(z) is not stan-
dard. Therefore we introduce an m-bein €;(X) and define ¢%(z) = e2e*(z), where
f?,,e,“ = 0. After this modification the kinetic terms become 6“5“6,5“ , where
6,‘6" = 8,£% + Agc e: 9. ¢4 E"_ This mixed covariant derivative for affine-metric
manifold M and the Minkowski space N involves the Schouten-Vranceanu connec-
tion [30,31] Agpe = Agpe + 2Qqijn eie{ei » (where ij is the torsion tensor of the
affine-metric manifold ) which is equal to the Ricei rotation coefficient [32] and the
object wi, = A:ce: is spin connection [22] on the Riemannian manifold. Note, in
addition to [15,16] we take into account the diagrams whose external background
field lines involve the Schouten-Vranceanu connection. This diagrams must not can-
cel [17] in contrary to the usual non-linear sigma-model [22]. It is caused by the
~ relation A(, sae) = (—=1/2)K;; elelel, where K;;1 is nonmetricity tensor of affine-
metric manifold. The two-loop metric beta-function of the dissipative sigma-model
is g% = ,Bf M+ ﬂla + ﬂf , where ,Bf w18 the metric beta-function [14,22] of the affine-
metric sigma-model defined in [15,16] , i.e. the part of the metric beta-function from
the action S(G,®, g) only, where two-dimensional metric is the Minkowski metric;
B% K = 1,2 is the part of metric beta-function from Sk (D, g) in equations (22)-
(24). Note that the two-loop metric beta-function B¢ is equal to zero. This is
analogue of the results for nonlinear sigma-model considered in [33-35]. The full
expression of the two-loop ultraviolet counterterms is very complicated , but it is
easy to see the following ultraviolet finiteness conditions. The one and two loop
counterterms for two-dimensional non-linear dissipative sigma-model vanish if the
correlation between the affine connection and the metric structures on the manifold
M is given by [10]: . - '

o -~ ~ 3

VaGij = Nijk = Nsry s VaNay; = N8 Noip 5 Raganm = 2 NGV - (34)
It is easy to see that the ultraviolet finiteness conditions have not the f; dependence.
Note that the affine-metric beta-function is zero in all loops if the affine-metric
- manifold with the nonmetrisity tensor K;;; and torsion tensor Qi 1 is defined [17,10]
by ' : '

Ruj = _Rh‘jl"26[j/Qki/I]—2Q;b/th/j] =0 ViGy; = Kiju—2Qqijy = 0. (35)
It is ea.sy to see that this affine-metric manifold is not flat space.
I would like. to thank Belokurov V.V, and Stelle K.S. gor conversations and
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