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Spontaneous breaking of supersymmetry at scales much smaller than the Plank mass
can be related to early compactification of extra dimensions of the space-time. Possible
manifestations of extra dimensions in scattering amplitudes are discussed on the example
of a scalar model in 2+42-dimensional space-time with two dimensions being compactified

" to the torus.

1. Introduction

Most of modern theories beyond the standard model include thé hypothesys
of multidimensionality of the space-time (Kaluza-Klein type theories, extended
supergravity, superstring theory; see e.g. [1] and refs. therein). Usually one
supposes that extra dimensions are compactified at the scale Rc ~ M¢ 1 of the

order of the inverse Planck mass Mp; (gravitational scale). In this case additional
dimensions can reveal themselves only in peculiar gravitational effects or in early
cosmology of the Universe. » ’

On the other hand, in all above mentioned theories there is usually much lower
supersymmetry breaking scale Msusy . This scale can be naturally related to the
compactification scale since: as it is known the supersymmetry in principle lowers
under compactification of.a part of space-time dimensions [2]. If M¢c ~ Msysy ~
1 = 10 Tev, it is quite possible that evidence of the additional dimensions can be
seen at future experiments at supercolliders. _

The most difficult problem in multidimensional field theoretical calculations is
the non-renormalizability of the theory. Thus, one has to work in some ultraviolate
finite theory. Nowadays there is a common belief that such theory does exist and
this is the superstring theory- [1}. Unfortunately, calculations in the framework of
the superstring theory face two important difficulties:

i) The coupling constant above the energy of compactification becomes huge
because of threshold corrections [3]. On the other hand, most of results in string
theory were obtained within the perturbation theory. So, to make calculations in
superstring theory one has to choose very special manifolds as additional dimensions
to make these threshold corrections to be zero. It was shown [4] that this is possible
indeed in specific models due to supersymmetric cancellations. In these special
cases (which are not related to realistic models, at least directly) one can show
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that the only way to detect extra dimensions is via the direct production of a few
excitations of the Kaluza-Klein tower with masses > M¢ ~ 1 TeV. This seems to
be experimentally hopeless in the near future.

ii) There is no phenomenologically acceptable low energy model derived from
superstring theory directly. :

Thus, in the Kaluza-Klein approach in order to have a realistic model at low
energies in four dimensions we are forced to consider a non-renormalizable multi-
dimensional field theory. Whereas in a complete finite quantum theory renormaliza-
tion counterterms of the low energy limit could be calculated, in the effective non-
renormalizable theory, we are discussing here, the corresponding coupling constants
must be considered as phenomenological ones. Fortunately, the contributions of
these counterterms to the finite part of the amplitudes are of the order (S/A?)"
(1], where /S is the energy of colliding particles, A can be regarded as the cha-
rachteristic scale of the complete theory(A ~ Mp; in the case of superstrings) and
n > 1. Thus; when v/S < M¢c < A these contributions can be neglected.

We would like to mention here that similar problem was considered in [5]. There
the authors used the results of the high energy experiments to get the upper bound
on the size R of the space of extra dimensions assuming that the fitst heavy Kaluza-
Klein mode is not observed experimentally. Our philosophy in the present paper
is different: we assume that R™! ~ Mgysy ~ 1+ 10 TeV and look for possible
experimental evidence of heavy Kaluza-Klein modes.

In this communication we estimate possible manifestations of effects of compac-
tification on the example of a simple model of one scalar field in (2+2)-dimensional
space-time M = M x Ty, where M, is the two-dimensional Minkowski space-time
and T, is the torus. , :

2. The model

We consider here a toy model of one real scalar field ®(z, y) on the space My x Ty
with the action

1 : _
S =55 [ Pad(1/22(, )N oudw(z, 1) - (m?/2)8%(z, 1)+
) 1)
+(g4/4')q> (x1y)} )
where M,N = 0,...,3; the metric gyn = diag(~1,1,1,1). The field ®(z,y) is
periodic in coordinates y!, y?
®(z,y + 27R) = (=, y); R=M;1

and can be expanded in Fourier series:

o]

@(z,9) = (1/R) Y  pa(z)exp{igi/R},

n1,N2=—00
ﬁ=(n1’n2): 37=(y1)y2)x
P-it = P -

Substituting the Fourier expansion into the action (1) we get
S = [P/ eald -5 - Mes +
. 7

+ (1/4)92 Y PavsPst_iaskan o (2)
A5
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with :
M2 = m? 4 #2/R? = m® + MJ#’.

_In this toy model the field g(x) with the light mass m < Mg is an analog of
the fields of the standard model and the Kaluza-Klein tower of fields {pa, #t # 0}
with masses M;; is an analog of fields of its multidimensional extension. The action
(2) describes the two-dimensional theory with infinite number of massive fields, and
it is important that all the fields have the same coupling constant as a consequence
of the four-dimensional nature of the model. ‘

. As a process imitating the present possibilities of collider experiments it is
reasonable to consider the scattering (2 light particles) — (2 light particles)
assuming that m < Mc and the scattering energy E < Mc. The scattering
amplitudes for the light ¢g-particles in the tree approximation are defined by the
usual vertex ~ gog.. Note, that in a theory with cubic verticies (like in the standard

model) we would have additional coupling of the form

N eaepe_ask) = Mg} + 3Xpo E pap-a+
.k : i
+A Z PAPEP-(a+k) " _

#,E£0 CL

This shows that one has no new diagrams with heavy fields for scattering of light
particles at the tree level also (this is correct for any homogeneous additional
subspace ). Thus we can hope to find some new effects at the loop level only.
This explains why we consider the simplest ®*-model.

At the 1-loop level besides the vertex with the light fields only

go 4
aigz ¥
there are other relevant vertices for scattering of light particles
go 2
7 9 Xﬁ: Pap-i -

As we shall show, due to these vertices the massive Kaluza-Klein fields give
considerable contribution to the cross section of the scattering process under inves-
tigation.

3. 2 — 2 scattering cross section in the model with compactification

Regularized two particle scattering a.mplitudé in our model has the following

form:
T (s,0) = 21— 2 3 (Bals)+ Balt) + Ba(w)), 3)
ii: AICA3 '

where Ba(s), Ba(t), Ba(u) correspond to the 1-loop contributions of the fith mode

Bi(s) = Ar ‘d?k : 1 =
3(8) =152 | G [(p— k)2 — M2+ ie)(k? — M3 +1ig)

4

1 z 'z L 2
—;\/;-zar(:tg\/ﬁ"’—z’ 7#90, SEP
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Vz—+z—¢

iV +(imaginary part) .

Here ,

1 / z
Bo (8) = ﬂ o cln

_ 8 _m

zZ= M y € f Hg- s

and we consider the region ¢ < z < 1 (below the first Kaluza-Klein threshold).
Imaginary part of By(s) does not contribute to the g3-order of the cross section. ,
Invariants ¢ and u in_the two-dimensional space-time take s two values at fixed
energy: either ¢t = 4m? — 5, u =0 or t = 0, u = 4m? — s (note that the amplitudes -

T are equals to each other for both cases).
The non-trivial t-channel contributions are the following:

Vi=c+Vz+i?
Vi—c—z+ 72

gy L )
Ba(4 ) 2\/(z~c)(z+iz’2)l

In the limit A? — oo the sum in (3) becomes logarithmically divergent as it should
be in the four-dimensional field theory (compactification does not influence the

- ultraviolate properties of the theory). Thus, one has to renormalize the coupling

constant go by making one subtraction to obtain the finite amplitude.
In accordance with the physical setting of the problem we define the renormalized
coupling constant k as follows : »

T (s)lszpa = by ' (4)
where the momentum subtraction point u is chosen to be 0 < s < m. Then we get
TN s, u%) = h{1 — (h/87) 3 Ax(s,u?)}, (8)

P .

where < .
Aa(s, p) = Ba(s) — Ba(4®) + Ba(4m® — 5) — Bz(4m® — p?) .

As it has been already mentioned in the Introduction our aim here is to discuss
the difference between the scattering amplitude, calculated in the full theory with
infinite tower of Kaluza-Klein modes, and that, calculated in the corresponding
two-dimensional model with a finite number of modes. In the latter model we will
restrict ourselves to the following two cases: 1) there is the light mode only; 2) there

- are light mode and the first heavy mode with the mass M;. The two-dimensional

model with a finite number of modes (in what follows we will refer to it as the 2-
model for shortness) is determined by the action of the type (2) but with finite sums
over 7 in it. The 2-model is ultraviolet finite and its coupling constant does not
need to be renormalized. However, again in accordance with the physical setting of
the problem and in order to make the comparison between the full theory and the

. 2-model to be consistent, we require that the amplitude calculated in the 2-model --

also satisfies the condition (4). This amounts to a finite renormalization of the
coupling constant and to over-subtraction of the 1-loop diagrams. We obtain for
the scattering amplitude

T(o)-(sr /"2) =h{1- (h/SW)Aﬁ(s’l‘z)}’
for the 2-model with the light mode and
T(s, w%) = h{1 ~ (h/8x)[A5(s, u%) + 44(1,0)(5, )]} (6)
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for the 2-model with the light mode and the first heavy mode. The cross section of »
the process 022 is related to the amplitude as follows o

2
h (T(“))z(s, u?), a=0,1,00.

a —
922 = T6,(z — c) M3

We are going to discuss the difference between the amplitudes

TN (s, p?)
and ,
. T()(s, %)
in the range of energies given by N
m? s .
1%

—<2<1, =z

M? Tz

However, there are two points that make the results of this analysis less instructive:

1. the valueof the coupling constant is arbitrary;

2. in the range (7) the contribution of the light mode ‘Ao(s, p?) is almost
~ constant and is much bigger than the contributions of other modes:

|A0(s) ”2)/A(1,'0)(3) 1‘2)| > 1

and

lAo(s, %)/ Y Aa(s, i)l > 1.
If121

In order to avoid these difficulties we compute the diensionless functions

8
Kl(m) = 4MEA o5, H7) s

§
Koo(m'g)_: MZ Y Aals,w?) -

17121

The quantity, which characterizes the relative difference between the full Kaluza-
Klein theory and the 2-model with the light mode and the first heavy mode, can be

defined as follows
Ki(z) — Ko(2)

n(z) = A6

For Mc/m =100 and m/p = 10 we get .

n(0.25) = 0.16 , n(0.5) = 0.14 , n(0.75) = 0.10 .. ©(8)
It is not illustrative to calculate K1, Koo near the points z = c and z = 1, since
these functions have poles at these values of z, that is an artefact of the models in

two-dimensional space-time. The curves K (z) and Koo (2) for the same values of
M€, m and p are presented in Fig.1. :
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Fig.1 Plots of functions K (z) (curve 1) and Koo (2) (curve 2): K1(2)
for the 2-model with the first heavy mode and K., (z) for the full theory
with infinite tower of Kaluza-Klein modes

From (8) and from the plots one can see that the functions K (2) and Koo(2) -
differ considerably in the region 0.2 < z < 0.7. Although the amplitudes depend on
the ratios Mc/m and m/u actually the numerical results are practically independent
of these parameters for Mc/m > 20 and m/u > 10. '

We would like to note that if one compared the full theory with the 2-model with
only one heavy mode (without taking into account the multiplicity) there would be
more difference between these theories.

This illustrates the way in which one can distinguish in principle between the
full Kaluza-Klein theory and the model with first two modes and make a conclusion
in favour or against the Kaluza-Klein idea from experimental observations.
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