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Abstract

A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested.
Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered.
The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define
consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with
friction (generalized Lorenz–Rossler–Leipnik–Newton equation), the Fokker–Planck-type system and Lorenz-type system are
considered. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The quantization of dissipative and non-Hamiltoni-
an classical systems is of strong theoretical interest.
As a rule, any microscopic system is always embed-
ded in some (macroscopic) environment and there-
fore it is never really isolated. Frequently, the relevant
environment is in principle unobservable or it is un-
known [1–4]. This would render theory of dissipative
and non-Hamiltonian systems a fundamental general-
ization of quantum mechanics [5].

We can divide the most frequent methods of quan-
tization of dissipative and non-Hamiltonian systems
into two groups. The first method uses a procedure of
doubling of phase-space dimension [6–8]. The second
method consists in using an explicitly time-dependent
Hamiltonian [9–16].
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Bateman has shown [6] that in order to use the usual
canonical quantization methods a procedure of dou-
bling of phase-space dimension is required. To apply
the usual canonical quantization scheme to dissipa-
tive and non-Hamiltonian systems, one can double the
numbers of degrees of freedom, so as to deal with an
effective isolated system. The new degrees of freedom
may be assumed to represent by collective degrees of
freedom of the bath with absorb the energy dissipated
by the dissipative system [7,8].

Cardirola [9] and Kanai [10] have shown that it may
be possible to put the equation of motion for dissipa-
tive system into time-dependent Hamiltonian form and
then quantize them in the usual way [9–16]. However,
the corresponding canonical commutation relations vi-
olate the uncertainty principle [14]. The reason for this
violation would appear from the explicit dependence
of Hamiltonian and momentum on the time.

To construct a quantization of dissipative and non-
Hamiltonian systems consistently, it is possible to ex-
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ceed the limits of Lie algebras and groups. The con-
dition of self-consistency for a quantization of dissi-
pative systems requires the application of commutant
Lie (Valya) algebra [17,18]. Unfortunately, these al-
gebra and its representation have not been thoroughly
studied.

Note [16,19] that Feynman wanted to develop a pro-
cedure to quantize classical equation of motion with-
out resort to a Hamiltonian. It is interesting to quantize
a classical system without direct reference to a Hamil-
tonian. A general classical system is most easily de-
fined in terms of its equations of motion. In general
case it is difficult to determine whether a Hamiltonian
exists, whether it is unique if it does exist, and what
its form is if it exists and is unique [20,21]. Therefore,
quantization that bypasses direct reference to a Pois-
son bracket with some Hamiltonian may have practi-
cal advantages.

Canonical quantization defines a map of real func-
tions into self-adjoint operators [22,24]. A classical
observable is described by some real functionA(q,p)

from a function spaceM. Quantization of this func-
tion leads to self-adjoint operator̂A(q̂, p̂) from some
operator spaceM̂. Classical state can be described
by non-negative-normed functionρ(q,p) called den-
sity distribution function. Quantization of a function
ρ(q,p) leads to non-negative self-adjoint operatorρ̂

of trace class called matrix density operator. This de-
scription allows to consider a state as a special observ-
able.

Time evolution of an observableAt(q,p) and a
stateρt (q,p) in classical mechanics are described by
differential equations on a function spaceM:

d

dt
At (q,p) = LAt (q,p),

d

dt
ρt (q,p) = Λρt (q,p).

The operatorsL andΛ, which act on the elements of
function spaceM, define dynamics. These operators
are infinitesimal generators of dynamical semigroups
and are called dynamical operators. The first equation
describes evolution of an observable in the Hamilton
picture, and the second equation describes evolution
of a state in the Liouville picture.

Dynamics of an observablêAt(q̂, p̂) and a statêρt

in quantum mechanics are described by differential

equations on an operator spacêM:

d

dt
Ât (q̂, p̂) = L̂Ât (q̂, p̂),

d

dt
ρ̂t = Λ̂ρ̂t .

HereL̂ andΛ̂ are superoperators, i.e., operators act on
the elements of operator spacêM. These superopera-
tors are infinitesimal generators of quantum dynami-
cal semigroups [26–28]. The first equation describes
dynamics in the Heisenberg picture, and the second in
the Schrödinger picture.

It is easy to see that quantization of the dynamical
operatorsL andΛ leads to dynamical superoperators
L̂ andΛ̂. Therefore, generalization of canonical quan-
tization must map operators into superoperators.

The usual method of quantization is applied to clas-
sical systems, where the dynamical operators have the
formsLA(q,p) = {A(q,p),H(q,p)} and Λρ(q,p)

= −{ρ(q,p),H(q,p)}. Here the functionH(q,p) is
an observable which characterizes dynamics and is
called the Hamilton function. Quantization of a dy-
namical operator which can be represented as Pois-
son bracket with a function is defined by the usual
canonical quantization. Quantization of real functions
A(q,p) and H(q,p) usually leads to self-adjoint
operatorsÂ(q̂, p̂) and Ĥ (q̂, p̂). Quantization of the
Poisson bracket{A(q,p),H(q,p)} usually defines
as commutator(i/h̄)[Ĥ (q̂, p̂), Â(q̂, p̂)]. Therefore,
quantization of these dynamical operators is uniquely
defined by the usual canonical quantization.

Quantization of a dissipative and non-Hamiltonian
classical system by using Hamiltonian meets ambigui-
ties which follow from the problems of variational de-
scription of these systems [20,21]. Quantization of dis-
sipative and non-Hamiltonian systems is not defined
by the usual canonical quantization. Therefore, it is
necessary to consider some generalization of canon-
ical quantization. A generalized procedure must de-
fine a map of operator into superoperator [29,32]. The
usual canonical quantization of observables must be
derived as a specific case of generalized quantiza-
tion for quantization of operator of multiplication on
a function.

In this Letter Weyl quantization of dissipative and
non-Hamiltonian classical systems is considered. Gen-
eralization of canonical Weyl quantization, which
maps an evolution equation on a function space into an
evolution equation on an operator space, is suggested.
An analysis of generalized Weyl quantization is per-
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formed for operator, which cannot be represented as
the Poisson bracket with some Hamilton function.

2. Canonical Weyl quantization

Let us consider main points of the usual method of
canonical quantization [22,23,30,31]. Letqk be canon-
ical coordinates andpk be canonical momentums,
wherek = 1, . . . , n. The basis of the spaceM of func-
tionsA(q,p) is defined by functions

(1)W(a,b, q,p) = e(i/h̄)(aq+bp), aq =
n∑

k=1

akqk.

Quantization transforms coordinatesqk and momen-
tumspk to operatorŝqk andp̂k . Weyl quantization of
the basis functions (1) leads to the Weyl operators

(2)Ŵ (a, b, q̂, p̂) = e(i/h̄)(aq̂+bp̂), aq̂ =
n∑

k=1

akq̂k.

Operators (2) form a basis of the operator spaceM̂.
Classical observable, characterized by the function
A(q,p), can be represented in the form

A(q,p) = 1

(2πh̄)n

∫
Ã(a, b)W(a, b, q,p) dna dnb,

(3)

where Ã(a, b) is the Fourier image of the function
A(q,p). Quantum observablêA(q̂, p̂) which corre-
sponds toA(q,p) is defined by formula

Â(q̂, p̂) = 1

(2πh̄)n

∫
Ã(a, b)Ŵ(a, b, q̂, p̂) dna dnb.

(4)

This formula can be considered as an operator expan-
sion for Â(q̂, p̂) in the operator basis (2). The direct
and inverse Fourier transformations allow to write the
formula (4) for the operator̂A(q̂, p̂) as

Â(q̂, p̂) = 1

(2πh̄)2n

∫
A(q,p)

× Ŵ
(
a, b, q̂ − qÎ , p̂ − pÎ

)
(5)× dna dnb dnq dnp.

The functionA(q,p) is called the Weyl symbol of
the operatorÂ(q̂, p̂). Canonical quantization defined

by (5) is called the Weyl quantization. The Weyl op-
erator (2) in formula (14) leads to Weyl quantization.
Another basis operator leads to different quantization
scheme [23].

The correspondence between operators and sym-
bols completely is defined by formulas which ex-
press symbols of operatorsq̂kÂ, Âq̂k, p̂kÂ, Âp̂k (k =
1, . . . , n) through operator symbol̂A. Weyl quantiza-
tion πW can be defined by formulas

(6)πW

((
qk + ih̄

2

∂

∂pk

)
A(q,p)

)
= q̂kÂ,

(7)πW

((
qk − ih̄

2

∂

∂pk

)
A(q,p)

)
= Âq̂k,

(8)πW

((
pk − ih̄

2

∂

∂qk

)
A(q,p)

)
= p̂kÂ,

(9)πW

((
pk + ih̄

2

∂

∂qk

)
A(q,p)

)
= Âp̂k,

for all Â = πW (A(q,p)). Proof of these formulas is
contained in [25]. We obviously have

(10)πW

(
∂

∂qk

A(q,p)

)
= − 1

ih̄

(
p̂kÂ − Âp̂k

)
,

(11)πW

(
∂

∂pk

A(q,p)

)
= 1

ih̄

(
q̂kÂ − Âq̂k

)
,

(12)πW

(
qkA(q,p)

) = 1

2

(
q̂kÂ + Âq̂k

)
,

(13)πW

(
pkA(q,p)

) = 1

2

(
p̂kÂ + Âp̂k

)
.

Algebraic structures can be defined on the set of
observables. Lie algebra, Jordan algebra andC∗-alge-
bra are usually considered on the spacesM andM̂.

Lie algebraL(M) on the setM is defined by
Poisson bracket{
A(q,p),B(q,p)

}

=
n∑

k=1

(
∂A(q,p)

∂qk

∂B(q,p)

∂pk

− ∂A(q,p)

∂pk

∂B(q,p)

∂qk

)
.

(14)

Quantization of the Poisson bracket usually defines as
self-adjoint commutator

1

ih̄

[
Â(q̂, p̂), B̂(q̂, p̂)

]

(15)= 1

ih̄

(
Â(q̂, p̂)B̂(q̂, p̂) − B̂(q̂, p̂)Â(q̂, p̂)

)
.
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The commutator defines Lie algebraL̂(M̂) on the set
M̂. Leibnitz rule is satisfied for the Poisson brackets.
As a result, the Poisson brackets are defined by
basis Poisson brackets for canonical coordinates and
momentums

{qk, qm} = 0, {pk,pm} = 0, {qk,pm} = δkm.

Quantization of these relations leads to the canonical
commutation relations
[
q̂k, q̂m

] = 0,
[
p̂k, p̂m

] = 0,

(16)
[
q̂k, p̂m

] = ih̄δkmÎ .

These relations define(2n+1)-parametric Lie algebra
L̂(M̂), called Heisenberg algebra.

Jordan algebraJ (M) for the setM is defined
by the multiplicationA ◦ B which coincides with
the usual associative multiplication of functions. Weyl
quantization of the Jordan algebraJ (M) leads to the
operator special Jordan algebraĴ (M̂) with multipli-
cation

[
Â, B̂

]
+ = Â ◦ B̂ = 1

4

[(
Â + B̂

)2 − (
Â − B̂

)2]
.

Jordan algebra for classical observables is associative
algebra, that is, all associators are equal to zero:

(A ◦ B) ◦ C − A ◦ (B ◦ C) = 0.

In general case Jordan algebra associator for quantum
observables is not equal to zero:

(17)
(
Â ◦ B̂

) ◦ Ĉ − Â ◦ (
B̂ ◦ Ĉ

) = 1

4

[
B̂,

[
Ĉ, Â

]]
.

This non-associativity of the operator Jordan algebra
Ĵ (M̂) leads to the ambiguity of canonical quantiza-
tion. The arbitrariness is connected with ordering of
non-commutative operators.

C∗-algebra can be defined on the set of quantum ob-
servables described by the bounded linear operators.
In general case an operator which is a result of associa-
tive multiplication of the self-adjoint operators is not
self-adjoint operator. Therefore, quantization of multi-
plication of classical observables does not lead to mul-
tiplication of the correspondent quantum observables.
Universal enveloping algebrâU(L̂) for the Lie alge-
bra L̂(M̂) which is generated by commutation rela-
tions (16) usually is considered as associative algebra
[30,31].

Let us consider a classical dynamical system de-
fined by Hamilton functionH(q,p). Usually the
quantization procedure is applied to classical systems
with dynamical operator

L= −{
H(q,p), .

}

(18)= −
n∑

k=1

(
∂H(q,p)

∂qk

∂

∂pk

− ∂H(q,p)

∂pk

∂

∂qk

)
.

HereH(q,p) is an observable which defines dynam-
ics of a classical system. The observableH(q,p) is
called the Hamilton function. The time evolution of a
classical observable is described by

(19)
d

dt
At (q,p) = {

At(q,p),H(q,p)
}
.

If the dynamical operator has form (18), then sys-
tem is Hamiltonian system. Weyl quantization of the
functions At(q,p) and H(q,p) leads to operators
Ât (q̂, p̂) andĤ (q̂, p̂). Usually a quantization of Pois-
son bracket{At(q,p),H(q,p)} defines as(i/h̄) ×
[Ĥ (q̂, p̂), Ât (q̂, p̂)]. Finally, canonical quantization
of Eq. (19) leads to the Heisenberg equation

d

dt
Ât (q̂, p̂) = i

h̄

[
Ĥ (q̂, p̂), Ât (q̂, p̂)

]
.

Therefore, canonical quantization of dynamical oper-
ator (18) defines as superoperator

(20)L̂= i

h̄

[
Ĥ (q̂, p̂), .

] = i

h̄

(
Ĥ l(q̂, p̂) − Ĥ r(q̂, p̂)

)
.

Here left and right superoperatorsĤ l(q̂, p̂) andĤ r(q̂,

p̂) correspond to Hamilton operator̂H(q̂, p̂). These
superoperators are defined by formulas

Ĥ lÂ = Ĥ Â, Ĥ rÂ = ÂĤ .

Note that a result of Weyl quantization (10)–(13) for
the Poisson bracket{A(q,p),B(q,p)} in general case
is not a commutator(−i/h̄)[Â(q̂, p̂), B̂(q̂, p̂)].

Quantization of dynamical operator, which can be
represented as Poisson bracket with a function, is de-
fined by canonical quantization. Therefore, quantiza-
tion of Hamiltonian systems can be completely de-
fined by the usual method of quantization.

3. General dynamical system

Let us consider the time evolution of classical ob-
servableAt(q,p), described by the general differen-
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tial equation

d

dt
At (q,p) = L(q,p, ∂q , ∂p)At(q,p),

where

∂q = ∂

∂q
, ∂p = ∂

∂p
.

Here L(q,p, ∂q , ∂p) is an operator on the function
spaceM. In general case this operator cannot be ex-
pressed by Poisson bracket with a functionH(q,p).
We would like to generalize the quantization proce-
dure from the dynamical operators (18) to general op-
eratorsL(q,p, ∂q , ∂p). In order to describe general-
ized quantization we must define a general operator
L(q,p, ∂q, ∂p) using some operator basis. For sim-
plicity, we assume that operatorL(q,p, ∂q, ∂p) is a
bounded operator.

Let us define the basis operators which generate
the dynamical operatorL = L(q,p, ∂q, ∂p). Opera-
tors Qk

1 and Qk
2 are operators of multiplication on

qk andpk . OperatorP k
1 andP k

2 are self-adjoint dif-
ferential operator with respect toqk and pk , that is,
P k

1 = −i∂/∂qk and P k
2 = −i∂/∂pk . These operators

obey the conditions:

1. Qk
11 = qk, Qk

21 = pk andP k
1 1= 0, P k

2 1 = 0.
2. (Qk

1,2)∗ = Qk
1,2, (P k

1,2)∗ = P k
1,2.

3. P k
1,2(A ◦ B) = (P k

1,2A) ◦ B + A ◦ (P k
1,2B).

4. [Qk
1,2,P m

1,2] = iδkm, [Qk
1,2,P m

2,1] = 0.

5. [Qk
1,2,Qm

1,2] = 0, [P k
1,2,P m

1,2] = 0.

Conjugation operation is defined with respect to the
usual scalar product of function space. Commuta-
tion relations for the operatorsP k

1,2 and Qk
1,2 define

(4n + 1)-parametric Lie algebra. These relations are
analogous to canonical commutation relations (16) for
q̂k andp̂k with double numbers of degrees of freedom.

OperatorsQk
1,2 andP k

1,2 allow to introduce operator
basis

V (a1, a2, b1, b2,Q1,Q2,P1,P2)

(21)= exp
{
i(a1Q1 + a2Q2 + b1P1 + b2P2)

}
,

for the spaceA(M) of dynamical operators. These ba-
sis operators are analogous to the Weyl operators (2).
Note that basis functions (1) can be derived from op-
erators (21) by the formula

W(a,b, q,p)

= V
(
(a/h̄), (b/h̄),0,0,Q1,Q2,P1,P2

)
1.

The algebraA(M) of bounded dynamical operators
can be defined asC∗-algebra, generated byQk

1,2 and

P k
1,2. It contains all operators (21) and is closed for

linear combinations of (21) in operator norm topology.
A dynamical operatorL can be defined as an operator
function of basis operatorsQk

1,2 andP k
1,2:

L(Q1,Q2,P1,P2) = 1

(2π)2n

∫
L̃(a1, a2, b1, b2)

× ei(a1Q1+a2Q2+b1P1+b2P2) dna1 dna2 dnb1 dnb2,

(22)

where L̃(a1, a2, b1, b2) is square-integrable function
of real variablesa1,2 andb1,2. The functionL̃(a1, a2,

b1, b2) is Fourier image of the symbol of operator
L = L(q,p, ∂q , ∂p). The set of bounded operators
L(Q1,Q2,P1,P2) and their uniformly limits forms
the algebraA(M) of dynamical operators.

4. Weyl quantization of basis operators

To define a quantization of dynamical operatorL
we need to describe quantization of the operatorsQk

andP k . Let us require that the superoperatorsQ̂k and
P̂ k satisfy the relations which are the quantum analogs
to the relations for the operatorsQk andP k :

1. Q̂k
1Î = q̂k , Q̂k

2Î = p̂k , andP̂ k
1,2Î = 0.

2. (Q̂k
1,2)∗ = Q̂k

1,2, (P̂ k
1,2)∗ = P̂ k

1,2.

3. P̂ k
1,2(Â ◦ B̂) = (P̂ k

1,2Â) ◦ B̂ + Â ◦ (P̂ k
1,2B̂).

4. [Q̂k
1,2, P̂ m

1,2] = iδkmÎ , [Q̂k
1,2, P̂ m

2,1] = 0.

5. [Q̂k
1,2, Q̂m

1,2] = 0, [P̂ k
1,2, P̂ m

1,2] = 0.

Superoperator̂L is called self-adjoint, if the relation
〈L̂Â|B̂〉 = 〈Â|L̂B̂〉 is satisfied. The scalar product
〈Â|B̂〉 on the operator spaceM is defined by〈Â|B̂〉 ≡
Sp[Â∗B̂]. An operator space with this scalar product
is called Liouville space [30,31].

To quantize the operatorP k
1,2 we use the relations

P k
1 A(q,p) = −i

∂

∂qk

A(q,p) = i
{
pk,A(q,p)

}
,

P k
2 A(q,p) = −i

∂

∂pk
A(q,p) = −i

{
qk,A(q,p)

}
.



178 V.E. Tarasov / Physics Letters A 288 (2001) 173–182

Weyl quantization (10), (11) of these expressions
leads to

P̂ k
1 Â(q̂, p̂) = 1

h̄

[
p̂k, Â(q̂, p̂)

]
,

P̂ k
2 Â(q̂, p̂) = −1

h̄

[
q̂k, Â(q̂, p̂)

]
.

As a result, we obtain

(23)P̂ k
1 = 1

h̄

[
p̂k, .

] = 1

h̄

(
p̂l

k − p̂r
k

)
,

(24)P̂ k
2 = −1

h̄

[
q̂k, .

] = −1

h̄

(
q̂ l

k − q̂r
k

)
.

Here we use superoperatorsq̂ l
k , q̂r

k andp̂l
k , p̂r

k which
satisfy the non-zero commutation relations[
q̂ l

k, p̂l
m

] = ih̄δkmÎ ,
[
q̂r

k , p̂r
m

] = −ih̄δkmÎ .

These relations follow from canonical commutation
relations (16).

To quantize the operatorQk
1,2 we use formulas (12),

(13). It is known [24,25] that Weyl quantization (12),
(13) of the expressionsqk ◦ A(q,p) andpk ◦ A(q,p)

leads toq̂k ◦ Â(q̂, p̂) and p̂k ◦ Â(q̂, p̂). Therefore,
Weyl quantization of the operatorsQk

1,2 leads to
superoperators

(25)Q̂k
1 = [

q̂k, .
]
+ = 1

2

(
q̂ l

k + q̂r
k

)
,

(26)Q̂k
2 = [

p̂k, .
]
+ = 1

2

(
p̂l

k + p̂r
k

)
,

whereQ̂k
1Â = q̂k ◦ Â andQ̂k

2Â = p̂k ◦ Â.
If the Weyl quantization for observables is con-

sidered then we must consider the Weyl quantiza-
tion for dynamical operators. The Weyl quantization
leads only to this form (25), (26) of superoperators
Q̂k

1,2. The other quantization of the observables [23,

24] leads to other form of the superoperatorsQ̂k
1,2.

Weyl quantization of the basis operators (21) leads
to the basis superoperators

V̂
(
a1, a2, b1, b2, Q̂1, Q̂2, P̂1, P̂2

)
(27)= exp

{
i
(
a1Q̂ + a2Q̂2 + b1P̂1 + b2P̂2

)}
.

5. Weyl quantization of operator function

Let us consider the dynamical operatorL as a func-
tion of the basis operatorsQk

1,2 andP k
1,2. Generalized

Weyl quantization can defined as a map from dynam-
ical operator spaceA(M) to dynamical superoperator
spaceÂ(M̂). This quantization of the operator

L(Q1,Q2,P1,P2) = 1

(2π)2n

∫
L̃(a1, a2, b1, b2)

× ei(a1Q1+a2Q2+b1P1+b2P2) dna1 dna2 dnb1 dnb2

leads to the corresponding superoperator

L̂
(
Q̂1, Q̂2, P̂1, P̂2

) = 1

(2π)2n

∫
L̃(a1, a2, b1, b2)

× ei(a1Q̂1+a2Q̂2+b1P̂1+b2P̂2) dna1 dna2 dnb1 dnb2.

(28)

If the function L̃(a1, a2, b1, b2) is connected with
Fourier imageÃ(a1, a2) of the functionA(q,p) by the
relation

L̃(a1, a2, b1, b2) = (2π)nδ(b1)δ(b2)Ã(a1, a2),

then formula (28) defines the Weyl quantization of the
function A(q,p) = L(Q1,Q2,P1,P2)1 by the rela-
tion

Â(q̂, p̂) = L̂
(
Q̂1, Q̂2, P̂1, P̂2

)
Î .

Here we useQ̂k
1Î = q̂k andQ̂k

2Î = p̂k . Therefore the
usual Weyl quantization is a specific case of suggested
quantization procedure.

SuperoperatorŝQk
1,2 andP̂ k

1,2 can be represented by

q̂ l
k, q̂r

k andp̂l
k , p̂r

k . Formula (28) is written in the form

L̂
(
q̂ l, q̂r , p̂l , p̂r

) = 1

(2π)2n

∫
L(a1, a2, b1, b2)

× Wl
(
a1, a2, q̂, p̂

)
Wr

(
b1, b2, q̂, p̂

)
× dna1 dna2 dnb1 dnb2.

Here Wl(a, b, q̂, p̂) and Wl(a, b, q̂, p̂) are left and
right superoperators corresponding to the Weyl opera-
tor (2). These superoperators can be defined by

Wl(a, b, q̂, p̂) = W
(
a, b, q̂l, p̂l

)
,

Wr(a, b, q̂, p̂) = W
(
a, b, q̂r, p̂r

)
.

We can derive [29] a relation which represents the
superoperator̂L by operatorL. Let us write the analog
of relation (5) between an operatorÂ and a functionA.
To simplify formulas, we introduce new notations. Let
Xs , wheres = 1, . . . ,4n, denote the operatorsQk

1,2
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andP k
1,2, wherek = 1, . . . , n, that is,

X2k−1 = qk, X2k = pk,

X2k−1+2n = −i
∂

∂qk

, X2k+2n = −i
∂

∂pk

.

Let us denote the parametersak
1,2 andbk

1,2, wherek =
1, . . . , n, by zs , wheres = 1, . . . ,4n. Then formula
(22) can be rewritten by

L = 1

(2π)2n

∫
L(z)eizX d4nz.

Formula (28) for the superoperatorL̂ is written in the
form

L̂ = 1

(2π)2n

∫
L(z)eizX̂ d4nz.

The result relation [29] which represents the superop-
eratorL̂ by operatorL can be written in the form

L̂= 1

(2π)4n

∫
e−iα(z+z′)eizX̂

(29)× Sp
[
Leiz′X]

d4nz d4nα d4nz′.

6. Oscillator with friction

Let us considern-dimensional oscillator with fric-
tion F k

fric = −αkmpm −βkmspmps . The time evolution
equation for this oscillator has the form

d

dt
qk = 1

m
pk,

(30)
d

dt
pk = −(

mω2qk + αkmpm + βkmspmps

)
,

wherek,m, s = 1, . . . , n. If n = 3,ω = 0 and non-zero
coefficients are

α11 = 10, α12 = −10, α21 = −28,

α22 = 1, α33 = 8/3,

β213= β231= 0.5, β312= β321= −0.5,

then we have the Lorenz system [33] with respect to
x = p1, y = p2 andz = p3. If non-zero coefficients
are

α12 = α13 = 1, α21 = −1,

α22 = α31 = −0.2, α33 = 5.7,

β313= β331= −0.5,

then we obtain the Rossler system [34]. For the case

α11 = 0.4, α12 = −1, α21 = 1,

α22 = 0.4, α33 = −α = −0.175,

β123= β132= −5, β213= β231= −2.5,

β312= β321= 2.5,

we have the Leipnik–Newton system [35].
The dynamical equation for the classical observable

At(q,p) is written

d

dt
At (q,p) = L(q,p, ∂q, ∂p)At(q,p).

Differentiation of the functionAt(q,p) and Eqs. (30)
give

dAt(q,p)

dt
= 1

m
pk

∂At(q,p)

∂qk

− mω2qk
∂At(q,p)

∂pk

(31)− (αkmpm + βkmspmps)
∂At(q,p)

∂pk

.

Dynamical operatorL(q,p, ∂q, ∂p) for system (30)
has the form

L(q,p, ∂q, ∂p) = 1

m
pk

∂

∂qk

− mω2qk
∂

∂pk

(32)− (αkmpm + βkmspmps)
∂

∂pk

.

This operator can be rewritten in the form

L(Q1,Q2,P1,P2) = i

m
Qk

2P k
1 − imω2Qk

1P k
2

(33)− i
(
αkmQm

2 + βkmsQ
m
2 Qs

2

)
P k

2 .

If we consider the Weyl quantization for observables
A(q,p) then we must consider the Weyl quantization
for dynamical operatorsL(q,p, ∂q, ∂p). The Weyl
quantization of operator (33) leads to superoperator

L̂
(
Q̂1, Q̂2, P̂1, P̂2

) = i

m
Q̂k

2P̂ k
1 − imω2Q̂k

1P̂ k
2

− i
(
αkmQ̂m

2 + βkmsQ̂
m
2 Q̂s

2

)
P̂ k

2 .

Let us use definitions (23), (25) of the operatorsP̂1,2

andQ̂1,2. The time evolution equation for a quantum
observableÂ takes the form

d

dt
Ât = i

h̄

[
Ĥ , Ât

] + i

h̄
akmp̂m ◦ [

q̂k, Ât

]

(34)+ i

h̄
bkmsp̂m ◦ (

p̂s ◦ [
q̂k, Ât

])
.
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HereÂ ◦ B̂ = (1/2)(ÂB̂ + B̂Â) and

Ĥ = p̂2

2m
+ mω2q̂2

2
.

Eq. (34) describes [32,36] quantum analogous of the
generalized Lorenz–Rossler–Leipnik–Newton equa-
tion (31).

Note that Weyl quantization ofpmps{pk,At(q,p)}
does not lead to the term(−i/h̄)(p̂m ◦ p̂s)◦ [p̂k, Ât ]. It
gives the termp̂m ◦ (p̂s ◦ [q̂k, Ât ]) and in general case

p̂m ◦ (
p̂s ◦ [

q̂k, Â
]) − (

p̂m ◦ p̂s

) ◦ [
q̂k, Â

]
= 1

4

[
p̂s ,

[
p̂m,

[
q̂k, Â

]]]
.

7. Fokker–Planck-type system

Let us consider Liouville operatorΛ, which acts on
the normed distribution density functionρ(q,p, t) and
has the form of second-order differential operator

Λ = dqq
∂2

∂q2 + 2dqp
∂2

∂q∂p
+ dpp

∂2

∂p2

+ cqqq
∂

∂q
+ cqpq

∂

∂p
+ cpqp

∂

∂q

(35)+ cppp
∂

∂p
+ h.

Liouville equation

dρ(q,p, t)

dt
= Λρ(q,p, t)

with operator (35) is Fokker–Planck-type equation.
Weyl quantization of the Liouville operator (35) leads
to completely dissipative superoperatorΛ̂, which acts
on the matrix density operator

Λ̂ = − i

h̄

(
Ĥ l − Ĥ r

)

+ 1

2h̄

∑
j=1,2

((
V̂ l

j − V̂ r
j

)
V̂ ∗r

j − (
V̂ ∗l

j − V̂ ∗r
j

)
V̂ ∗l

j

)
.

As the result we have the Markovian master equation
[28,30,37]

dρ̂t

dt
= − i

h̄

[
Ĥ , ρ̂t

]

(36)+ 1

2h̄

∑
j=1,2

([
V̂j ρ̂t , V̂ ∗

j

] + [
V̂j , ρ̂t V̂

∗
j

])
.

HereĤ is Hamilton operator, which has the form

Ĥ = Ĥ1 + Ĥ2,

Ĥ1 = 1

2m
p̂2 + mω2

2
q̂2, Ĥ2 = µ

2
(p̂q̂ + q̂p̂),

where

m = − 1

cpq

, ω2 = −cqpcpq,

λ = 1

2
(cpp + cqq), µ = 1

2
(cpp − cqq).

OperatorsV̂j in (36) can be written in the form̂Vk =
aj p̂ + bj q̂ , wherej = 1,2, and complex numbersaj ,
bj satisfy the relations

dqq = h̄

2

∑
j=1,2

|aj |2, dpp = h̄

2

∑
j=1,2

|bj |2,

dqp = − h̄

2
Re

( ∑
j=1,2

a∗
j bj

)
,

λ = − Im

( ∑
j=1,2

a∗
j bj

)
.

If h = −2(cpp + cqq), then quantum Markovian equa-
tion (36) becomes [37]

dρ̂t

dt
= − i

h̄

[
Ĥ1, ρ̂t

]

+ i(λ − µ)

h̄

[
p̂, q̂ ◦ ρ̂t

] − i(λ + µ)

h̄

[
q̂, p̂ ◦ ρ̂t

]

− dpp

h̄2

[
q̂,

[
q̂, ρ̂t

]] − dqq

h̄2

[
p̂,

[
p̂, ρ̂t

]]

+ 2dpq

h̄2

[
p̂,

[
q̂, ρ̂t

]]
.

Heredpp, dqq , dpq are quantum diffusion coefficients
andλ is a friction constant.

8. Lorenz-type system

Let us consider the evolution of a classical observ-
ableAt(q,p) for the Lorenz-type system [32,36]:

d

dt
At (q,p) = −σ(q1 − p1)

∂At(q,p)

∂q1

+ σp2
∂At(q,p)

∂q2
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+ (rq1 − p1 − q1p2)
∂At(q,p)

∂p1

(37)− (bp2 − q1p1)
∂At(q,p)

∂p2
.

This equation for observablesx = q1, y = p1 and
z = p2 describes the classical Lorenz model [33,38]:

dxt

dt
= −σxt + σyt ,

dyt

dt
= rxt − yt − xtzt ,

dzt

dt
= −bzt + xtyt .

The Lorenz model [33] is one of the most famous
classical dissipative systems. This system is described
by nonlinear differential equations without stochastic
terms, but the system demonstrates chaotic behaviour
and has strange attractor forσ = 10, r = 28, b = 8/3
(see [33,38]).

The Weyl dynamical quantization of the Lorenz-
type equation leads to the quantum Lorenz-type equa-
tion

d

dt
Ât = i

h̄

[
σ(p̂2

1 + p̂2
2)

2
− rq̂2

1

2
, Ât

]

− iσ

h̄
q̂1 ◦ [

p̂1, Ât

]

+ i

h̄
p̂1 ◦ [

q̂1, Ât

] + i

h̄
bp̂2 ◦ [

q̂2, Ât

]

+ i

h̄
q̂1 ◦ (

p̂2 ◦ [
q̂1, Ât

])

− i

h̄
q̂1 ◦ (

p̂1 ◦ [
q̂2, Ât

])
.

Note that Weyl quantization of the termqkpl{A(q,p),

qm} leads to the term(i/h̄)q̂k ◦ (p̂l ◦ [q̂m, Â]), which is
equal to(i/h̄)p̂l ◦ (q̂k ◦ [q̂m, Â]). Using relation (17),
we can see that these terms are not equal to(i/h̄) ×
(q̂k ◦ p̂l) ◦ [q̂m, Â].

9. Conclusions

Quantization of a dynamical operator which is rep-
resented by Poisson bracket with the Hamilton func-
tion, can be defined by the usual canonical quanti-
zation. Quantization of a general dynamical opera-
tor for non-Hamiltonian system cannot be described

by usual canonical quantization procedure. We sug-
gest the quantization scheme which allows to derive
quantum analog for the classical non-Hamiltonian sys-
tems. Relations (28) and (29) map the operatorL(q,p,

∂q, ∂p) which acts on the functionsA(q,p) to the su-
peroperatorL̂, which acts on the elementŝA(q̂, p̂)

of operator space. If the operatorL is an operator
of multiplication on the functionA(q,p) = L1, then
formula (29) defines the usual Weyl quantization of
the functionA(q,p) by the relationÂ = L̂Î . There-
fore, the usual Weyl quantization of observables is
a specific case of suggested generalization of Weyl
quantization. The suggested approach allows to derive
quantum analogs of chaotic dissipative systems with
strange attractors [32,36].
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