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Abstract

A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested.
Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered.
The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define
consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with
friction (generalized Lorenz—Rossler—Leipnik—Newton equation), the Fokker—Planck-type system and Lorenz-type system are
consideredd 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction Bateman has shown [6] that in order to use the usual
canonical quantization methods a procedure of dou-

The quantization of dissipative and non-Hamiltoni- Pling of phase-space dimension is required. To apply
an classical systems is of strong theoretical interest. e usual canonical quantization scheme to dissipa-
As a rule, any microscopic system is always embed- tive and non-Hamiltonian systems, one can double the
ded in some (macroscopic) environment and there- numb_ers_of degrees of freedom, so as to deal with an
fore it is never really isolated. Frequently, the relevant effective isolated system. The new degrees of freedom
environment is in principle unobservable or it is un- May be assumed to represent by collective degrees of
known [1—4]. This would render theory of dissipative freedom of_the_ bath with absorb the energy dissipated
and non-Hamiltonian systems a fundamental general- Py the dissipative system [7,8]. _
ization of quantum mechanics [5]. Cardirola [9] and Kanai [10] have shown that it may

We can divide the most frequent methods of quan- P€ Possible to put the equation of motion for dissipa-
tization of dissipative and non-Hamiltonian systems (Ve System into time-dependent Hamiltonian form and
into two groups. The first method uses a procedure of then quantize them in the usual way [9-16]. However,
doubling of phase-space dimension [6-8]. The second the corresponding canonical commutation relations vi-

method consists in using an explicitly ime-dependent olate the uncertainty principle [14]. The reason for this
Hamiltonian [9-16]. violation would appear from the explicit dependence

of Hamiltonian and momentum on the time.
To construct a quantization of dissipative and non-
E-mail address: tarasov@theory.sinp.msu.ru (V.E. Tarasov). Hamiltonian systems consistently, it is possible to ex-
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ceed the limits of Lie algebras and groups. The con- equations on an operator spazﬁe
dition of self-consistency for a quantization of dissi- A . d
pative systems requires the application of commutant — A,(g, p) = LA;(q, p), — 0=
Lie (Valya) algebra [17,18]. Unfortunately, these al- A dt
gebra and its representation have not been thoroughlyHere£ and A are superoperators, i.e., operators act on
studied. the elements of operator spa&k. These superopera-
Note [16,19] that Feynman wanted to develop a pro- tors are infinitesimal generators of quantum dynami-
cedure to quantize classical equation of motion with- cal semigroups [26—28]. The first equation describes
out resort to a Hamiltonian. It is interesting to quantize dynamics in the Heisenberg picture, and the second in
a classical system without direct reference to a Hamil- the Schrédinger picture.
tonian. A general classical system is most easily de- It is easy to see that quantization of the dynamical
fined in terms of its equations of motion. In general operatorsC and A leads to dynamical superoperators
case it is difficult to determine whether a Hamiltonian £ andA. Therefore, generalization of canonical quan-
exists, whether it is unique if it does exist, and what tization must map operators into superoperators.
its form is if it exists and is unique [20,21]. Therefore, The usual method of quantization is applied to clas-
guantization that bypasses direct reference to a Pois-sical systems, where the dynamical operators have the
son bracket with some Hamiltonian may have practi- forms LA(q, p) = {A(q, p), H(q, p)} and Ap(q, p)
cal advantages. =—{p(q, p), H(q, p)}. Here the functiorH (¢, p) is
Canonical quantization defines a map of real func- an observable which characterizes dynamics and is
tions into self-adjoint operators [22,24]. A classical called the Hamilton function. Quantization of a dy-
observable is described by some real functiag, p) namical operator which can be represented as Pois-
from a function spaceV. Quantization of this func-  son bracket with a function is defined by the usual
tion leads to self-adjoint operatd(g, p) from some canonical quantization. Quantization of real functions
operator space\/l Classical state can be described A(g, p) and H(g, p) usually leads to self-adjoint
by non-negative-normed functigin(g, p) called den- operatorsA(g, p) and H (g, p). Quantization of the
sity distribution function. Quantization of a function  Poisson bracke{A(q, p), H(q, p)} usually defines
o(q, p) leads to non-negative self-adjoint operafor ~ as commutator(i /A)[H (G, p), A(G, p)]. Therefore,
of trace class called matrix density operator. This de- quantization of these dynamical operators is uniquely
scription allows to consider a state as a special observ-defined by the usual canonical quantization.
able. Quantization of a dissipative and non-Hamiltonian
Time evolution of an observabld; (g, p) and a classical system by using Hamiltonian meets ambigui-
statep; (g, p) in classical mechanics are described by ties which follow from the problems of variational de-
differential equations on a function spate: scription of these systems [20,21]. Quantization of dis-
sipative and non-Hamiltonian systems is not defined

Ap.

d by the usual canonical quantization. Therefore, it is
7,414 p)=LAg. p). necessary to consider some generalization of canon-
d ical quantization. A generalized procedure must de-
P (g.p)=Ap:(q, p). fine a map of operator into superoperator [29,32]. The

usual canonical quantization of observables must be
The operator€ and A, which act on the elements of derived as a specific case of generalized quantiza-
function spaceM, define dynamics. These operators tion for quantization of operator of multiplication on
are infinitesimal generators of dynamical semigroups a function.
and are called dynamical operators. The first equation In this Letter Weyl quantization of dissipative and
describes evolution of an observable in the Hamilton non-Hamiltonian classical systems is considered. Gen-
picture, and the second equation describes evolutioneralization of canonical Weyl quantization, which

of a state in the Liouville picture.
Dynamics of an observablé; (¢, p) and a statey,
in quantum mechanics are described by differential

maps an evolution equation on a function space into an
evolution equation on an operator space, is suggested.
An analysis of generalized Weyl quantization is per-
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formed for operator, which cannot be represented as by (5) is called the Weyl quantization. The Weyl op-

the Poisson bracket with some Hamilton function. erator (2) in formula (14) leads to Weyl quantization.
Another basis operator leads to different quantization
scheme [23].

2. Canonical Weyl quantization The correspondence between operators and sym-
bols completely is defined by formulas which ex-

Let us consider main points of the usual method of Press symbols of operatofgA, Agy, prA, Apk (k=
canonical quantization [22,23,30,31]. lgtbe canon- 1., ) through operator symbol. Weyl quantiza-
ical coordinates ang be canonical momentums, tionmw can be defined by formulas

wherek =1, ..., n. The basis of the spacet of func- it 9 .
tions A(g, p) is defined by functions Tw <<Clk +3 E)A(q, P)> =G A, (6)
n ih 0 AL

W(a,b,q, p) = e /Maattp) aq:Zaqu. (1) ”W<<Clk— E@)I“(%P)) = Agx, (7)
= ih d .

Quantization transforms coordinatgs and momen- 7w\ \ Pk — 29 A(q, p) | = PrA, 8

tums p; to operatorsj; and p;. Weyl quantization of ih 9

the basis functions (1) leads to the Weyl operators Tw ((pk + > a_qk>A(q’ p)> = Apx, 9)

n ~
W(a, b, q,p) = ei/M(ag+bp) ag= Zak&k’ 2) for all A =nw(A(g, p)). Proof of these formulas is
=1 contained in [25]. We obviously have

Operators (2) form a basis of the operator spade nw<iA(q, P)) - __i(ﬁkAA — Aﬁk), (10)
Classical observable, characterized by the function 94k ih
A(q, p), can be represented in the form 0 1 ..+~
@) P mw | =A@, p) | = — (4% A — Ady), (11)
_ Pk ih
Ag, p) = - /A(a,b)W(a,b,q,p) d"ad"b, 1, ~
(2rh) @) 7w (qkA(q, p)) = E(qkA + Agr), (12)
- 1.~ ~.
where A(a, b) is the Fourier image of the function 7w (pPcA(g, p)) = E(PkA + Apr). (13)

A(q, p). Quantum observabld (4, ) which corre-

sponds toA (g, p) is defined by formula Algebraic structures can be defined on the set of

observables. Lie algebra, Jordan algebra@heilge-

~ - a A bra are usually considered on the spat¢sind M.
/A(a,b)W(a,b,q,p)d ad’b. Lie algebraL(M) on the setM is defined by
4) Poisson bracket

A(év ﬁ) = (2]'[;"1)"

This formula can be considered as an operator expan-{A(q, p), B(q. p)}

sion for A(g, p) in the operator basis (2). The direct n

and inverse Fourier transformations allow to write the — — Z(aA(‘Z’ p)38(q,p) _ 94lq, p) 3B(q, p) >
formula (4) for the operatad (4, p) as o\ 9k 9Pk Pk gk

(14)

Quantization of the Poisson bracket usually defines as

< 1
A(g,p)= 2 /A(q,p)

« W(a, bg—ql, p— pf) self-adjoint commutator
1,. R
xd"ad"bd"qd"p. (5) ?[A(c}, p). B, p)]
1
The functionA(q, p) is called the Weyl symbol of 1

the operatord (4, p). Canonical quantization defined = E(A(flv P)B(q, p) — B(q, p)A(q, ﬁ))- (15)
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T[le commutator defines Lie algeblf:a./\%) on the set
M. Leibnitz rule is satisfied for the Poisson brackets.
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Let us consider a classical dynamical system de-
fined by Hamilton functionH (g, p). Usually the

As a result, the Poisson brackets are defined by quantization procedure is applied to classical systems
basis Poisson brackets for canonical coordinates andwith dynamical operator

momentums

{Qk,CIm}ZO, {pkvpm}ZO’ {qupm}ZSkM'

Quantization of these relations leads to the canonical

commutation relations

[‘?k"?m] Oa [ﬁkv ﬁm] =Oa
[Gk, Pm] = ihSim 1.

These relations defin@n + 1)-parametric Lie algebra
L(M), called Heisenberg algebra.

Jordan algebra/ (M) for the set M is defined
by the multiplication A o B which coincides with
the usual associative multiplication of functions. Weyl
guantization of the Jordan algehfaM) leads to the
operator special Jordan algebiaM) with multipli-
cation

(16)

1

[4.B],=AdoB=7[(A+B)"~(A-B)].

Jordan algebra for classical observables is associatived?

algebra, that is, all associators are equal to zero:

(AoB)oC—Ao(Bo(C)=0.

In general case Jordan algebra associator for quantum

observables is not equal to zero:

A Aan A A A A Lin ra &
(AoB)oC—Ao(BoC):Z[B,[C,A]]. 17)
This non-associativity of the operator Jordan algebra
J (M) leads to the ambiguity of canonical quantiza-
tion. The arbitrariness is connected with ordering of
non-commutative operators.

C*-algebra can be defined on the set of quantum ob-

" (0H H
Z(B (g.p) @ 9 (q,p)i) (18)
=\ a9k Ok Oqk

Here H(q, p) is an observable which defines dynam-
ics of a classical system. The observabl¢g, p) is
called the Hamilton function. The time evolution of a
classical observable is described by

d
EAt(q,p)={At(q,p),H(q,p)}- (19)

If the dynamical operator has form (18), then sys-
tem is Hamiltonian system. Weyl quantization of the
functions A; (¢, p) and H(q, p) leads to operators
A,(G, p) andH (4, p). Usually a quantization of Pois-
son bracket{A,(q, p), H(q, p)} defines as(i/h) x
[H(G, p), A:(G, p)]. Finally, canonical quantization
of Eg. (19) leads to the Heisenberg equation

d

i

-[AG. p). A, p)].
Therefore, canonical quantization of dynamical oper-
ator (18) defines as superoperator

[AG. D))= (A'G.p)~ A" G 5). (20)

AG, p) =

i

h
Here left and right superoperatdi# (g, p) andH" (4,
p) correspond to Hamilton operatéf (g, p). These
superoperators are defined by formulas

H'A=HA,  H'A=AH.
Note that a result of Weyl quantization (10)—(13) for
the Poisson brack¢t (¢, p), B(g, p)} in general case

is not a commutatot—i /A)[A (G, p), B(G, p)].
Quantization of dynamical operator, which can be

servables described by the bounded linear operators.represented as Poisson bracket with a function, is de-

In general case an operator which is a result of associa-

tive multiplication of the self-adjoint operators is not
self-adjoint operator. Therefore, quantization of multi-
plication of classical observables does not lead to mul-
tiplication of the correspondent quantum observables.
Universal enveloping algebrﬁ(i) for the Lie alge-
bra (M) which is generated by commutation rela-

fined by canonical quantization. Therefore, quantiza-
tion of Hamiltonian systems can be completely de-
fined by the usual method of quantization.

3. General dynamical system

tions (16) usually is considered as associative algebra Let us consider the time evolution of classical ob-

[30,31].

servableA,(q, p), described by the general differen-
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tial equation W(a,b,q, p)
_A ) = s a ) a A ) ) .
a1\ P =L P 0q. 0p)Ar(q. p) The algebrad (M) of bounded dynamical operators
where can be defined a§*-algebra, generated bQ’iz and
5 3 sz. It contains all operators (21) and is closed for
dg=—. dp=—. linear combinations of (21) in operator norm topology.
dq ap A dynamical operatof£ can be defined as an operator

Here £(q. p.d,.9,) is an operator on the function function of basis operato@} , and Py ,:

spaceM. In general case this operator cannot be ex- 1

pressed by Poisson bracket with a functifig, p). L(Q1, 02, P1, P2) = —-——- / L(a1, az, b1, by)

We would like to generalize the quantization proce- (2r)

dure from the dynamical operators (18) to general op-  x ¢/ (1Q1Fa202+b1P1tb2F2) yn gy 4" ay @by d" by,

eratorsL(q, p, 94, 9p). In order to describe general- (22)

ized quantization we must define a general operator

L(q.p.d,.9,) using some operator basis. For sim- Where L(a1, az, b1, b) is square-integrable function

plicity, we assume that operatdl(q, p, 9,, 3)) is a of real variablesi1 » andby 2. The functionL (a1, az,

bounded operator. b1, bp) is Fourier image of the symbol of operator
Let us define the basis operators which generate £ = £(q, p, 34,3,). The set of bounded operators

the dynamical operatof = L(q, p, 3,,9,). Opera-  L£(Q1, Q2, P1, P2) and their uniformly limits forms

tors 0% and Q% are operators of multiplication on  the algebrad(M) of dynamical operators.

qr and pi. OperatorPf and P5 are self-adjoint dif-

ferential operator with respect tg. and py, that is,

PF = —i3/dq, and P¥ = —i3/dp. These operators 4. Weyl quantization of basis operators

obey the conditions:

To define a quantization of dynamical operator

1. 0i1=gqi, 051=prandPi1=0, P;1=0. we need to desqcnbe quantlzano);l of the opgra@ﬁs

k — Nk k _ pk
2. (Q1)" =075 (Pr)" = Pry. and P*. Let us require that the superoperat@sand
3. P fz(A oB)= (szA) oB+Ao (szB)- P* satisfy the relations which are the quantum analogs
4. [Q1 2 PP = i8km, [Q1 2 P 1] 0. to the relations for the operato@ and P¥:
S. [levQ 1,2 2l= ![P_’]_’Zs Pl,Z] - 1. Q]]C_I—qu lezﬁk,andeZIZO.

Conjugation operation is defined with respect to the 2. (Q} D= Ql 2 (sz)* sz
usual scalar product of function space Commuta- 3. sz(AoB) = (szA)oB ~|—Ao(szB)
tion relations for the operatorB{, and Q1 , define [Ql N Pi"z] =il [Ql , P =
(4n + 1)-parametric Lie algebra. These relations are s A
analogous to canonical commutation relations (16) for 5. [Ql 2 Ql 21=0, [Pl 2 Pl 21=0
qx andpy with double numbers of degrees of freedom. - Superoperator’ is called self-adjoint, if the relation
Operatorg)} , andPf , allow to introduce operator (LA|B) = (A|LB) is satisfied. The scalar product

basis (A|B) on the operator spackt is defined by(A|B) =
SpCA* ]. An operator space with this scalar product
Va1, az, b1, b2, 01, Q2, P1, P?) is called Liouville space [30,31].
= expli(a101+az2Q2 + b1 PL+ b2P) ., (21) To quantize the operatd?{ , we use the relations

for the spaced(M) of dynamical operators. These ba-
sis operators are analogous to the Weyl operators (2).
Note that basis functions (1) can be derived from op- ) )

erators (21) by the formula P Alg, p)=—i @A(q’ p)=—i{a. Alq. p)}.

9 .
fA(q, p) = —za—qkA(q, p)=i{pr. Alq, p)},
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Weyl quantization (10), (11) of these expressions
leads to

| =

PfAG. p) = [pk,A(q .
N TP 1 . ~ o
PSAG. p) =~ 1ar. AG. )

As a result, we obtain

N 1., 1, . .
Pf=g[17k’-]=g(l’i—l72)v (23)
N 1. 1,. .
Pﬁ‘:—g[%-]:—g(fli—qﬂ (24)

Here we use superoperatdi’s ¢, and pt, p: which
satisfy the non-zero commutation relations
(61, L] =ihdkmd,  [dF, Phy] = —iRdkml.
These relations follow from canonical commutation
relations (16).

To quantize the operathk 12 We use formulas (12),
(13). It is known [24,25] that Wey! quantization (12),

(13) of the expressiong o A(q, p) andpy o A(q, p)
leads togy o A(g, p) and py o A(g, p). Therefore,

Weyl quantization of the operatorQ’i2 leads to
superoperators

1., .
01 =[], = 5 (@ +4). (25)
A . 1, . R
0% =[pe, -], =5 (P + B). (26)

WhereQ’iA =groAand Q’éﬁ =proA.

If the Weyl quantization for observables is con-
sidered then we must consider the Weyl quantiza-
tion for dynamical operators. The Weyl quantization
leads only to this form (25), (26) of superoperators
Q’i »- The other quantization of the observables [23,

24] leads to other form of the superoperat@%2
Wey! quantization of the basis operators (21) leads
to the basis superoperators

V (a1, az, b1, bz, 01, Q2. P1, Py)

=expli(a10 + a202 + b1P1 + b2 Py) ). (27)

5. Weyl quantization of operator function

Let us consider the dynamical operatbas a func-
tion of the basis operatoxg , and Py ,. Generalized

V.E. Tarasov / Physics Letters A 288 (2001) 173-182

Weyl quantization can defined as a map from dynam-
ical operator spacg (M) to dynamical superoperator
spaceA(M) This quantization of the operator

1 .
L(Q1, Q2, P1, P2)) = —— | L(a1,a2,b1,b
(Q1, Q2. P1, P2) (27[)2”/ (a1,az, b1, b2)

x ei(u1Q1+a2Q2+b1P1+b2P2) d”a]_ dnaz dnbl dnbz

leads to the corresponding superoperator

P ~ A A 1 ~
L(01. 02, P1, Po) = W/L(al,az, b1, b2)
% ei(u1Q1+a2Q2+b1ﬁ1+b2ﬁ2) d”a]_ dnaz dnbl dnbz
(28)

If the functipn L(a1, a2, b1, by) is connected with
Fourier imageA (a1, a2) of the functionA (g, p) by the
relation

L(ax, az, b1, bp) = (21)"8(b1)8(b2)A(a1, az),

then formula (28) defines the Weyl quantization of the
function A(q, p) = L(Q1, Q2, P1, P2)1 by the rela-
tion

A@G, p)=L(01. 02, P1, Py)I.

Here we useDX7 = g, and Q47 = pi. Therefore the
usual Weyl quantization is a specific case of suggested

quantization procedure.
Superoperator®? , and Pf , can be represented by

4t, gr andp!, p;. Formula (28) is written in the form

N 1
£(q Q" P p )—W/L(al,az,bl,bz)

x W!(a1, az, G, p)W" (b1, b2, §, p)
x d"ard"ard"b1d" bo.

Here W!(a, b, g, p) and W'(a, b, g, p) are left and
right superoperators corresponding to the Weyl opera-
tor (2). These superoperators can be defined by

W(a,b,q', p'),
W(a,b,q", p").

We can derive [29] a relation which represents the
superoperatof‘, by operatolL. Let us write the analog
of relation (5) between an operatéand a functiom.

To simplify formulas, we introduce new notations. Let
X*, wheres = 1,...,4n, denote the operatorg} ,

W'a,b,q, p)=
W' (a,b,§, p) =
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andPf,, wherek =1, ..., n, thatis,
X% 1o g X% = py.
Gk dpk

Let us denote the parameters, andbf ,, wherek =
1,....n, by %, wheres = 1,...,4n. Then formula
(22) can be rewritten by

/ L(Z)eiZX d4nZ-

Formula (28) for the superoperatén’s written in the
form

A 1 g
L= " L izX d4n )
20z / (2)e z

The result relation [29] which represents the superop-
eratorL by operator can be written in the form

1 : N oW
—ia(z+7) izX

@) /e e

% Sdﬁeiz/X] d4nZd4nOl d4nz/.

~ @™

L=

(29)

6. Oscillator with friction

Let us consider-dimensional oscillator with fric-
tion F.c = —0tim pm — Bims Pm s - The time evolution
equation for this oscillator has the form

a1
dlqk = ml’lm

d

Epk = —(meCIk + O Pm + ﬁkmspmps)s (30)

wherek,m,s =1,...,n.l1f n =3, =0and non-zero
coefficients are

a12=-10, o1 = —28,

=1, a33=28/3,

B213= B231= 0.5, Bz12= pz21=—0.5,

then we have the Lorenz system [33] with respect to
x = p1, y = p2 andz = p3. If non-zero coefficients
are

a11 =10,

alz=oa13=1, az1=—1,

a2 =w31=—0.2, w33=5.7,

B313= P31 =—0.5,

179

then we obtain the Rossler system [34]. For the case
a2 =-1, ax1=1,
azz=—o =—0.175

Bo13= Pa31=—2.5,

a11=04,
a2 =04,
B123= B132= —5,
B312= B321= 2.5,

we have the Leipnik—Newton system [35].
The dynamical equation for the classical observable
A;(q, p) is written

d
EAt(qa p) ZL(‘], P aqv a[))At(LI7 p)

Differentiation of the functiom; (¢, p) and Egs. (30)
give

dA«(q,p) 1 9A«(q,p) 2 0A:«(q,p)
—— = i — Mg
dt m gk px
d0A:(q, p)
— (%km Pm +ﬁkmspmps)#- (31)

Dynamical operatotl(q, p, 9,4, d,) for system (30)
has the form

v 2

1 a
‘C( 5 7358)2_ k mw gk —
e = P g T o

d
— (%m Pm + Brms PmPs) —-

32
9Pk (32)
This operator can be rewritten in the form
i
L£(Q1, 02, P1, Po) = — Q5 Py —imw® QP
— i(okm O + Brms Q5 03) Py (33)

If we consider the Weyl quantization for observables
A(q, p) then we must consider the Weyl quantization
for dynamical operatorsC(q, p, 9,4,9,). The Weyl
quantization of operator (33) leads to superoperator

AA A A A i Ay~ ) AL A
£(01. 02, Pr. P2) = — 05 Pf —imw? 0} P§

- i((ka Qrzn + Bims le Q;) ﬁé{
Let us use definitions (23), (25) of the operaté@
and Ql,z. The time evolution equation for a quantum
observabled takes the form
d

dt

i i R A
7 + —Qkm Pm © [ka At]

[ﬁ’ At] h

t =

+ %bkmxﬁm o (ﬁé ° [éks Al]) (34)
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HereA o B = (1/2)(AB + BA) and

D 242
A=t "9
2m 2

Eq. (34) describes [32,36] quantum analogous of the
generalized Lorenz—Rossler-Leipnik—Newton equa-
tion (31).

Note that Weyl quantization g#,, ps{ px, A:(q, p)}
does not lead to the terta-i /4)(pm o ps) o [ P, A]. It
gives the ternp,, o (ps o [k, Al]) and in general case

Pm o (ﬁs o [ékv A]) - (ﬁm © ﬁs) o [ékv A]

[ [ (4. A7))

4

7. Fokker—Planck-type system

Let us consider Liouville operatot, which acts on
the normed distribution density functirig, p, t) and
has the form of second-order differential operator

92 92 92
A :dqu +2dqu +dppﬁ
d 0
+ quq@ + quq@ + Cqu@
d

+cppp%+h. (35)
Liouville equation
dp(q, p,1)
- = A k] k] 1

7 p(q, p,t)

with operator (35) is Fokker—Planck-type equation.
Weyl quantization of the Liouville operator (35) leads
to completely dissipative superoperatbrwhich acts
on the matrix density operator

"__i al _ Or
A= h(H H")
1 ~ AN N SN
+ 2% Z ((VJZ N jr)v.;q N (V;l N Vj*r)vj*l)‘
j=1.2

As the result we have the Markovian master equation
[28,30,37]

b iip
=R
L1

2n &,
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Here A is Hamilton operator, which has the form

ﬁ=ﬁ1+1:12,
N 1 ., mo®,, N Mo oan A a
H =~ +— ’ H == + ’
1=5_p 54 2 2(pq qp)
where

1 2
m=-—--—, W= —CqpCpq;

Cpq

1
)‘ZE(CP[’ + ¢4q), MZE(Cpp_qu)-

OperatorsV; in (36) can be written in the forni, =
ajp+b;q,wherej =1,2, and complex numbers;,
b; satisfy the relations

h 2
dqq = E Z la;|,
j=12

h
dgp=—7 Re( > af,fb,),

j=12
A:—Im( > ajfbj>.
j=1,2

If h = —2(cpp + c4¢), then quantum Markovian equa-
tion (36) becomes [37]

h 2
dpp:§ Z |bj| s
j=12

dpy Pra .
— =——[H1, p]
dt h
(A — A A+ N A A
+l( - M)[p,qO,ot]—l( . 'u)[q,pOpl]
T
——7la-[a.a]] - =2 [ [p.A]
2,
2205, (.51)

Hered,,, dyq, d,y are quantum diffusion coefficients
anda is a friction constant.
8. Lorenz-typesystem

Let us consider the evolution of a classical observ-
ableA, (g, p) for the Lorenz-type system [32,36]:

d 0A:(q, p)

—Aig, p)=— —p)—2

T (g, p) o(q1— p1) ™
0A:(q, p)

+op2
9g2
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dA:(q. p)
ap1

dA(q. p)
dp2
This equation for observables= g1, y = p1 and

z = p2 describes the classical Lorenz model [33,38]:

+ (rq1— p1—q1p2)

— (bp2 — q1p1) (37)

—dxl +

= —0X oVs,
di t e
i
dr t— Wt 1<t
dZt
— = —bz; + Xt ys.
di 2t t Yt

The Lorenz model [33] is one of the most famous
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by usual canonical quantization procedure. We sug-
gest the quantization scheme which allows to derive
guantum analog for the classical non-Hamiltonian sys-
tems. Relations (28) and (29) map the oper&t@y, p,

d4, 8p) which acts on the functiond (g, p) to the su-
peroperatorﬁ, which acts on the element$(g, p)

of operator space. If the operatdr is an operator

of multiplication on the functiom (g, p) = £1, then
formula (29) defines the usual Weyl quantization of
the functionA(g, p) by the relationA = £1. There-
fore, the usual Weyl quantization of observables is
a specific case of suggested generalization of Weyl
guantization. The suggested approach allows to derive
quantum analogs of chaotic dissipative systems with

classical dissipative systems. This system is describedstrange attractors [32,36].

by nonlinear differential equations without stochastic

terms, but the system demonstrates chaotic behaviour

and has strange attractor for= 10,r = 28,5 = 8/3
(see [33,38]).
The Weyl dynamical quantization of the Lorenz-

type equation leads to the quantum Lorenz-type equa-

tion
iA i U(ﬁ%‘f‘ﬁ%)_ﬁ i
dt"" " h 2 20
io , o
- _ql o [plv At]
h
2 S
+5 Lo [91. Ar] + Fbb2o [G2. A/]

i, . oA
+odqie (P20 [41. A])

i, . oA

— 5d1o (Profd2. Ar]).

Note that Weyl quantization of the tergupi{A(q, p),
gm} leads to the terndi /i) g g(ﬁ; o[gm, Al), whichis
equal to(i /h) p; o (G o [gm, A]). Using relation (17),
we can see that these terms are not equai tb) x
(Gk © p1) o [gm, Al.

9. Conclusions

Quantization of a dynamical operator which is rep-
resented by Poisson bracket with the Hamilton func-
tion, can be defined by the usual canonical quanti-
zation. Quantization of a general dynamical opera-
tor for non-Hamiltonian system cannot be described
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