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Abstract

In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative
guantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with
pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative
guantum systems which are quantum analogs of classical dynamical bifurcati@®2 Elsevier Science B.V. All rights
reserved.
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1. Introduction [9] for Brownian motion of quantum harmonic oscilla-
tor. The stationary solution of Wigner function evolu-

The dissipative gquantum systems are of strong tion equation for dissipative quantum system was dis-

theoretical interest [1]. As a rule, any microscopic cussed in[10,11]. Quantum effects in the steady states

system is always embedded in some (macroscopic) of the dissipative map are considered in [12].

environment and therefore it is never really isolated.

Frequently, the relevant environment is in principle

unobservable or itis unknown [2,3]. This would render 2. Definition of stationary states

theory of dissipative quantum systems a fundamental

generalization of quantum mechanics [4]. In general case, the time evolution of quantum state

Spohn [5-7] derives sufficient condition for exis- p, is described by Liouville—von Neumann equation
tence of an unique stationary state for dissipative quan-

tum system described by Lindblad equation. The ir- = o= Apy, (1)
reducibility condition given by [8] defines stationary ~ d?

state of dissipative quantum systems. An example, where A is a quantum Liouville operator. For Hamil-

where the stationary state is unique and approachedignian systems quantum Liouville operator has the
by all states for long times is considered by Lindblad 5,m,

- A i
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whereH = H(q, p) is a Hamilton operator. If quan-
tum Liouville operatorA cannot be represented in
the form (2), then quantum system is called non-
Hamiltonian or dissipative quantum system. Station-
ary state is defined by the condition

AAIO[ = 0.
For Hamiltonian systems this condition has the form

[H, pi]=0. 3

3. Puregationary states of Hamiltonian systems

A pure statepy = |¥)(¥| is a stationary state
of Hamiltonian quantum system, ) is an eigen-
vector of Hamilton operatoitH = H(q, p). Using
(@ |¥) =1, we get the equality (3) in the form

H|W)=|W)E, 4)

whereE = (W|H|¥). Eq. (4) defines pure stationary

states|¥) of Hamiltonian systems. Eigenvalues of
Hamilton operator are identified with the energy of the
system. It is known, that Hamilton operator for linear
harmonic oscillator is

2 2 2
p mw-q

H=_— . 5
2m + 2 ©)

Eq. (4) has the solution if
1

E,= Eha)(Zn +1). (6)

V.E. Tarasov / Physics Letters A 299 (2002) 173-178

Here F* are operators act on operator spatg,and
R4 are operators of left and right multiplication [13]
defined by

LAB=AB, RAB = BA,

for all operatorss.

Let pgy = |W)(¥| is a pure state with eigenvector
|@) of the Hamilton operatoH . If Eq. (4) is satisfied,
then the statepy = |¥)(¥| is a stationary state of
Hamilton system

d
— Pt =

i
s H’ )
dr h[ prl

©)

associated with dissipative system (8).

If vector |¥) is eigenvector ofH, then Liouville—
von Neumann equation (8) for pure state = |¥ ) (¥ |
has the form

d > .
— = Ni(E, E)F; s
Py 1; [ ) Fipw

where the functiond/y (E, E) are defined by
N(E, E) = (W|(N] (L1, Ru)1)1¥).

OperatorN, (L, Ry) is adjoint operator on operator
space defined by

(V] (L. i) A|B) = (A|Ni(Ln. Ri) B).

In coordinate representation stationary states of linear where (A|B) = Tr(ATB). If all functions Ny(E, E)

harmonic oscillator are

1 2
i(g) = — exp(—q—z)m (1)
q0 2q5 q0

A

maw

whereH,, (¢ /qo) is Hermitian polynomial of ordet.

4. Purestationary states of dissipative systems

Let us consider Liouville—von Neumann equation
(1) of the form

d . L . .
T =—=[H o)+ ) EeNe(Lu Ru)p. (8

d
k=1

are equal to zero

Ny(E,E)=0, (10)

then the stationary state of Hamiltonian quantum
system (9) is stationary state of dissipative quantum
system (8).

Note, that functionsVi (E, E) are eigenvalues and
|¥) is eigenvector of operators; (H, H) = N,j(iH,
Ri)1, since

Ni(H, H)|¥) = |¥)Ni(E, E).

Therefore stationary states of dissipative quantum
system (8) are defined by zero eigenvalues of operators
Ne(H,H) =N} (L. Ri)1.
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5. Dissipative systemswith oscillator stationary (2) Let us consider dissipative system described
states by evolution equation
: : . . d i [ A oA
In this section we consider simple examples of P :_E[H’ o]+ E[Q’N(LH’ Ru)pi]. (13)

dissipative quantum systems (8).
) _ ) o where the Hamilton operator is defined by (5) and
(1) Letus consider nonlinear oscillator with fric-

. , . o T o A
tion defined by the equation N(LH, RH) _ cos(g(LH + RH))
0
—pr = ——[Hnp, — , , 11 00 i\ R
P h[ nl ,Ot]+h,3[q p*op] (11) 22(21)'(;_71> (LH+RH)2m-
where Hamilton operatafly, is m=o ")\ £€0 (14)
_ P_2 m$22q? )/_614 The operatoﬂ’f“ on operator space is
Hp = + + )
2m 2 2 ;
and F=E(Lq—Rq).
AoB = }(AB 1 BA). The functionN (E, E) has the form
2 00 2m
Eq. (11) can be rewritten in the form N(E.E)=co TE\ _ 3 1 (ImENT
£0 @2m)!'\ eo
i m=0
Ept = _E[H’ pil The stationary state condition (10) has the solution
2imp| , P2 yq® A _fo
=+ - , E=—(2n+1),
T [q (2m+2m,3 4’ ) " 2

where n is an integer number. If parameteg is
equal tosiw, then quantum system (13), (14) has

whereA = 22 — w?, and H is Hamilton operator of : _
stationary states (7) with the energy (6). As the

linear harmonic oscillator (5). Eq. (12) has the form

(8), where result sjcati.onary. states. of dissipative quantum system
(13) coincide with stationary states (7) of the linear
. 2imB . A harmonic oscillator.
F = (L 2—R 2), .
h q q If the parameterg is equal tosiw (2 + 1), then

A 1 . N . guantum system (13), (14) has stationary states (7)

N(Lu,Ru)= E(LH + Ry) — %Lz, with n(k, m) = 2kl + k + 1 and
A A hw
NE,EY=W|H— —=I¥Y)=FE — —. E =—(2k+1)(2 +1).
(E,E)=(¥| 28 |¥) 28 nk) == ( )( )

Let y = Bm2w?. The dissipative system (11) has one (3) Let us consider the operataks (£, R in
stationary state (7) of harmonic oscillator with energy q form

E, = (ha/2)(2n + 1), if
Ni(Lu, Ru)

A=2Bhw(2n+1), 1 % (ofn pm _ Fntm _ pnt+m
~2n ijvk”vkm(ZLHRH - L™ = Ry™),

where n is an integer non-negative number. This
stationary state is one of stationary states of linear
harmonic oscillator with the mags and frequencw. and ﬁk = i,. In this case, Liouville—von Neumann
In this case we can have the quantum analog [14] of equation (8) has the form of Lindblad equation [17—
dynamical Hopf bifurcation [15,16]. 19]:
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iptz_i[]-[, ot In general casem and n are multi-indexes. The
dt function N¢ (E, E) is a polynomial
1 m
+ o 2 (Vere {1+ Vi nVl]). (15) Yo
=1 Ne(E.E)=) o E",

with operators n=0

Ve=Y vaH", V=Y v, BT
n m

If pg = |W)(¥| is a pure stationary state, then
Ny (E, E) =0 and this state is a stationary state of the
dissipative quantum system (15).

where

n
o) = al.
m=0

We can define the variable = E — a, such that
functionNi(E, E) = N¢(x +a, x +a) has no the term
x"1,

6. Dynamical bifurcationsand catastrophes Ne(x +a, x +a)

N
Let us consider a special case of dissipative quan-  _ Za(k) (x + a(k))n
tum systems (8) such that the functidip(E, E) be a = "

potential function, i.e., we have a potenti&{ £) such

that n—m
_Z Z (k)m'(n_m)' (a(k))

IV (E
( )=Nk(E,E), n=0 m=0

oE - .
k If the coefficient of the term”~1 is equal to zero
whereE, = (¥ |Hi|¥), and

|
A A _ " 0 G, R K

Ny(E,E) = (u/|(NkT(LH, Ry)I)|¥), R — ta, y=a, na” +a,’; =0,

N
H:ZH"’ H W) = |W)E;. then we have

_ (k)

. . " L =

In this case, the stationary condition (10) for dissipa- - na(k)'
tive system (8) is defined by critical points of the po- "
tential V(E). If the system has one variablg, then If we change parametea:,(,k), then can arise sta-
the functionN (E, E) is always potential function. In  tionary states of dissipative quantum systems. For ex-
general case, the functiong (E, E) are potential, if ample, the bifurcation with birth of linear oscillator
INL(E.E) ON/(E.E) stationary state is a quantum analog of dynamical

= Hopf bifurcation [15,16].
IE; IEx If the functionN (E, E) is equal to
Stationary states of dissipative quantum system (8)
with potential functionsNy(E, E) are depend on ; :
critical points of potentialv’ (E). This allows to use ~ N(E: E) = Lo E7 + Z“-/Ej’ nz2,
theory of bifurcations and catastrophes for parametric j=1
set of functionsV (E). Note that a bifurcation in then potentiaV/ (x) is
a space of variable¥ = {E; |k =1,...,s} is a
bifurcation in the space of eigenvalues of Hamilton
operatorHy.

For polynomial operatorNk(I:H, Rp) we have

n—1

n—1
V(x)=+x"t1 4 Zajxj, n>=2,
Jj=1

and we have catastrophe of type,.
Ny LH, RH Z Za(k) H" pH"™". If we haves variablesEy, wherek =1,2,...,s,

== then quantum analogous of elementary catastrophes
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A+, Di,, E+6, E7 and Eg can be realized. Let us
write the full list of typical set of potentiald/ (x),

which leads to elementary catastrophes (zero-modal)

defined byV (x) = Vo(x) + Q(x), where

n—1
Vo(x) = :I:xi”'1 + Zajx{, n>=2,

Aqy:
j=1
Do - Vi _ .2 n—1
tn: o(x) =x7x2 = x5
n—3 ) n—1 )
+ Zajxﬁ + Z X{f(nfg),
j=1 j=n-2
. _ (.3 4
Eis: Volx) = (xl :|:x2)
2 ) 5 )
+ Zajxé + Zajxlxé_s,
Jj=1 j=3
E7: Vo(x) =xf+x1x§’
4 ) 6 )
+ Zajxé + Zajxlxé_s,
j=1 j=5
Eg: Vo(x) =xf+x§

3 7
. 4
+ Zajxé + Zajxlxé .
j=1 j=4

Here QO (x) is nondegenerate quadratic form with vari-
ablesxo, x3, ..., x; for AL, and parameterss, .. ., x;
for other cases.

7. Fold catastrophe

In this section, we suggest an example of catastro-
phe A, called fold.

Let us consider Liouville—von Neumann equation
for nonlinear quantum oscillator with friction

d i i
e _E[H’ ol +aoE[q, poprl

i
+ o

—oafg, po(Hop)]

+ %az[q, po(Ho(Hop))],

whereH is Hamilton operator defined by (5).
In this case, we have

(16)

O
F= h(Lq —Rg)(Lp+Rp),

177

N(iH» IQH) =aol; + a—zl(iH + IéH)

o A A
+ ZZ(LH + RH)Z,
N(E,E)= (¥ |N(H, H)|¥) = ag + a1 E + a2 E?.

Stationary statepy = |¥)(¥| of harmonic oscillator

is stationary state of dissipative quantum system (16),
if

oo+ a1E +oz2E2 =0.

If we define the variable and parametex by

o1
x=E—-a, a=-—-—,
202
4aoa2—a§
:72 )
40[2

then we have stationary conditid®(E, E) = 0 in the
form

x2—r=0.

If A <0, then we have no stationary statesa i 0,
then we have stationary states for discrete set of
parameter values. If the parameterg andx are equal

to

i 32
_ o A:hng(nl n2) ’
2 4
whereni andny are non-negative integer numbers,
then dissipative quantum system has two stationary

state (7) of linear harmonic oscillator. The energy of
these states is equal to

1 1
Enlzha)(fl1+§>, Enzzha)(}’lz-’-E)

8. Conclusion

(n1+n2+1),

Dissipative quantum systems can have stationary
states. Stationary states of non-Hamiltonian and dis-
sipative quantum systems can coincide with station-
ary states of Hamiltonian systems. As an example we
suggest quantum dissipative systems with pure station-
ary states of linear harmonic oscillator. Using (8), it
is easy to get dissipative quantum systems with sta-
tionary states of hydrogen atom. For a special case of
dissipative systems we can use usual bifurcation and
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