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Abstract

In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative
quantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with
pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative
quantum systems which are quantum analogs of classical dynamical bifurcations. 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The dissipative quantum systems are of strong
theoretical interest [1]. As a rule, any microscopic
system is always embedded in some (macroscopic)
environment and therefore it is never really isolated.
Frequently, the relevant environment is in principle
unobservable or it is unknown [2,3]. This would render
theory of dissipative quantum systems a fundamental
generalization of quantum mechanics [4].

Spohn [5–7] derives sufficient condition for exis-
tence of an unique stationary state for dissipative quan-
tum system described by Lindblad equation. The ir-
reducibility condition given by [8] defines stationary
state of dissipative quantum systems. An example,
where the stationary state is unique and approached
by all states for long times is considered by Lindblad
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[9] for Brownian motion of quantum harmonic oscilla-
tor. The stationary solution of Wigner function evolu-
tion equation for dissipative quantum system was dis-
cussed in [10,11]. Quantum effects in the steady states
of the dissipative map are considered in [12].

2. Definition of stationary states

In general case, the time evolution of quantum state
ρt is described by Liouville–von Neumann equation

(1)
d

dt
ρt = Λ̂ρt ,

whereΛ̂ is a quantum Liouville operator. For Hamil-
tonian systems quantum Liouville operator has the
form

(2)Λ̂ρt = − i
h̄

[H,ρt ],
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whereH = H(q,p) is a Hamilton operator. If quan-
tum Liouville operatorΛ̂ cannot be represented in
the form (2), then quantum system is called non-
Hamiltonian or dissipative quantum system. Station-
ary state is defined by the condition

Λ̂ρt = 0.

For Hamiltonian systems this condition has the form

(3)[H,ρt ] = 0.

3. Pure stationary states of Hamiltonian systems

A pure stateρΨ = |Ψ 〉〈Ψ | is a stationary state
of Hamiltonian quantum system, if|Ψ 〉 is an eigen-
vector of Hamilton operatorH = H(q,p). Using
〈Ψ |Ψ 〉 = 1, we get the equality (3) in the form

(4)H |Ψ 〉 = |Ψ 〉E,
whereE = 〈Ψ |H |Ψ 〉. Eq. (4) defines pure stationary
states|Ψ 〉 of Hamiltonian systems. Eigenvalues of
Hamilton operator are identified with the energy of the
system. It is known, that Hamilton operator for linear
harmonic oscillator is

(5)H = p2

2m
+ mω2q2

2
.

Eq. (4) has the solution if

(6)En = 1

2
h̄ω(2n+ 1).

In coordinate representation stationary states of linear
harmonic oscillator are

Ψn(q)= 1

q0
exp

(
− q2

2q2
0

)
Hn

(
q

q0

)
,

(7)q0 =
√
h̄

mω
,

whereHn(q/q0) is Hermitian polynomial of ordern.

4. Pure stationary states of dissipative systems

Let us consider Liouville–von Neumann equation
(1) of the form

(8)
d

dt
ρt = − i

h̄
[H,ρt ] +

s∑
k=1

F̂kNk
(
L̂H , R̂H

)
ρt .

HereF̂ k are operators act on operator space,L̂A and
R̂A are operators of left and right multiplication [13]
defined by

L̂AB =AB, R̂AB = BA,
for all operatorsB.

Let ρΨ = |Ψ 〉〈Ψ | is a pure state with eigenvector
|Ψ 〉 of the Hamilton operatorH . If Eq. (4) is satisfied,
then the stateρΨ = |Ψ 〉〈Ψ | is a stationary state of
Hamilton system

(9)
d

dt
ρt = − i

h̄
[H,ρt ],

associated with dissipative system (8).
If vector |Ψ 〉 is eigenvector ofH , then Liouville–

von Neumann equation (8) for pure stateρΨ = |Ψ 〉〈Ψ |
has the form

d

dt
ρΨ =

s∑
k=1

Nk(E,E)F̂kρΨ ,

where the functionsNk(E,E) are defined by

Nk(E,E)= 〈Ψ |(N†
k

(
L̂H , R̂H

)
I
)|Ψ 〉.

OperatorN†
k (L̂H , R̂H ) is adjoint operator on operator

space defined by

(
N

†
k

(
L̂H , R̂H

)
A

∣∣B) = (
A

∣∣Nk(L̂H , R̂H )
B

)
,

where (A|B) = Tr(A†B). If all functionsNk(E,E)
are equal to zero

(10)Nk(E,E)= 0,

then the stationary state of Hamiltonian quantum
system (9) is stationary state of dissipative quantum
system (8).

Note, that functionsNk(E,E) are eigenvalues and
|Ψ 〉 is eigenvector of operatorsNk(H,H)= N†

k (L̂H ,

R̂H )I , since

Nk(H,H)|Ψ 〉 = |Ψ 〉Nk(E,E).
Therefore stationary states of dissipative quantum
system (8) are defined by zero eigenvalues of operators
Nk(H,H)=N†

k (L̂H , R̂H )I .
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5. Dissipative systems with oscillator stationary
states

In this section we consider simple examples of
dissipative quantum systems (8).

(1) Let us consider nonlinear oscillator with fric-
tion defined by the equation

(11)
d

dt
ρt = − i

h̄
[Hnl, ρt ] + i

h̄
β
[
q2,p2 ◦ ρt

]
,

where Hamilton operatorHnl is

Hnl = p2

2m
+ mΩ2q2

2
+ γ q4

2
,

and

A ◦B = 1

2
(AB +BA).

Eq. (11) can be rewritten in the form

d

dt
ρt = − i

h̄
[H,ρt ]

(12)

+ 2imβ

h̄

[
q2,

(
p2

2m
+ γ q2

2mβ
− ∆

4β
I

)
◦ ρt

]
,

where∆ =Ω2 − ω2, andH is Hamilton operator of
linear harmonic oscillator (5). Eq. (12) has the form
(8), where

F̂ = 2imβ

h̄

(
L̂q2 − R̂q2

)
,

N
(
L̂H , R̂H

) = 1

2

(
L̂H + R̂H

) − ∆

2β
L̂I ,

N(E,E)= 〈Ψ |H − ∆

2β
I |Ψ 〉 =E − ∆

2β
.

Let γ = βm2ω2. The dissipative system (11) has one
stationary state (7) of harmonic oscillator with energy
En = (h̄ω/2)(2n+ 1), if

∆= 2βh̄ω(2n+ 1),

where n is an integer non-negative number. This
stationary state is one of stationary states of linear
harmonic oscillator with the massm and frequencyω.
In this case we can have the quantum analog [14] of
dynamical Hopf bifurcation [15,16].

(2) Let us consider dissipative system described
by evolution equation

(13)
d

dt
ρt = − i

h̄
[H,ρt ] + i

h̄

[
q,N

(
L̂H , R̂H

)
ρt

]
,

where the Hamilton operator is defined by (5) and

N
(
L̂H , R̂H

) = cos

(
π

2ε0

(
L̂H + R̂H

))

(14)

=
∞∑
m=0

1

(2m)!
(
iπ

2ε0

)2m(
L̂H + R̂H

)2m
.

The operatorF̂ on operator space is

F̂ = i

h̄

(
L̂q − R̂q

)
.

The functionN(E,E) has the form

N(E,E)= cos

(
πE

ε0

)
=

∞∑
m=0

1

(2m)!
(
iπE

ε0

)2m

.

The stationary state condition (10) has the solution

E = ε0

2
(2n+ 1),

where n is an integer number. If parameterε0 is
equal to h̄ω, then quantum system (13), (14) has
stationary states (7) with the energy (6). As the
result stationary states of dissipative quantum system
(13) coincide with stationary states (7) of the linear
harmonic oscillator.

If the parameterε0 is equal toh̄ω(2l + 1), then
quantum system (13), (14) has stationary states (7)
with n(k,m)= 2kl + k + l and

En(k,l) = h̄ω

2
(2k + 1)(2l+ 1).

(3) Let us consider the operatorsNk(L̂H , R̂H ) in
the form

Nk
(
L̂H , R̂H

)
= 1

2h̄

∑
n,m

vknv
∗
km

(
2L̂nH R̂

m
H − L̂n+mH − R̂n+mH

)
,

and F̂k = L̂I . In this case, Liouville–von Neumann
equation (8) has the form of Lindblad equation [17–
19]:
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d

dt
ρt = − i

h̄
[H,ρt ]

(15)+ 1

2h̄

m∑
k=1

([
Vkρt ,V

†
k

] + [
Vk,ρtV

†
k

])
,

with operators

Vk =
∑
n

vknH
n, V

†
k =

∑
m

v∗
kmH

m.

If ρΨ = |Ψ 〉〈Ψ | is a pure stationary state, then
Nk(E,E)= 0 and this state is a stationary state of the
dissipative quantum system (15).

6. Dynamical bifurcations and catastrophes

Let us consider a special case of dissipative quan-
tum systems (8) such that the functionNk(E,E) be a
potential function, i.e., we have a potentialV (E) such
that

∂V (E)

∂Ek
=Nk(E,E),

whereEk = 〈Ψ |Hk|Ψ 〉, and

Nk(E,E)= 〈Ψ |(N†
k

(
L̂H , R̂H

)
I
)|Ψ 〉,

H =
s∑
k=1

Hk, Hk|Ψ 〉 = |Ψ 〉Ek.

In this case, the stationary condition (10) for dissipa-
tive system (8) is defined by critical points of the po-
tential V (E). If the system has one variableE, then
the functionN(E,E) is always potential function. In
general case, the functionsNk(E,E) are potential, if

∂Nk(E,E)

∂El
= ∂Nl(E,E)

∂Ek
.

Stationary states of dissipative quantum system (8)
with potential functionsNk(E,E) are depend on
critical points of potentialV (E). This allows to use
theory of bifurcations and catastrophes for parametric
set of functionsV (E). Note that a bifurcation in
a space of variablesE = {Ek | k = 1, . . . , s} is a
bifurcation in the space of eigenvalues of Hamilton
operatorHk.

For polynomial operatorsNk(L̂H , R̂H ) we have

Nk
(
L̂H , R̂H

)
ρ =

N∑
n=0

n∑
m=0

a(k)n,mH
mρHn−m.

In general case,m and n are multi-indexes. The
functionNk(E,E) is a polynomial

Nk(E,E)=
N∑
n=0

α(k)n E
n,

where

α(k)n =
n∑
m=0

a(k)n,m.

We can define the variablex = E − a, such that
functionNk(E,E)=Nk(x+a, x+a) has no the term
xn−1.

Nk(x + a, x + a)

=
N∑
n=0

α(k)n
(
x + a(k))n

=
N∑
n=0

n∑
m=0

α(k)n
n!

m!(n−m)!x
m
(
a(k)

)n−m
.

If the coefficient of the termxn−1 is equal to zero

α(k)n
n!

(n− 1)!a
(k) + α(k)n−1 = α(k)n na(k) + α(k)n−1 = 0,

then we have

a(k) = − α
(k)
n−1

nα
(k)
n

.

If we change parametersα(k)n , then can arise sta-
tionary states of dissipative quantum systems. For ex-
ample, the bifurcation with birth of linear oscillator
stationary state is a quantum analog of dynamical
Hopf bifurcation [15,16].

If the functionN(E,E) is equal to

N(E,E)= ±αnEn +
n−1∑
j=1

αjE
j , n� 2,

then potentialV (x) is

V (x)= ±xn+1 +
n−1∑
j=1

ajx
j , n� 2,

and we have catastrophe of typeA±n.
If we haves variablesEk, wherek = 1,2, . . . , s,

then quantum analogous of elementary catastrophes
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A±n, D±n, E±6, E7 andE8 can be realized. Let us
write the full list of typical set of potentialsV (x),
which leads to elementary catastrophes (zero-modal)
defined byV (x)= V0(x)+Q(x), where

A±n: V0(x)= ±xn+1
1 +

n−1∑
j=1

ajx
j

1, n� 2,

D±n: V0(x)= x2
1x2 ± xn−1

2

+
n−3∑
j=1

ajx
j

2 +
n−1∑
j=n−2

x
j−(n−3)
1 ,

E±6: V0(x)=
(
x3

1 ± x4
2

)

+
2∑
j=1

ajx
j

2 +
5∑
j=3

ajx1x
j−3
2 ,

E7: V0(x)= x3
1 + x1x

3
2

+
4∑
j=1

ajx
j
2 +

6∑
j=5

ajx1x
j−5
2 ,

E8: V0(x)= x3
1 + x5

2

+
3∑
j=1

ajx
j

2 +
7∑
j=4

ajx1x
j−4
2 .

HereQ(x) is nondegenerate quadratic form with vari-
ablesx2, x3, . . . , xs for A±n and parametersx3, . . . , xs
for other cases.

7. Fold catastrophe

In this section, we suggest an example of catastro-
pheA2 called fold.

Let us consider Liouville–von Neumann equation
for nonlinear quantum oscillator with friction

d

dt
ρt = − i

h̄
[H,ρt ] + α0

i

h̄
[q,p ◦ ρt ]

+ i

h̄
α1

[
q,p ◦ (H ◦ ρt )

]

(16)+ i

h̄
α2

[
q,p ◦ (

H ◦ (H ◦ ρt )
)]
,

whereH is Hamilton operator defined by (5).
In this case, we have

F̂ = i

h̄

(
L̂q − R̂q

)(
L̂p + R̂p

)
,

N
(
L̂H , R̂H

) = α0L̂I + α1

2

(
L̂H + R̂H

)

+ α2

4

(
L̂H + R̂H

)2
,

N(E,E)= 〈Ψ |N(H,H)|Ψ 〉 = α0 + α1E + α2E
2.

Stationary stateρΨ = |Ψ 〉〈Ψ | of harmonic oscillator
is stationary state of dissipative quantum system (16),
if

α0 + α1E + α2E
2 = 0.

If we define the variablex and parameterλ by

x =E − a, a = − α1

2α2
,

λ= 4α0α2 − α2
1

4α2
2

,

then we have stationary conditionN(E,E)= 0 in the
form

x2 − λ= 0.

If λ � 0, then we have no stationary states. Ifλ > 0,
then we have stationary states for discrete set of
parameter valuesλ. If the parametersa andλ are equal
to

a = h̄ω

2
(n1 + n2 + 1), λ= h̄2ω2 (n1 − n2)

2

4
,

wheren1 and n2 are non-negative integer numbers,
then dissipative quantum system has two stationary
state (7) of linear harmonic oscillator. The energy of
these states is equal to

En1 = h̄ω
(
n1 + 1

2

)
, En2 = h̄ω

(
n2 + 1

2

)
.

8. Conclusion

Dissipative quantum systems can have stationary
states. Stationary states of non-Hamiltonian and dis-
sipative quantum systems can coincide with station-
ary states of Hamiltonian systems. As an example we
suggest quantum dissipative systems with pure station-
ary states of linear harmonic oscillator. Using (8), it
is easy to get dissipative quantum systems with sta-
tionary states of hydrogen atom. For a special case of
dissipative systems we can use usual bifurcation and
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catastrophe theory. It is easy to derive quantum analo-
gous of classical dynamical bifurcations.

Dissipative quantum systems with two stationary
states can be considered as qubits. It allows to con-
sider quantum computer with dissipation as nondissi-
pative quantum computer. In general case, we can con-
sider dissipativen-qubit quantum systems as quantum
computer with mixed states and quantum operations,
not necessarily unitary, as gates [20,21]. A mixed
state (operator of density matrix) ofn two-level quan-
tum system is an element of 4n-dimensional opera-
tor Hilbert space. It allows to use quantum computer
model with 4-valued logic [21]. The gates of this
model are general quantum operations which act on
the mixed state.
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