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Abstract

We consider the description of the fractal media that uses #wtidnal integrals. We derive the fractional generalizations
of the equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with
non-integer mass dimensions. The fractional equation of continuity is considered.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction Derivatives and integrals of fractional order have
found many applications in recent studies of scaling
The application of fractals in physidé—3] is far phenomen§3-9]. It is interesting to use fractional in-

ranging, from the dynamics of fluids in porous me- tegration to consider the properties of the fractional
dia to resistivity networks in electronics. The comer- Media. Itis interesting to find the connection between
stone of fractals is the meaning of dimension, specif- the fractional integrals ahfractals. The natural ques-
ically the fractal dimensin. Fractal dimension can be  tions arise: what could be the physical meaning of
best calculated by box counting method which means the fractional integration? This physical meaning can
drawing a box of sizeR and counting the mass in- be following: the fractional integration can be con-
side. Fractal models of media are enjoying consider- sidered as an i.ntggration in_ some fractiona_l space. In
able popularity. This is due in part to the relatively order to use this interpretation we must define a frac-
small number of parameters that can define a fractal tional space. The first interpretation of the fractional

medium of great complexity and rich structure. space is connected with fractional dimension space.
The fractional dimension interpretation follows from

the formulas for dimensional regularizations. If we
E-mail addresstarasov@theory.sinp.msu.\.E. Tarasov). use the well-known formulas for dimensional regu-
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larizations[11], then we get that the fractional in- whereM is the mass of fractal mediun®k is a box
tegration can be considered as an integration in the size (or a sphere radius), aly, is a mass fractal di-
fractional dimension spadd0] up to the numerical mension. Amount of mass of a medium inside a box
factorI'(D/2)/(2x /2" (D)). This interpretation was  of size R has a power law relatiofl).

suggested in Ref10]. Fractal dimension can be calculated by box count-

In this Letter we consider the second physical inter- ing method which means drawing a box of skend
pretation of the coordinate fractional integration. This counting the mass inside. To calculate the mass fractal
interpretation follows from the fractional measure of dimension, take the logarith(d) both sides
space[10] that is used in the fractional integrals. We
consider the mass fractional dimension and the frac- IN(M) = Dy, In(R) + Ink.
tional generalizations of the equation that defines the
mass of the medium. We prove that thefra(_:tion_al inte- ¢ tal dimension. When we graph(M) as a func-
grals can be us_ed 0 _descrlbe fracte_ll me(_j|a with non- tion of In(R), we get a value of abou?,, which is the
integer mass dimensions. The fractional |_ntegrgls can ¢ tal dimension of fractal media.
be used not only to calculate the mass dimensions of
fractal media. Fractional integration can be used to by
describe the dynamical processes in the fractal me-
dia. Using fractional integrals, we can derive the frac-
tional generalization of the dynamical equations. The
fractional generalization of the Liouville equation was
suggested in Refl10]. Using the Fourier transform,
we can introduce fractional dynamical equations with
coordinate fractional derivatives.

In Section 2, the definition of mass dimension
and the fractional generalization of the medium mass
equation is considered. In Secti@nwe consider the
properties of the fractal media. We define fractality
and homogeneity properties of the media. In Section
we discuss the local density of the fractal media. In
Sectionb, the fractional generalizations of the equa- . . . . .
tions are considered. We prove that these equations can Let us consider the regioi, in 3-dimensional

. 3 . . . .
be used to describe fractal media. Finally, a short con- EuqhdeaTnhspacelE ' Wh?rfr:‘ IS th_e m|dp_0|r:jt of tth'j
clusion is given in Sectiof. region. The volume of the regiofV, is denote

by V(Wy). If the regionW, is a ball with the ra-
dius R4, then the midpoin# is a center of the ball,
and the volume/ (W) = (4/3)m R3.

The mass of the regioW, in the fractal media is
denoted byM (W,4). Let p(W4) is an average mass
density of the regiotW, of the fractal medium. This
density is defined by the equation

Log-log plot of M and R gives us the slop®,,, the

The power law relatioifl) can be naturally derived
using the fractional integral.

In order to describe the fractal media, we suggest
to use the space with fractional measure. In this case,
we can use the constant density distribution for homo-
geneous fractal media. If we uggx) = pg = const,
then we gefl). In the next sections, we prove that the
mass fractal dimension is connected with the order of
fractional integrals. Therefore the fractional integrals
can be used to describe fractal media with non-integer
mass dimensions.

3. Fractal media

2. Massfractal dimension

Equations that define the fractal dimensions have
the passage to the limit. This passage makes difficult
the practical applicatiorotthe real fractal media. The
other dim(_ansions, which can be easy cal_c_ulatgd from (Wa)=M(Wa)/V(Wa).
the experimental data, are used in empirical investi-
gations. For example, the mass fractional dimension  Inthe general case, the fractal media cannot be con-

[13,14]can be easy measured. sidered as continuous media. There are points and do-
The properties of the fractal media like mass obeys mains that do notfilled by the medium particles. These
a power law relation domains can be called the porous. The fractal media

b can be considered as continuous media for the scales
M(R) =kR"™™, 1) much more than mean value of the pore stze
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The fractal media can be characterized by the fol-
lowing property:

If the volumeV (W,) of the regionW, increase,
then the average mass density¥4) decrease

This property is satisfied for all pointd and all
regionsWy if the volume of region is much more the
average value of porous volum&(W,4) > V,,). For
the ball region of the fractal media, this property can
be described by the power law

p(Wa) = po(R/R,)P73,

where pg is a constant valueR is the radius of the
ball W4. HereR > R, whereR), is a mean radius of
the porous sphere.

The fractality of medium means that the mass of
this medium in any region of Euclidian spa&e in-
crease more slowly that the volume of this region. For
the ball regionW, we have

M(R)~RP, D<3.

The characteristic property of fractal media can be
considered in the following forms:

For all regions W4 and Wp in the fractal media
such thatW, c Wg and V(W,) < V(W3p), we have

that the corresponding average mass densities satisfy

the inequalityp (Wa) > p(Wp), i.e.,
WaCWpg, V(Wy) <V (Wp)
= p(Wa) > p(Wp). (2

We would like to consider the fractal medium that

have some homogeneous property. Now we shall give

the definition of homogeneous fractal media.

The fractal media is called homogeneous if the fol-
lowing property is satisfied:

For all regions W4 and Wp of the homogeneous
fractal media such that the volumes are equal
V(Wy4) = V(Wpg), we have average densities of these
regions are equal to@(W4) = p(Wp), i.e.,

V(Wa) =V (W) = p(Wa)=p(Wp). 3

Fractal media is called a homogeneous fractal me- _
L ) ) MW) =
dia if the average density value of the region does not

depends on the translation and rotation of this region.
Note that the wide class of the fractal media sat-
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colloid aggregateflL8], and aerogelgl9] as homoge-
neous fractal media. The dendrites cannot be consid-
ered as a homogeneous fractal medium.

We can generalize the fractal prope(8) for the
homogeneous fractal media. This generalization is
connected with consideration of two different points
and two different regions of the media. For the homo-
geneous fractal media we can remove the restriction
W4 C Wp in Eq. (2). These regions can satisfy the
condition W4 N Wp = (. Therefore we have the fol-
lowing property:

For all regions W4 and W of the homogeneous
fractal medium in the Euclidean spadé® that sat-
isfies the inequalityy (W4) < V(W3), we have that
the average densities are connected by the inequality
p(Wa) > p(Wp).

As the result, we have the following properties for
all regionsW, andWjp in the Euclidean spaoé3 with
homogeneous fractal media:

(1) Fractality: if V(Wy4) < V(Wpg), then p(Wy) >
o(Wp).

(2) Homogeneityif V(W4) = V(Wp),thenpo(Wy) =
p(Wg) andM (W4) = M (Wp).

4. Local density of fractal media

In the general case, the fractal media cannot be con-
sidered as continuous media. There are points and do-
mains that do not filled of the medium particles. These
domains can be called the porous. The fractal media
can be considered as continuous media for the scales
much more than mean value of the pore skg In
this case, we can use the integration and differentia-
tion.

In many cases, the fractal media are described by
the equations with the integer integration. However,
this description can be incect for fractal media. For
example, the mass of the medium is derived by the fol-
lowing equation

/p(r)d3r.

w

(4)

If we would like to use this equation with the integer

isfies the homogeneous property. In many cases, weintegral, then we cannot define the local mass density

can consider the porous me(i, 16], polymerg17],

p(r) for the homogeneous fractal media.
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In order to prove this statement, we consider the (1) Fractality: the mass of the regioW of fractal me-

points A, B, andC, such thatRy = |[AC| > Rp =
|BC|. Obviously, we require thatRy > R, and

Rp > R,. Let us describe the mass of the media us-

ing the integer integrals. The mass of the regitns

andWjp of the homogeneous fractal media are defined

by the equations
MW = [ pamrd®.
Wa

M(Wy) = / pp(r)dr.
Wa

®)

We use the indeXd andB in the local densities, since
we would like to prove thap,(r¢) # pp(rc). Obvi-
ously, that the local densitigs; andpp of the contin-
uous medium satisfy the conditign (r¢) = pp(re).

In order to satisfy the fractal property of the
medium and Eq(5), we must use the following lo-
cal densities:

pa(m)=po(Ir —ral/R,)" 3

)

(6)

Let us consider the poirit such thatAC| > |BC].
Using Eq.(6), we have the local density in this point
in the form

pe() = po(Ir —r5I/R,)" .

pa(re) = po(lACI/R,)" 3

pi(rc) = po(|BCI/Ry)

Since|AC| > |BC|, it follows thatpa(r¢) < pp(re).
Obviously, that we have two different values for one
point C of fractal medium. Therefore we cannot use
Eq. (4) with the integer integrals for the homogeneous
fractal media. We can use Ed) with the local density
p(r) ~ |r|P=3 only for the non-homogeneous distrib-

)

D-3

ution of the medium mass that has the single out point.

This point is defined by = 0.
As the result, we have that the fractality and homo-

geneity properties of the medium cannot be satisfied

simultaneously by Eq4) with the integer integrals.

dia obeys a power law relation
(V(W)Y3\P
R, ’
whereD < 3. For the ball region, we have

M(W) = Mo< (7)

M(R) = Mo(R/R,)?,

whereR = |r —r4].

(2) Homogeneitythe local density of homogeneous
fractal media are translation and rotation invariant
value that have the form

p(r) = po = const

(8)
We can realize these requirements by the equation

MW) = / () dup(r),
w

wherep is a new measure of the spagé. Using
Eq.(8), we have

MW) = po/d/w(f) = poVp(W),

w
whereVp (W) is the volume of the regioW . There-
fore we get that the homogeneous fractal media are
described by the measure spaék ) such that
po (V(W))D/3

Vp(W) = —
p(W) Mo\ "R,

whereV (W) is the usual volume of the regid#, i.e.,
we haveVp (W) ~ (V(W))P/3. If we consider the ball
region, we get

V(W) = Vo(R/R,)P

where D < 3, and Vo = (47/3)?/3(po/Mp). In the
next section, we prove that the natural generalization
of EqQ. (4) uses the fractional integration.

5. Fractional equations

Let us prove that the fractional integration allows
us to generalize E@4) such that the fractality and ho-

In order to satisfy these properties, we must use the mogeneity conditions are realized in the form

generalization of Eq(4) such that fractality and ho-
mogeneity properties can be realized in the form:

D/3

MW) ~ (VW) b3

V(W) ~ (V(W)) "',
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p(r) = const

are satisfied.
Let us define the fractional integral in Euclidean
spaceE? in the Rietz forn{12] by the equation

_1 p(r)d3r
(D)/lr o3P

whererg € W, and we use

(IPp)(ro) = 9)

I —rol =/ (x =302+ (b = y0)? + (= — 202
2P73/21r(D/2)
/2

UsingR =r — rg, we can be rewritten Eq9) in an
equivalent form

y3(D) =

(IPp)(ro) = y3 (D) / p(R+r0)|RIP34R.

w
Note thaty3(3— 0) # 1, where
237321 (3/2)
v3( ) DL@,OW’( ) r(1/2)

Using notationg9), we can write Eq(4) in the form

v33—0)(I°p)(ro).
The fractional generalization has the form

M(W) = y33-0)(1”p)(ro).

We use the factoy3(3 — 0) to derive Eq.(4) in the
limit D — 3 — 0. The fractional equation fa¥/ (W)
can be written in the equivalent form

23-Pr(3/2)
I'(D/2)

MW) =

M(W) = p(R+r19)RIP34%R,

(10)
where we use
23-P1(3/2)
rp/2
Here and later we use the initial points in the integrals
are set to zero.

If we have p(r) = po = const and the ball re-
gion W, then

23-P1(3/2)
I'(D/2)

y3(3—0)y3 (D) =

MW) = /|R|D—3d3R.
w
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Using the spherical coordinates, we get

n25-P1(3/2) D1
MW)="2 /% RP=1ar
W) =T e /
w
_ 27Prr(3)2) RD
~ DI(D/2) ’
whereR = |R|. As the result, we havaf/ (W) ~ RP

i.e., we derive Eq(7) up to the numerical factor.

We can suppose that E(L0) can be used for non-
homogeneous fractal media. In this case, the distribu-
tion depends o® = |R|, the angels, and the single out
point, which is defined by the vectos.

Let us consider the spherical-homogeneous fractal
media that have the single out point. These media are
defined by the following properties:

(1) For all regionsW4 and Wz in the Euclidian
spaceE?® such that|OA| = |OB| = R and R
much more than the size of the regioﬂ£3p(<<
V(W4) = V(Wp) < R®), we have the relation
pP(Wa) =p(Wp).

For all regiong¥4 such that the size of the region
is much smaller than distan¢@ A| = R (R3 <
V(W4) <« R3), we have that the density(W,)
depends on the distande= |0 A|.

()

For example, we can consider the power law in the
form

p(Wa)~[OAP. (11)

The example of the spherical-homogeneous fractal
media we can be realized in nature as dendrites.

If we consider the non-homogeneous fractal me-
dia, then the local density = p(R) have the single
out point. For the spherical symmetric case, we have
p(R) = p(JR|) and the equation can be represented in
the form

725-P1r(3/2) ;

_ D-1
mow) = / p(R)RPLdR,
0

whereR = |R|. For the simple casgll), we have the
distribution in the form

p(R) = p(IRI) = colRI”.
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Therefore the mass of fractal medium in the regin /p(Rz, t)|R,|D_38—|F;[dR0
is
Wo

I'(D/2)

23-Pr(3/2 _3
MW) = o2 L G/2) f RIPH-3 4R, - / p(Ro. 0)[Rol*3dRo.
w Wo

SinceWy is an arbitrary domain we have

PR, 1)dup(R:) = p(Ro, 0)dp(Ro),

Using the spherical coordinates, we have

R
25-Pr(3/2
MWy = o2 LG/ [ ppes-3,p or

I'(D/2) R
PR DIRIP2E = p(Ro, OIRolg
n2°-P1(3/2) Dip _ . . o .
=———R . Differentiating this equation in timg we obtain
(D+pI'(D/2) doRy. ) IR
. . L PRy, t -

In this case, the mass-dimension is equalltg = T;IRzID 38—R;

D+ B.

To calculateg, we can use the definition of the +p(R,,[)i<|R,|D38—Rt) =0
spherical-homogeneous fractal media and the gener- dt Ro
alization of the box counting method. This generaliza- Of
tion must use the box regior® that satisfy the con-  dp(R;, 1)
ditions V(W) <« R from the definition of spherical- T $2p(Re, PRy, 1) =0, (12)
homogeneous fractal media.

)

whered /dt is a total time derivative
d d dR; 0

di o1 di aR,

The function

6. Fractional equation of continuity

The fractional integrals can be used not only to QpRi1) = iln R.(D-3 IR,
calculate the mass dimensions of fractal media. Frac- ““?*""" "/ = 4; IRel 9Ro

tional integration can be used to describe the dynam- describes the velocity of volume change. ExR)is a

!C?I pr?cesses mdthg frf;](;gt.medlla. Usmlg frtgctm?al fractional Liouville equation in the Hamilton picture.
integrals, we can derive ional generalization o Using the equation

dynamical equationgl0]. Let us derive the fractional
analog of the equation of continuity for the fractional d4R: V, (x)
S, — VvVt )

media. dt
Let us consider a domaii for the timer = 0. In then the function2p is defined by
the Hamilton picture we have
d D3 aR;
2p(Ry, 1) = — | In|Ry| +In—
dt dRo
=(D—-3)— —
Wi Wo ( )|Rt| dt +8Rt dt
where we use the following notation As the result we have
(D=3)(Ry,Vy)  dV,
23-Dr(3/2 2pRi, ) = —————+ —,
duD(R)zl_(T(zg)|R|D’3d3R. ! IR:1? IR,
Using the replacement of variabld?, = R;(Rp), In the general caselX # 3), the functions2p is

whereRg is a Lagrangian variable, we get not equal to zero®p # 0) for solenoidal velocity
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fields (divw = 0). If D = 3, we haves2p # 0 only
for non-solenoidal velocity field. Therefore the flow in
the fractional medium is similar to the non-solenoidal
flow.

As the result, we have the following equation of
continuity for fractal media:

0p(R, 1) 0p(Rs, 1) (D —3)(R;,Vy)
+V; 5
ot aRz |Rl|

p(R[v [)
vV,
R;,t)—— =0.
+ p( 1> ) 8R[
For the homogemeous media, we have const and
the equation of continuity leads us to the equation
(D=3)(R;, Vi) EAZ
IR |2 R,
Therefore, we get the non-solenoidal flow of the ve-
locity divg V # 0.

PR, 1)+ p(Ry, 1)

7. Conclusion

The application of fractals in physics is far rang-
ing, from the dynamics of fluids in porous media to
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equation that defines the medium mass. This fractional
generalization allows us to realize the consistent de-
scription of the fractal mass dimension of the media.

The fractional integrals can be used in order to de-
scribe the dynamical processes in the fractal media.
The physics of fractal media can be successful de-
scribed by the fractional integration. Fractional inte-
gration approach is potentially more useful for physics
of fractal media than traditional methods that use the
integer integration.

Note that the Liouville equation is a cornerstone of
the statistical mechani¢26—28] The fractional gen-
eralization of the Liouville equation was suggested
in Ref. [10]. This fractional Liouville equation was
derived from the fractional generalization of the nor-
malization conditiorj10] that uses fractional integrals.
The fractional generalization of Liouville equation al-
lows us to derive the fractional analogs of Bogoli-
ubov equationf?9], Fokker—Planck equation, Enskog
transport equation, and hydrodynamic equations. Us-
ing the Fourier transform, we can get the fractional
dynamical equations with coordinate fractional deriv-
atives. Using the methods suggested in R@B8-32]
we can realize the Weyl quantization of the suggested

resistivity networks in electronics. The cornerstone of fractional equations.

fractals is the meaning ofimiension, specifically the
fractal dimension. Fractalimension can be best cal-
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