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Abstract

We consider the description of the fractal media that uses the fractional integrals. We derive the fractional generalizati
of the equation that defines the medium mass. We prove that the fractional integrals can be used to describe the m
non-integer mass dimensions. The fractional equation of continuity is considered.
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1. Introduction

The application of fractals in physics[1–3] is far
ranging, from the dynamics of fluids in porous m
dia to resistivity networks in electronics. The corn
stone of fractals is the meaning of dimension, spe
ically the fractal dimension. Fractal dimension can b
best calculated by box counting method which me
drawing a box of sizeR and counting the mass in
side. Fractal models of media are enjoying consid
able popularity. This is due in part to the relative
small number of parameters that can define a fra
medium of great complexity and rich structure.

E-mail address:tarasov@theory.sinp.msu.ru(V.E. Tarasov).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.01.024
Derivatives and integrals of fractional order ha
found many applications in recent studies of scal
phenomena[3–9]. It is interesting to use fractional in
tegration to consider the properties of the fractio
media. It is interesting to find the connection betwe
the fractional integrals and fractals. The natural que
tions arise: what could be the physical meaning
the fractional integration? This physical meaning c
be following: the fractional integration can be co
sidered as an integration in some fractional space
order to use this interpretation we must define a fr
tional space. The first interpretation of the fractio
space is connected with fractional dimension spa
The fractional dimension interpretation follows fro
the formulas for dimensional regularizations. If w
use the well-known formulas for dimensional reg
.
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larizations [11], then we get that the fractional in
tegration can be considered as an integration in
fractional dimension space[10] up to the numerica
factor�(D/2)/(2πD/2�(D)). This interpretation was
suggested in Ref.[10].

In this Letter we consider the second physical int
pretation of the coordinate fractional integration. T
interpretation follows from the fractional measure
space[10] that is used in the fractional integrals. W
consider the mass fractional dimension and the f
tional generalizations of the equation that defines
mass of the medium. We prove that the fractional in
grals can be used to describe fractal media with n
integer mass dimensions. The fractional integrals
be used not only to calculate the mass dimension
fractal media. Fractional integration can be used
describe the dynamical processes in the fractal
dia. Using fractional integrals, we can derive the fr
tional generalization of the dynamical equations. T
fractional generalization of the Liouville equation w
suggested in Ref.[10]. Using the Fourier transform
we can introduce fractional dynamical equations w
coordinate fractional derivatives.

In Section 2, the definition of mass dimensio
and the fractional generalization of the medium m
equation is considered. In Section3, we consider the
properties of the fractal media. We define fracta
and homogeneity properties of the media. In Sectio4,
we discuss the local density of the fractal media.
Section5, the fractional generalizations of the equ
tions are considered. We prove that these equations
be used to describe fractal media. Finally, a short c
clusion is given in Section7.

2. Mass fractal dimension

Equations that define the fractal dimensions h
the passage to the limit. This passage makes diffi
the practical application to the real fractal media. Th
other dimensions, which can be easy calculated f
the experimental data, are used in empirical inve
gations. For example, the mass fractional dimens
[13,14]can be easy measured.

The properties of the fractal media like mass ob
a power law relation

(1)M(R) = kRDm,
whereM is the mass of fractal medium,R is a box
size (or a sphere radius), andDm is a mass fractal di
mension. Amount of mass of a medium inside a b
of sizeR has a power law relation(1).

Fractal dimension can be calculated by box cou
ing method which means drawing a box of sizeR and
counting the mass inside. To calculate the mass fra
dimension, take the logarithm(1) both sides

ln(M) = Dm ln(R) + lnk.

Log–log plot ofM andR gives us the slopeDm, the
fractal dimension. When we graph ln(M) as a func-
tion of ln(R), we get a value of aboutDm which is the
fractal dimension of fractal media.

The power law relation(1) can be naturally derive
by using the fractional integral.

In order to describe the fractal media, we sugg
to use the space with fractional measure. In this c
we can use the constant density distribution for hom
geneous fractal media. If we useρ(x) = ρ0 = const,
then we get(1). In the next sections, we prove that t
mass fractal dimension is connected with the orde
fractional integrals. Therefore the fractional integr
can be used to describe fractal media with non-inte
mass dimensions.

3. Fractal media

Let us consider the regionWA in 3-dimensional
Euclidean spaceE3, whereA is the midpoint of this
region. The volume of the regionWA is denoted
by V (WA). If the regionWA is a ball with the ra-
dius RA, then the midpointA is a center of the ball
and the volumeV (WA) = (4/3)πR3

A.
The mass of the regionWA in the fractal media is

denoted byM(WA). Let ρ̄(WA) is an average mas
density of the regionWA of the fractal medium. This
density is defined by the equation

ρ̄(WA) = M(WA)/V (WA).

In the general case, the fractal media cannot be
sidered as continuous media. There are points and
mains that do not filled by the medium particles. Th
domains can be called the porous. The fractal me
can be considered as continuous media for the sc
much more than mean value of the pore sizeRp .
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The fractal media can be characterized by the
lowing property:

If the volumeV (WA) of the regionWA increase,
then the average mass densityρ̄(WA) decrease.

This property is satisfied for all pointsA and all
regionsWA if the volume of region is much more th
average value of porous volume (V (WA) � Vp). For
the ball region of the fractal media, this property c
be described by the power law

ρ̄(WA) = ρ0(R/Rp)D−3,

whereρ0 is a constant value;R is the radius of the
ball WA. HereR � Rp, whereRp is a mean radius o
the porous sphere.

The fractality of medium means that the mass
this medium in any region of Euclidian spaceE3 in-
crease more slowly that the volume of this region.
the ball regionW , we have

M(R) ∼ RD, D < 3.

The characteristic property of fractal media can
considered in the following forms:

For all regionsWA and WB in the fractal media
such thatWA ⊂ WB andV (WA) < V (WB), we have
that the corresponding average mass densities sa
the inequalityρ̄(WA) > ρ̄(WB), i.e.,

WA ⊂ WB, V (WA) < V (WB)

(2)�⇒ ρ̄(WA) > ρ̄(WB).

We would like to consider the fractal medium th
have some homogeneous property. Now we shall
the definition of homogeneous fractal media.

The fractal media is called homogeneous if the f
lowing property is satisfied:

For all regionsWA and WB of the homogeneou
fractal media such that the volumes are eq
V (WA) = V (WB), we have average densities of the
regions are equal toōρ(WA) = ρ̄(WB), i.e.,

(3)V (WA) = V (WB) �⇒ ρ̄(WA) = ρ̄(WB).

Fractal media is called a homogeneous fractal
dia if the average density value of the region does
depends on the translation and rotation of this regi

Note that the wide class of the fractal media s
isfies the homogeneous property. In many cases
can consider the porous media[15,16], polymers[17],
colloid aggregates[18], and aerogels[19] as homoge-
neous fractal media. The dendrites cannot be con
ered as a homogeneous fractal medium.

We can generalize the fractal property(2) for the
homogeneous fractal media. This generalization
connected with consideration of two different poin
and two different regions of the media. For the hom
geneous fractal media we can remove the restric
WA ⊂ WB in Eq. (2). These regions can satisfy th
conditionWA ∩ WB = ∅. Therefore we have the fo
lowing property:

For all regionsWA and WB of the homogeneou
fractal medium in the Euclidean spaceE3 that sat-
isfies the inequalityV (WA) < V (WB), we have that
the average densities are connected by the inequ
ρ̄(WA) > ρ̄(WB).

As the result, we have the following properties f
all regionsWA andWB in the Euclidean spaceE3 with
homogeneous fractal media:

(1) Fractality: if V (WA) < V (WB), then ρ̄(WA) >

ρ̄(WB).
(2) Homogeneity: if V (WA) = V (WB), thenρ̄(WA) =

ρ̄(WB) andM(WA) = M(WB).

4. Local density of fractal media

In the general case, the fractal media cannot be
sidered as continuous media. There are points and
mains that do not filled of the medium particles. The
domains can be called the porous. The fractal me
can be considered as continuous media for the sc
much more than mean value of the pore sizeRp . In
this case, we can use the integration and differen
tion.

In many cases, the fractal media are described
the equations with the integer integration. Howev
this description can be incorrect for fractal media. Fo
example, the mass of the medium is derived by the
lowing equation

(4)M(W) =
∫
W

ρ(r) d3r.

If we would like to use this equation with the integ
integral, then we cannot define the local mass den
ρ(r) for the homogeneous fractal media.
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In order to prove this statement, we consider
points A, B, andC, such thatRA = |AC| > RB =
|BC|. Obviously, we require thatRA � Rp and
RB � Rp . Let us describe the mass of the media
ing the integer integrals. The mass of the regionsWA

andWB of the homogeneous fractal media are defin
by the equations

M(WA) =
∫

WA

ρA(r) d3r,

(5)M(WA) =
∫

WA

ρB(r) d3r.

We use the indexA andB in the local densities, sinc
we would like to prove thatρA(rC) �= ρB(rC). Obvi-
ously, that the local densitiesρA andρB of the contin-
uous medium satisfy the conditionρA(rC) = ρB(rC).

In order to satisfy the fractal property of th
medium and Eq.(5), we must use the following lo
cal densities:

ρA(r) = ρ0
(|r − rA|/Rp

)D−3
,

(6)ρB(r) = ρ0
(|r − rB |/Rp

)D−3
.

Let us consider the pointC such that|AC| > |BC|.
Using Eq.(6), we have the local density in this poi
in the form

ρA(rC) = ρ0
(|AC|/Rp

)D−3
,

ρB(rC) = ρ0
(|BC|/Rp

)D−3
.

Since|AC| > |BC|, it follows thatρA(rC) < ρB(rC).
Obviously, that we have two different values for o
point C of fractal medium. Therefore we cannot u
Eq.(4) with the integer integrals for the homogeneo
fractal media. We can use Eq.(4)with the local density
ρ(r) ∼ |r|D−3 only for the non-homogeneous distri
ution of the medium mass that has the single out po
This point is defined byr = 0.

As the result, we have that the fractality and hom
geneity properties of the medium cannot be satis
simultaneously by Eq.(4) with the integer integrals.

In order to satisfy these properties, we must use
generalization of Eq.(4) such that fractality and ho
mogeneity properties can be realized in the form:
(1) Fractality: the mass of the regionW of fractal me-
dia obeys a power law relation

(7)M(W) = M0

(
(V (W))1/3

Rp

)D

,

whereD < 3. For the ball region, we have

M(R) = M0(R/Rp)D,

whereR = |r − rA|.
(2) Homogeneity: the local density of homogeneo

fractal media are translation and rotation invari
value that have the form

(8)ρ(r) = ρ0 = const.

We can realize these requirements by the equat

M(W) =
∫
W

ρ(r) dµD(r),

whereµD is a new measure of the spaceE3. Using
Eq.(8), we have

M(W) = ρ0

∫
W

dµD(r) = ρ0VD(W),

whereVD(W) is the volume of the regionW . There-
fore we get that the homogeneous fractal media
described by the measure space(E,µ) such that

VD(W) = ρ0

M0

(
V (W)

Rp

)D/3

,

whereV (W) is the usual volume of the regionW , i.e.,
we haveVD(W) ∼ (V (W))D/3. If we consider the bal
region, we get

VD(W) = V0(R/Rp)D

whereD < 3, andV0 = (4π/3)D/3(ρ0/M0). In the
next section, we prove that the natural generaliza
of Eq.(4) uses the fractional integration.

5. Fractional equations

Let us prove that the fractional integration allow
us to generalize Eq.(4) such that the fractality and ho
mogeneity conditions are realized in the form

M(W) ∼ (
V (W)

)D/3
, VD(W) ∼ (

V (W)
)D/3

,



V.E. Tarasov / Physics Letters A 336 (2005) 167–174 171

an

als

-

-
ibu-
ut

ctal
are

n

the

ctal

e-

ave
d in
ρ(r) = const

are satisfied.
Let us define the fractional integral in Euclide

spaceE3 in the Rietz form[12] by the equation

(9)
(
IDρ

)
(r0) = γ −1

3 (D)

∫
W

ρ(r) d3r
|r − r0|3−D

wherer0 ∈ W , and we use

|r − r0| =
√

(x − x0)2 + (y − y0)2 + (z − z0)2,

γ3(D) = 2Dπ3/2�(D/2)

�(1/2)
.

Using R = r − r0, we can be rewritten Eq.(9) in an
equivalent form

(
IDρ

)
(r0) = γ −1

3 (D)

∫
W

ρ(R + r0)|R|D−3 d3R.

Note thatγ3(3− 0) �= 1, where

γ3(3− 0) = lim
D→3−0

γ3(D) = 23π3/2�(3/2)

�(1/2)
.

Using notations(9), we can write Eq.(4) in the form

M(W) = γ3(3− 0)
(
I3ρ

)
(r0).

The fractional generalization has the form

M(W) = γ3(3− 0)
(
IDρ

)
(r0).

We use the factorγ3(3 − 0) to derive Eq.(4) in the
limit D → 3 − 0. The fractional equation forM(W)

can be written in the equivalent form

(10)

M(W) = 23−D�(3/2)

�(D/2)

∫
W

ρ(R + r0)|R|D−3 d3R,

where we use

γ3(3− 0)γ −1
3 (D) = 23−D�(3/2)

�(D/2)
.

Here and later we use the initial points in the integr
are set to zero.

If we have ρ(r) = ρ0 = const and the ball re
gionW , then

M(W) = ρ0
23−D�(3/2)

�(D/2)

∫
|R|D−3 d3R.
W

Using the spherical coordinates, we get

M(W) = π25−D�(3/2)

�(D/2)
ρ0

∫
W

RD−1 dR

= 25−Dπ�(3/2)

D�(D/2)
ρ0R

D,

whereR = |R|. As the result, we haveM(W) ∼ RD ,
i.e., we derive Eq.(7) up to the numerical factor.

We can suppose that Eq.(10) can be used for non
homogeneous fractal media. In this case, the distr
tion depends onR = |R|, the angels, and the single o
point, which is defined by the vectorr0.

Let us consider the spherical-homogeneous fra
media that have the single out point. These media
defined by the following properties:

(1) For all regionsWA and WB in the Euclidian
spaceE3 such that|OA| = |OB| = R and R

much more than the size of the regions (R3
p �

V (WA) = V (WB) � R3), we have the relation
ρ̄(WA) = ρ̄(WB).

(2) For all regionsWA such that the size of the regio
is much smaller than distance|OA| = R (R3

p �
V (WA) � R3), we have that the densitȳρ(WA)

depends on the distanceR = |OA|.

For example, we can consider the power law in
form

(11)ρ̄(WA) ∼ |OA|β.

The example of the spherical-homogeneous fra
media we can be realized in nature as dendrites.

If we consider the non-homogeneous fractal m
dia, then the local densityρ = ρ(R) have the single
out point. For the spherical symmetric case, we h
ρ(R) = ρ(|R|) and the equation can be represente
the form

M(W) = π25−D�(3/2)

�(D/2)

R∫
0

ρ(R)RD−1 dR,

whereR = |R|. For the simple case(11), we have the
distribution in the form

ρ(R) = ρ
(|R|) = c0|R|β.



172 V.E. Tarasov / Physics Letters A 336 (2005) 167–174

e
ner-
za-
-
-

to
rac-
am-
nal
f
l
al

e.
Therefore the mass of fractal medium in the regionW

is

M(W) = c0
23−D�(3/2)

�(D/2)

∫
W

|R|D+β−3 d3R.

Using the spherical coordinates, we have

M(W) = c0
π25−D�(3/2)

�(D/2)

R∫
0

RD+β−3 dR

= π25−D�(3/2)

(D + β)�(D/2)
RD+β .

In this case, the mass-dimension is equal toDm =
D + β .

To calculateβ , we can use the definition of th
spherical-homogeneous fractal media and the ge
alization of the box counting method. This generali
tion must use the box regionsW that satisfy the con
ditions V (W) � R from the definition of spherical
homogeneous fractal media.

6. Fractional equation of continuity

The fractional integrals can be used not only
calculate the mass dimensions of fractal media. F
tional integration can be used to describe the dyn
ical processes in the fractal media. Using fractio
integrals, we can derive the fractional generalization o
dynamical equations[10]. Let us derive the fractiona
analog of the equation of continuity for the fraction
media.

Let us consider a domainW0 for the timet = 0. In
the Hamilton picture we have

∫
Wt

ρ(Rt , t) dµD(Rt ) =
∫
W0

ρ(R0,0) dµD(R0),

where we use the following notation

dµD(R) = 23−D�(3/2)

�(D/2)
|R|D−3 d3R.

Using the replacement of variablesRt = Rt (R0),
whereR0 is a Lagrangian variable, we get
∫
W0

ρ(Rt , t)|Rt |D−3 ∂Rt

∂R0
dR0

=
∫
W0

ρ(R0,0)|R0|D−3 dR0.

SinceW0 is an arbitrary domain we have

ρ(Rt , t) dµD(Rt ) = ρ(R0,0) dµD(R0),

or

ρ(Rt , t)|Rt |D−3 ∂Rt

∂R0
= ρ(R0,0)|R0|D−3

0 .

Differentiating this equation in timet , we obtain

dρ(Rt , t)

dt
|Rt |D−3 ∂Rt

∂R0

+ ρ(Rt , t)
d

dt

(
|Rt |D−3 ∂Rt

∂R0

)
= 0,

or

(12)
dρ(Rt , t)

dt
+ ΩD(Rt , t)ρ(Rt , t) = 0,

whered/dt is a total time derivative

d

dt
= ∂

∂t
+ dRt

dt

∂

∂Rt

.

The function

ΩD(Rt , t) = d

dt
ln

(
|Rt |D−3 ∂Rt

∂R0

)

describes the velocity of volume change. Eq.(12) is a
fractional Liouville equation in the Hamilton pictur
Using the equation

dRt

dt
= Vt (x),

then the functionΩD is defined by

ΩD(Rt , t) = d

dt

(
ln|Rt |D−3 + ln

∂Rt

∂R0

)

= (D − 3)
1

|Rt |
d|Rt |
dt

+ ∂

∂Rt

dRt

dt
.

As the result we have

ΩD(Rt , t) = (D − 3)(Rt ,Vt )

|Rt |2 + ∂Vt

∂Rt

,

where we use∂|Rt |/∂Rt = Rt /|Rt |.
In the general case (D �= 3), the functionΩD is

not equal to zero (ΩD �= 0) for solenoidal velocity
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fields (divV = 0). If D = 3, we haveΩD �= 0 only
for non-solenoidal velocity field. Therefore the flow
the fractional medium is similar to the non-solenoid
flow.

As the result, we have the following equation
continuity for fractal media:

∂ρ(Rt , t)

∂t
+ Vt

∂ρ(Rt , t)

∂Rt

+ (D − 3)(Rt ,Vt )

|Rt |2 ρ(Rt , t)

+ ρ(Rt , t)
∂Vt

∂Rt
= 0.

For the homogemeous media, we haveρ = const and
the equation of continuity leads us to the equation

(D − 3)(Rt ,Vt )

|Rt |2 ρ(Rt , t) + ρ(Rt , t)
∂Vt

∂Rt

= 0.

Therefore, we get the non-solenoidal flow of the
locity divR V �= 0.

7. Conclusion

The application of fractals in physics is far ran
ing, from the dynamics of fluids in porous media
resistivity networks in electronics. The cornerstone
fractals is the meaning of dimension, specifically the
fractal dimension. Fractaldimension can be best ca
culated by box counting method which means draw
a box of sizeR and counting the mass inside. Wh
we graph ln(M) as a function of ln(R) we get a value
of aboutDm which is the fractal dimension of frac
tal media. The mass fractal dimensions of the me
can be easy measured by experiments. The experi
tal determination of the mass fractal dimension c
be realized by the usual box counting methods. T
mass dimensions were measured for porous mate
[15,16], polymers[17], and colloid aggregates[18].
For the porous materials the fractal dimension is p
portional to porosity of the medium. Fractal mode
of porous media are enjoying considerable popu
ity [20–25]. This is due in part to the relatively sma
number of parameters that can define a fractal po
medium of great complexity and rich structure.

We suppose that the concept of fractional integ
tion provides an alternative approach to describe
fractal media. In this Letter we prove that mass frac
media can be described by using the fractional in
grals. We consider the fractional generalizations of th
-

equation that defines the medium mass. This fractio
generalization allows us to realize the consistent
scription of the fractal mass dimension of the medi

The fractional integrals can be used in order to
scribe the dynamical processes in the fractal me
The physics of fractal media can be successful
scribed by the fractional integration. Fractional in
gration approach is potentially more useful for phys
of fractal media than traditional methods that use
integer integration.

Note that the Liouville equation is a cornerstone
the statistical mechanics[26–28]. The fractional gen
eralization of the Liouville equation was sugges
in Ref. [10]. This fractional Liouville equation wa
derived from the fractional generalization of the n
malization condition[10] that uses fractional integral
The fractional generalization of Liouville equation a
lows us to derive the fractional analogs of Bogo
ubov equations[29], Fokker–Planck equation, Ensko
transport equation, and hydrodynamic equations.
ing the Fourier transform, we can get the fractio
dynamical equations with coordinate fractional der
atives. Using the methods suggested in Refs.[30–32],
we can realize the Weyl quantization of the sugges
fractional equations.
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