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Abstract

We use the fractional integrals to describe fractal media. We consider the fractal media as special (“fractional”) continuous
media. We discuss the possible experimental testing of the continuous medium model for fractal media that is suggested in
[Phys. Lett. A 336 (2005) 167]. This test is connected with measure of period of the Maxwell pendulum with fractal medium
cylinder.
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PACS: 03.40.-t; 05.45.Df; 47.53.+n

1. Introduction sions about the behavior of fractal structuj@g]. For
example, if it is assumed that matter with a constant
The real structures of the media are characterized gensity is distributed over the fractal, then the mass
by an extremely complex and irregular geometty. of the fractal enclosed in a volume of characteristic
Because the methods of Euclidean geometry, which dimensionR satisfies the scaling lawf (R) ~ RP,

ordinarily deals with regular sets, are purely suited for \yhereas for a regulas-dimensional Euclidean ob-

describing objects such as in nature, stochastic mod-ject »7(R) ~ R". Let us assume that a medium can

els are taken into accouft]. Another possible way  he treated on a scalR as a stochastic fractal of di-

of describing a complex structure of the media is to mensjonalityD < 3 embedded in a Euclidean space

use fractal theory of sets of fractional dimensionality of dimensionality: = 3. Naturally, in real objects the

[1]. Although the fractal dimensionality does not re-  fractal structure cannot be observed on all scales. For

flect completely the geometric properties of the fractal, example, Katz and ThompsdB] presented experi-

it nevertheless permits a number of important conclu- mental evidence indicating that the pore spaces of a set
of sandstone samples are fractals in length extending
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In the general case, the fractal media cannot be wherex is a fractal mass dimension of cross-section of
considered as continuous media. There are points andthe cylinder (1< « < 2). The parameter can be cal-
domains that are not filled of the medium particles. We culated by box counting method for the cross-section
suggest to consider the fractal media as special (frac- of the cylinder.
tional) continuous media. We use the procedure of re-  As the result, we get that two homogeneous cylin-
placement of the fractal medium with fractal mass di- ders with the same masses and radiuses have the un-
mension by some continuous medium that is described equal moments of inertia. These cylinders have the
by fractional integrals. This procedure is a fractional different properties as Maxwell pendulums. The pe-
generalization of Christensen appro@h Suggested  riods of oscillation for these pendulums are connected
procedure leads to the fractional integration and dif- by the equation
ferentiation to describe fractal media. The fractional @)~ 2
integrals allow us to take into account the fractality of <To ) _ Aa+1
the media. In order to describe the fractal media by \ 7 3a+2)’
continuous medium model, we must use the fractional
integrals. The order of fractional integral is equal to WhereTy* is a period of oscillation of fractal medium
the fractal mass dimension of the media. More con- Maxwell pendulum. For example, the experiment can
sistent approach to describe the fractal media is con- be realized by using the sandstone cylinder. Note that
nected with the mathematical definition the integrals Katz and Thompsoif5] presented experimental evi-
on fractals. In Ref[8] was proved that integrals on dence indicating that the pore spaces of a set of sand-
net of fractals can be approximated by fractional inte- Stone samples are fractals and are self-similar over
grals. Therefore, we can consider the fractional inte- three to four orders of magnitude in length extending
grals as approximation of the integrals on frac{Zls from 10 angstrom to 100 pm.

In Ref.[9], we proved that fractional integrals can be

considered as integrals over the space with fractional

dimension up to numerical factor. To prove this state- 2. Fractal mediaand fractional integrals

ment, we use the well-known formulas of dimensional

regularizationg10]. The cornerstone of fractals is the meaning of di-

We use the fractional integrals to describe fractal mension, specifically the fractal dimension. Fractal
media. We consider the simple example of application dimension can be best calculated by box counting
of fractal integrals to describe the fractal medium. We method which means drawing a box of sikeand
discuss the possible experimental testing of the contin- counting the mass inside. The mass fractal dimension
uous medium model for fractal media that is suggested [1,11] can be easy measured for fractal media. The
in [12]. This test is connected with measure of period Properties of the fractal media like mass obeys a power
of the Maxwell pendulum with fractal medium cylin-  law relation
der. D

Itis known that the homogeneous medium cylinder M~R” (D <3, 2)
with massM and the radiu® such that the medium of  whereM is the mass of fractal mediurR,is a box size
cylinder has the integer mass dimension, has the mo- (or a sphere radius), ardlis a mass fractal dimension.

ments of inertia Amount of mass of a medium inside a box of sigze
X ) has a power law relatiof®).
12 = (1/2MR?, The power law relatioi2) can be naturally derived

where z is a cylinder axis. If the fractal medium by using the fractional |_ntegra_1l. Iq Rql2], we prove

: . that the mass fractal dimension is connected with the
cylinder has the mas#/, radius R, and the fractal . . .

. . : . order of fractional integrals. Therefore the fractional
mass dimension, then the moment of inertia has the . ) o
form integrals can be used to describe fractal media with
non-integer mass dimensions.

1@ =_% MR? 1) Let us consider the regioW, in 3-dimensional

Z

< a+2 Euclidean spacé&?, whereA is the midpoint of this
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region. The volume of the regioW, is denoted by
V(Wy). If the region W4 is a ball with the radius
R4, then the midpointd is a center of the ball, and
the volumeV (W,) = (4/3)nR;°;. The mass of the re-
gion W, in the fractal medium is denoted 3¢ (W ,).
The fractality of medium means that the mass of this
medium in any regioW, of Euclidean spacé&? in-
crease more slowly that the volume of this region. For
the ball region of the fractal medium, this property can
be described by the power lai@), whereR is the ra-
dius of the ballw,.

Fractal media are called homogeneous fractal me-
dia if the power law(2) does not depend on the trans-
lation of the region. The homogeneity property of the
medium can be formulated in the form: For all re-
gionsW, andWp of the homogeneous fractal medium
such that the volumes are equdlW,) = V(Wp),

469

Let us define the fractional integral in Euclidean space

E3 in the Riesz forn{19]. The fractional generaliza-

tion of EQ.(4) can be realized in the following form

MoW) = [ p0av. (5)
w

wheredVp = c3(D, X) d V3, and

23~ Dr(3/2)| -3
'(D/2)

Here we use the initial points in the fractional inte-
grals are set to zero. The numerical factor in ).
has this form in order to derive usual integral in
the limit D — (3 — 0). Note that the usual nu-
merical factor y;1(D) = I'(1/2)/2P=321(D/2),
which is used in Ref[19] leads toy; (3 — 0) =

c3(D,X) =

we have that the masses of these regions are equal(1/2)/237%/2I"(3/2) in the limit D — (3 — 0).

M(W,) = M(Wpg). Note that the wide class of the

In order to have the usual dimensions of the physi-

fractal media satisfies the homogeneous property. In cal values, we can use vectorand coordinates, y,

many cases, we can consider the porous méadid 5],
polymers[16], colloid aggregate§l7], and aerogels
[18] as homogeneous fractal media.

In Ref.[12], the continuous medium model for the

fractal media was suggested. Note that the fractality
and homogeneity properties can be realized in the fol-

lowing forms:

(1) Fractality: The mass of the ball regidi of
fractal medium obeys a power law relation

R\D
MD(W)=M0<F> . (3

whereD < 3, R is the radius of the ball, anA. is the

characteristic value. In the general case, we have the

scaling law relationMp(AW) = AP Mp (W), where
W ={Ax, xe W}.
(2) Homogeneity: The local density of homoge-

neous fractal media is translation invariant value that

have the formp (x) = pg = const.

These requirements can be realized by the frac- As the result, we havé! (W)

tional generalization of the equation

M3(W) =/p(X)dV3- 4

w

z as dimensionless values. For example, we can define

X =x1/x0,y = X2/x0, Z = x3/X0, Wherexq, x2, andxs

are the coordinates with the usual physical dimension.
We can rewrite Eq(5) in the form

3—D
M / p(X)|X|D_3d3x.
w

MpW) ="

(6)

If we consider the homogeneous fractal medium
(p(X) = po = const) and the ball regioW = {x: |x| <
R}, then we have
f Ix|P2dva.

Using the spherical coordinates, we get

M (W) — 23-Pr(3/2)
pW)=po———5— T (D/2)

_ 725°PT(3/2) D1
Mp(W) = T / XIP=2d]x
w
22 Par2 g,
~ DI(D/2)

~ RP, i.e., we derive
Eq.(3) up to the numerical factor. Therefore the fractal
medium with non-integer mass dimensi@éncan be
described by fractional integral of ordér.

Note that the interpretation of the fractional inte-
gration is connected with fractional dimensi¢®].
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This interpretation follows from the well-known for-

mulas for dimensional regularizatioft0]: The frac-

tional integral can be considered as a integral in the
fractional dimension space up to the numerical factor

I'(D/2)/(2xP/?T(D)).

3. Moment of inertia of fractal medium cylinder

Here we consider the cylindrical regidt that is de-
fined by the relations

L={z: 0<z< H},
S ={(x,): 0<x®+y* < R?}. (10)
Using the cylindrical coordinate®, r, z), we have

dS;=dxdy=rdrdg, (xz—i—yz)a/zzr“.

In this section, we consider the fractional general- 1herefore the moment of inertia is defined by

ization of the equation for moment of inertia.

The equation for the moment of inertia of homo-
geneous cylinder with integer mass dimension has the

well-known form

12(2) =po/(x2+y2) dSz/dZ. @)
S L

Herez is the cylinder axis, andS, = dx dy. The frac-
tional generalization of E(7) for moment of inertia
can be defined by the equation

1 = po [ 2+ ?)as. [ . ®)
S L
where we use the following notations

dSy = c(a)(,/xZ + y2>a72d52,

22—05
dSz:dxdy, C((X)Zm,
dly = I )
')

The numerical factor in Eq8) has this form in order
to derive usual integral in the limi#¢ — (2 — 0) and

B — (1—0). The parameterg andg are
l<a<?2 O0<p<1l

If « =2 andg =1, then Eq.(8) has form(7). The

parameter is a fractal mass dimension of the cross-
section of cylinder. This parameter can be easy calcu- M, =
lated from the experimental data. It can be calculated
by box counting method for the cross-section of the

cylinder.
Substituting Eq(9) in Eq. (8), we get

H
(2 +y2)"2as, f Pz,
0

7@ — poc(a)
: r'(B) J

R H

1@ — 27 poc(a) roz+ldr/Zﬂfle

T
_ 27 poc(a)
(@ +2BT(B)
As the result, we have

a+2H/3.

@ _ 27 poc(a)
¢ (. +2)BI'(B)

If « =2 andg =1, we getr? = (1/2)mpoR*H.
The mass of the usual medium cylindén) is de-
fined by the equation

M:po/dSz/dZ
S L

R H
=2n,oo/rdr/dz=n,ooR2H. (12)
0 0

R*T2HP. (11)

We can consider the fractional generalization of this

equation. The mass of fractal medium cylindé&n)
can be defined by the equation

My = po / dS, / dlg. (13)
N L

Using the cylindrical coordinates, we get
R H
ra_ldr/zﬂ_ldz
0

2 poc(er)
'(B) J

_ 27 poc(e) R P
afl(B)
As the result, we have

_ 2mpoc(a) ROEP
apT’(B)

o

(14)
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Substituting the mag4.4) in the moment of inertia
(11), we get the relation

JC

Z

2MO,R? (15)

o+
Note that Eq.(15) does not have the parametgr

If « =2, we have the well-known relatiorléz) =
(1/2) M R? for the homogeneous cylinder that has the
integer mass dimensial = 3 anda = 2.

If we consider the fractal medium cylinder with the

471

As the result, we get the acceleration of the cylinder

dvy Mg
ay = — = W
dt M+ 1}*/R?
= +. (17)
1+ 1% /(MR?)
Substituting Eq(15) in Eq. (17), we get
o+2
= g 18
T 20128 (18)

mass and radius that are equal to mass and radius of-qr the fractal mass dimension of cross-section of

the homogeneous medium cylinder with integer mass
dimension, then the moments of inertia of these cylin-
ders are connected by the equation

j@_ 2 o

¢ a+2° (16)

Here IZ@ is the moment of inertia for the cylinder
with integer mass dimensioP = 3 anda = 2. For
example, the parameter= 1.5 leads us to the rela-
tion 13/2 = (6/7)1/?. Using 1< « < 2, we have the
general relation

/3 <I/1P <1

4. Equation of motion for Maxwell pendulum

Maxwell pendulum is used to demonstrate transfor-
mations between gravitational potential energy and ro-
tational kinetic energy. Wind the string up on the small
axis, giving the device some initial gravitational poten-
tial energy. When released, this gravitational potential
energy is converted into rotational kinetic energy, with
a lesser amount of translational kinetic energy. We
consider the Maxwell pendulum as a cylinder that is
suspended by string. The string is wound on the cylin-
der.

The equations of motion for Maxwell pendulum
have the form

dvy d
Y =Mug—T, PGt

dt Lode
whereg is the acceleration such that- 9.81 (m/s?);
the axis is a cylinder axisT is a string tension. Using
vy = w; R, we have

M, — RT,

Iz(a) dvy

R?2 dt’

dvy _
dr

cylindera = 1.5, we geta, = (3/5)g ~ 6.87 (m/s?).
For the cylinder with integer mass dimension of
the cross-sectiono(= 2), we havea, = (2/3)g ~
6.54 (m/s%). The periodTp of oscillation for this
Maxwell pendulum is defined by the equation

To=4t0=4,/2L/ay,

whereL is a string length, and the timg satisfies the
equationaytg/z = L. Therefore, we get the relation
for the periods

_ @, @_ [4at])
=+/ay Jay " = 3at2)

Using 1< o < 2, we can see that

@
TO

i3 Y

®/9) < (11 17?)% < 1.

Note the parameter can be calculated by box count-
ing method for the cross-section of the cylinder. For
« =15, we have(T,* /T?)2 = 0.952.

5. Conclusion

In the general case, the fractal media cannot be
considered as continuous media. There are points and
domains that are not filled of the medium patrticles.
In Ref.[12], we suggest to consider the fractal media
as special (“fractional”) continuous media. We use the
procedure of replacement of the medium with fractal
mass dimension by some continuous medium that is
described by fractional integrals. This procedure is a
fractional generalization of Christensen approfgih
Suggested procedure leads to the fractional integration
and differentiation to describe fractal media. The frac-
tional integrals are considered as approximation of the
integrals on fractal§8]. Note that fractional integrals
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can be considered as integrals over the space with frac-be realized by using the sandstone. Note that Katz
tional dimension up to numerical fact{#,20,22] To and Thompsor5] presented experimental evidence
prove we use the well-known formulas of dimensional indicating that the pore spaces of a set of sandstone
regularizationg10]. The fractional integrals allow us  samples are fractals and are self-similar over three to
to take into account the fractality of the media. four orders of magnitude in length extending from 10

The fractional continuous models of fractal media
can have a wide application. This is due in part to the
relatively small numbers of parameters that define a
random fractal medium of great complexity and rich
structure. In many cases, the real fractal structure of

matter can be disregarded and the medium can be re-

placed by some “fractional” continuous mathematical
model. In order to describe the media with non-integer
mass dimension, we must use the fractional calcu-
lus. Smoothing of the microscopic characteristics over
the physically infinitesimal volume transform the ini-
tial fractal medium into “fractional” continuous model
that uses the fractional integrals. The order of frac-
tional integral is equal to the fractal mass dimension of
the medium. The fractional continuous model allows
us to describe dynamics for wide class fractal media
[13,21,23]

In this Letter we consider the simple experiment
that allows us to prove the fractional continuous media
model[12] for fractal media. This simple experiment
can prove that the fractional integrals can be used to
describe fractal media.

The fractal medium cylinder with the mass, ra-
dius R, and the fractal mass dimension, has the mo-
ment of inertia in the form

2
o+ ZMR ’
wherex is a fractal mass dimension of cross-section of
the cylinder (1< «a < 2). The parametez can be cal-
culated by box counting method for the cross-section
of the cylinder. As the result, we get that two homo-
geneous cylinders with equal masses and radiuses ca
have the unequal moments of inertia. These cylinders
have the different properties as Maxwell pendulums.
The periods of oscillation for these pendulums are
connected by the equation

(@)
I =

(Té“) )2 _4e+D
Téz) 3a+2)’
whereTé“) is a period of oscillation of fractal medium

Maxwell pendulum. For example, the experiment can

angstrom to 100 pm. The deviatid§® from 732 is
no more that 6 per cent. Therefore the precision of the
experiments must be high.
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