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Properties of the phase space of the standard map with memory are investigated. This map was obtained
from a kicked fractional differential equation. Depending on the value of the map parameter and the
fractional order of the derivative in the original differential equation, this nonlinear dynamical system
demonstrates attractors (fixed points, stable periodic trajectories, slow converging and slow diverging
trajectories, ballistic trajectories, and fractal-like structures) and/or chaotic trajectories. At least one type
of fractal-like sticky attractors in the chaotic sea was observed.
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1. Introduction

The standard map (SM) can be derived from the differential
equation describing kicked rotator. The description of many physi-
cal systems and effects (Fermi acceleration, comet dynamics, etc.)
can be reduced to the studying of the SM [1]. The SM provides the
simplest model of the universal generic area preserving map and it
is one of the most widely studied maps. The topics examined in-
clude fixed points, elementary structures of islands and a chaotic
sea, and fractional kinetics [1–3].

It was recently realized that many physical systems, includ-
ing systems of oscillators with long range interaction [4,5], non-
Markovian systems with memory ([6, Chapter 10], [7–11]), fractal
media [12], etc., can be described by the fractional differential
equations (FDE) [6,13,14]. As with the usual differential equations,
the reduction of FDEs to the corresponding maps can provide a
valuable tool for the analysis of the properties of the original sys-
tems. As in the case of the SM, the fractional standard map (FSM),
derived in [15] from the fractional differential equation describing
a kicked system, is perhaps the best candidate to start a general in-
vestigation of the properties of maps which can be obtained from
FDEs.
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As it was shown in [15], maps that can be derived from FDEs
are of the type of discrete maps with memory. One-dimensional
maps with memory, in which the present state of evolution de-
pends on all past states, were studied previously in [16–21]. They
were not derived from differential equations. Most results were ob-
tained for the generalizations of the logistic map.

In the physical systems the transition from integer order time
derivatives to fractional (of a lesser order) introduces additional
damping and is similar in appearance to additional friction [6,22].
Accordingly, in the case of the FSM we may expect transformation
of the islands of stability and the accelerator mode islands into at-
tractors (points, attracting trajectories, strange attractors). Because
the damping in systems with fractional derivatives is based on the
internal causes different from the external forces of friction [22,
23], the corresponding attractors are also different from the attrac-
tors of the regular systems with friction and are called fractional
attractors [22]. Even in one-dimensional cases [16–21] most of the
results were obtained numerically. An additional dimension makes
the problem even more complex and most of the results in the
present Letter were obtained numerically.

2. FSM, initial conditions

The standard map in the form

pn+1 = pn − K sin xn,

xn+1 = xn + pn+1 (mod 2π) (1)
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can be derived from the differential equation

ẍ + K sin(x)
∞∑

n=0

δ

(
t

T
− n

)
= 0. (2)

By replacing the second-order time derivative in Eq. (2) with
the Riemann–Liouville derivative 0 Dα

t one obtains a fractional
equation of motion in the form

0 Dα
t x + K sin(x)

∞∑
n=0

δ

(
t

T
− n

)
= 0 (1 < α � 2), (3)

where

0 Dα
t x(t) = Dm

t 0 Im−α
t x(t)

= 1

�(m − α)

dm

dtm

t∫
0

x(τ )dτ

(t − τ )α−m+1
(m − 1 < α � m),

(4)

Dm
t = dm/dtm , and 0 Iαt is a fractional integral. The initial conditions

for (3) are

(
0 Dα−1

t x
)
(0+) = p1,(

0 Dα−2
t x

)
(0+) = b. (5)

The Cauchy type problem (3) and (5) is equivalent to the Volterra
integral equation of the second kind [24–26]

x(t) = p1

�(α)
tα−1 + b

�(α − 1)
tα−2

− K

�(α)

t∫
0

sin[x(τ )]∑∞
n=0 δ( τ

T − n)dτ

(t − τ )1−α
. (6)

Defining the momentum as

p(t) = 0 Dα−1
t x(t), (7)

and performing integration in (6) one can derive the equation for
the FSM in the form (for the thorough derivation see [26])

pn+1 = pn − K sin xn, (8)

xn+1 = 1

�(α)

n∑
i=0

pi+1 Vα(n − i + 1)

+ b

�(α − 1)
(n + 1)α−2 (mod 2π), (9)

where

Vα(m) = mα−1 − (m − 1)α−1. (10)

Here it is assumed that T = 1 and 1 < α � 2. The form of Eq. (9)
which provides a more clear correspondence with the SM (α = 2)
in the case b = 0 is presented in Section 4 (Eq. (31)).

The second initial condition in (5) can be written as
(

0 Dα−2
t x

)
(0+) = lim

t→0+ 0 I2−α
t x(t)

= lim
t→0+

1

�(2 − α)

t∫
0

x(τ )dτ

(t − τ )α−1

= b (1 < α � 2), (11)

which requires b = 0 in order to have a solution bounded at t = 0
for α < 2. The assumption b = 0 leads to the FSM equations which
in the limiting case α = 2 coincide with the equations for the stan-
dard map under the condition x0 = 0.

In this Letter the FSM is taken in the form derived in [15] which
coincides with (8) and (9) if b = 0. It is also assumed that x0 = 0
and the results can be compared to those obtained for the SM with
x0 = 0 and arbitrary p0. As a test, for the SM and for the FSM with
α = 2 and the same initial conditions numerical calculations show
that phase portraits look identical.

System of Eqs. (8) and (9) can be considered either in a cylin-
drical phase space (x mod 2π ) or in unbounded phase space. The
second case is convenient to study transport. The trajectories in
the second case are easily related to the first case. The FSM has
no periodicity in p (the SM does) and cannot be considered on a
torus.

3. Stable fixed point

The SM has stable fixed points at (0,2πn) for K < Kc = 4. It is
easy to see that point (0,0) is also a fixed point for the FSM. Di-
rect computations using (8) and (9) demonstrate that for the small
initial values of p0 there is a clear transition from the convergence
to the fixed point to divergence when the value of the parameter
K crosses the curve K = Kc(α) on Fig. 1(a) from smaller to larger
values.

The following system describes the evolution of trajectories
near fixed point (0,0)

δpn+1 = δpn − Kδxn, (12)

δxn+1 = 1

�(α)

n∑
i=0

δpi+1 Vα(n − i + 1). (13)

The solution can be found in the form

δpn = p0

n−1∑
i=0

pn,i

(
2

Vαl

)i( Vαl K

2�(α)

)i

(n > 0), (14)

δxn = p0

�(α)

n−1∑
i=0

xn,i

(
2

Vαl

)i( Vαl K

2�(α)

)i

(n > 0). (15)

The origin of the terms in parentheses, as well as the definition

Vαl =
∞∑

k=1

(−1)k+1 Vα(k) (16)

will become clear in Section 5. Eqs. (12)–(16) lead to the following
iterative relationships

xn+1,i = −
n∑

m=i

(n − m + 1)α−1xm,i−1 (0 < i � n), (17)

pn+1,i = −
n∑

m=i

xm,i−1 (0 < i < n) (18)

with the initial and boundary conditions

pn+1,n = xn+1,n = (−1)n, pn+1,0 = 1,

xn+1,0 = (n + 1)α−1. (19)

From (17) and (18) it is clear that the series (14) and (15) are
alternating and it is natural to apply the Dirichlet’s test to verify
their convergence. This can be done by considering the totals

Sn =
n−1∑

xn,i

(
2

Vαl

)i

, (20)

i=0
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Fig. 1. Stability of the fixed point (0,0): (a) The fixed point is stable below the
curve K = Kc(α); (b) Values of S∞ and I∞ obtained after 20000 iterations of
Eqs. (22) and (23). As α → 2 the values S∞ and I∞ increase rapidly. For α = 1.999,
S∞ ≈ 276 and I∞ ≈ 552 after 20000 iterations; (c) An example of the typical evo-
lution of S∞ and I∞ over the first 200 iterations for 1 < α < 2. This particular
figure corresponds to α = 1.8; (d) Deviation of the values Sn and In from the val-
ues S∞ ≈ 2.04337 and I∞ ≈ 3.37416 for α = 1.8 during the first 20000 iterations
(this type of behavior remains for 1 < α < 2); (e) Evolution of trajectories with
p0 = 1.5 + 0.0005i, 0 � i < 200 for the case K = 3, α = 1.9. The line segments cor-
respond to the nth iteration on the set of trajectories with close initial conditions.
The evolution of the trajectories with smaller p0 is similar; (f) 105 iterations on
both of two trajectories for K = 2, α = 1.4. The one at the bottom with p0 = 0.3
is a fast converging trajectory. The upper trajectory with p0 = 5.3 is an example of
the ASCT in which p100000 ≈ 0.042.

In =
n−1∑
i=0

pn,i

(
2

Vαl

)i

. (21)

They obey the following iterative rules

Sn = nα−1 − 2

Vαl

n−1∑
i=1

(n − i)α−1 Si, S1 = 1, (22)

In = 1 − 2

Vαl

n−1∑
i=1

Si . (23)

Computer simulations show that values of Sn and In converge
to the values (−1)n+1 S∞ and (−1)n+1 I∞ depicted on Fig. 1(b).
Figs. 1(c), (d) show an example of the typical evolution of Sn and
In over the first 20000 iterations. It means that the condition of
convergence of δpn and δxn is

Vαl K
< 1. (24)
2�(α)
Numerical evaluation of the equality K = 2�(α)/Vαl perfectly re-
produces the curve on Fig. 1(a) obtained by the direct computa-
tions of (8) and (9).

Because not only the stability problem (12) and (13), but also
the original map (8) and (9), contains convolutions, the use of gen-
erating functions [27], which allows transformations of sums of
products into products of sums, could be utilized in the inves-
tigation of the FSM and some other maps with memory. As an
example, in the particular case of the stability problem (12) and
(13), the introduction of the generating functions

W̃α(t) = K

�(α)

∞∑
i=0

[
(i + 1)α−1 − iα−1]ti, (25)

X̃(t) =
∞∑

i=0

δxit
i, (26)

P̃ (t) =
∞∑

i=0

δpit
i, (27)

leads to

X̃(t) = p0W̃α(t)

K

t

1 − t(1 − W̃α(t))
, (28)

P̃ (t) = p0
1 + W̃α(t)

1 − t(1 − W̃α(t))
. (29)

Now the original problem is reduced to the problem of the asymp-
totic behavior at t = 0 of the derivatives of the analytic functions
X̃(t) and P̃ (t), which is still quite complex and is not considered
in this Letter.

In the region of the parameter space where the fixed point is
stable, the fixed point is surrounded by a finite basin of attrac-
tion, whose width W depends on the values of K and α. For
example, for K = 3 and α = 1.9 the width of the basin of at-
traction is 1.6 < W < 1.7. Simulations of thousands of trajectories
with p0 < 1.6 performed by the authors, of which only 200 (with
1.5 < p0 < 1.6) are presented in Fig. 1(e), show only converging
trajectories, whereas among 200 trajectories with 1.6 < p0 < 1.7
in Fig. 2(a) there are trajectories converging to the fixed point as
well as some trajectories converging to attracting slow diverging
trajectories (ASDT), whose properties will be discussed in the fol-
lowing section. Trajectories in Fig. 1(e) converge very rapidly. In
the case K = 2 and α = 1.4 in addition to the trajectories which
converge rapidly and ASDTs there exist attracting slow converging
trajectories (ASCT) (Fig. 1(f)).

4. Attracting slow diverging trajectories (ASDT)

As it can be seen from Fig. 2(a), the phase portrait on a cylinder
of the FSM with K = 3 and α = 1.9 contains only one fixed point
and ASDTs approximately equally spaced along the p-axis. This re-
sult corresponds to the fact that the standard map with K = 3
has only one central island. More complex structure of the stan-
dard map’s phase space for smaller values of K (for example for
K = 2 and K = 0.6) can explain more complex structure of the
FSM’s phase space, where periodic attracting trajectories with pe-
riods T = 4 (Fig. 2(b)), T = 2, and T = 3 (Fig. 2(c)) are present.

Each ASDT has its own basin of attraction (see Fig. 2(d)). Be-
tween those basins two initially close trajectories at first diverge,
but then converge to the same or different fixed point or ASDT.

Numerical evaluation shows that for ASDTs which converge to
trajectories along the p-axis (x → xlim = 0) in the area of stabil-
ity (which is the same as for the stability of the fixed point) the
following holds (for large n see Fig. 3(a))



282 M. Edelman, V.E. Tarasov / Physics Letters A 374 (2009) 279–285
Fig. 2. Phase space with ASDTs: (a) The same values of parameters as in Fig. 1(e) but p0 = 1.6 + 0.0005i; (b) 200 iterations on trajectories with p0 = 4 + 0.02i, 0 � i < 500
for the case K = 2, α = 1.9. Trajectories converging to the fixed point, ASDTs with x = 0, and period 4 attracting trajectories are present; (c) 2000 iterations on trajectories
with p0 = 2 + 0.04i, 0 � i < 50 for the case K = 0.6, α = 1.9. Trajectories converging to the fixed point, period 2 and 3 attracting trajectories are present; (d) The same
values of parameters as in Fig. 1(e) but p0 = 5 + 0.005i.
Fig. 3. Evaluation of the behavior of the ASDTs: (a) Momenta for two ASDTs with
xn ≈ 2πn in the unbounded space (in this example K = 2). The solid line is related
to a trajectory with α = 1.9 and its slope is 0.1. The dashed line corresponds to
a trajectory with α = 1.5 and its slope is 0.5; (b) Deviation of momenta from the
asymptotic formula for two ASDTs with xn ≈ 2πn in the unbounded space, α = 1.9,
and K = 2. The dashed line has p0 = 7 and the solid one p0 = 6; (c) Relative de-
viation of the momenta for the trajectories in (b) from the asymptotic formula;
(d) Deviation of the x-coordinates for the trajectories in (b) from the asymptotic
formula.

pn = Cn2−α. (30)

The constant C can be easily evaluated for 1.8 < α < 2. Consider
an ASDT with xlim = 0, T = 1, and 2π M , where M is an integer,
constant step in x in the unbounded space. Then Eq. (9) with b = 0
gives

xn+1 − xn = 1

�(α)

n∑
k=1

(pk+1 − pk)Vα(n − k + 1)

+ p1

�(α)
Vα(n + 1). (31)

For large n the last term is small (∼ nα−2) and the following holds

n∑
k=1

(pk+1 − pk)Vα(n − k + 1) = 2π M�(α). (32)

With the assumption pn ∼ n2−α it can be shown that for values
of α > 1.8 considered the terms in the last sum with large k are
small and in the series representation of Vα(n−k+1) it is possible
to keep only terms of the highest order in k/n. Thus, (32) leads to
the approximations

pn ≈ p0 + 2π M�(α)n2−α

α − 1
, (33)

xn ≈ −2π M(2 − α)�(α)

K (α − 1)nα−1
. (34)

In the case K = 2, α = 1.9 Figs. 3(b)–(d) show two trajectories with
M = 1 (initial momenta p0 = 6 and p0 = 7) approaching an ASDT:
the deviation from the asymptotic (33) and (34) and the relative
difference with respect to (33).

5. Period 2 stable trajectory

The SM has two stable points of the period T = 2 trajectory for
4 < K < 2π with the property

pn+1 = −pn, xn+1 = −xn. (35)
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Fig. 4. Period 2 stable trajectory: (a) An example of T = 2 attractor for K = 4.5,
α = 1.9. One trajectory with x0 = 0, p0 = 0.513; (b) pl of xl for the case of K = 4.5;
(c) pl of α for the case of K = 4.5; (d) xl of α for the case of K = 4.5; (e) pn − pl

for the trajectory in (a). After 1000 iterations |pn − pl| < 10−7; (f) xn − xl for the
trajectory in (a). After 1000 iterations |xn − xl | < 10−7.

The same points persist in the numerical experiments for the FSM
(Fig. 4(a)). These points are attracting most of the trajectories with
small p0. Assuming the existence of a T = 2 attracting trajectory,
it is possible to calculate the coordinates of its attracting points
(xl, pl) and (−xl,−pl). In this case from (8) and (9)

pl = K

2
sin(xl), (36)

xl = K

2�(α)
sin(xl)

∞∑
k=1

(−1)k+1 Vα(k). (37)

Finally, the equation for xl takes the form

xl = K

2�(α)
Vαl sin(xl), (38)

where

Vαl =
∞∑

k=1

(−1)k+1 Vα(k) (39)

and can be easily calculated numerically. From (38) the condition
of the existence of T = 2 trajectory

K > Kc(α) = 2�(α)

Vαl
, (40)

is exactly opposite to (24). It is satisfied above the curve K = Kc(α)

on Fig. 1(a). For α = 2 (40) produces the well-known condition
Fig. 5. Cascade of bifurcation type trajectories: (a) 120000 iterations on a single
trajectory with K = 4.5, α = 1.65, p0 = 0.3. The trajectory occasionally sticks to
a CBTT but then always recovers into the chaotic sea; (b) 100000 iterations on a
trajectory with K = 3.5, α = 1.1, p0 = 20. The trajectory very fast turns into a CBTT
which slowly converges to a fractal type area.

K > 4 for the SM. The results of calculations of the xl and pl for
the cases K = 4.5, 1 < α < 2 presented in Figs. 4(b)–(d) perfectly
coincide with the results of the direct computations of (8) and (9)
with b = 0. After 1000 iterations presented in Figs. 4(e), (f) the
values of deviations |pn − pl| and |xn − xl| are less than 10−7.

6. Cascade of bifurcations type trajectories (CBTT)

Period 2 stable trajectories have limited basins of attraction.
Trajectories that don’t fall into those areas reveal a diverse vari-
ety of properties, from period two slow attracting trajectories to
fractal type attractors and cascade of bifurcations type trajectories
(CBTT). Fig. 5(a) presents a single chaotic trajectory which sticks
to the areas similar to the cascade of bifurcations which are well
known for the logistic map. In Fig. 5(b) a single trajectory falls very
rapidly into one of the attracting CBTTs. Because the bifurcation di-
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Fig. 6. Examples of phase space for K > 2π : (a) An attracting ballistic trajectory with K = 6.908745, α = 1.999, p0 = 0.7; (b) A chaotic trajectory for K = 6.908745, α = 1.9.
agram of the logistic map has fractal properties (see for example
Chapter 2 in [28]), it is expected that the structure to which this
trajectory slowly converges also possesses fractal features.

The properties of this type of attractors, as well as the prop-
erties different types of observed during computer simulations
chaotic, attracting, and ballistic trajectories for K > 2π (see Fig. 6)
will be considered in the subsequent article.

7. Fractional attractors and their stability

The problems of existence and stability of the fractional attrac-
tors for the systems described by the FDEs were addressed in a
few recent papers. It was noticed in [22] that the properties of the
fractional chaotic attractors are different from the properties of the
“regular” chaotic attractors and may have some pseudochaotic fea-
tures. The problem of existence of multi-scroll fractional chaotic
attractors was considered in [29]. The problem of stability of the
stationary solutions (fixed points for ODEs) of systems described
by the fractional ODEs and PDEs was considered in [30–32]. In
the above mentioned articles the equations contained the Caputo
fractional derivatives, whereas in the present Letter the Riemann–
Liouville fractional derivative is used. This fact does not allow a
direct comparison of the results. The results [22,29–32] were sup-
ported by a relatively small number of computations and this is
understandable, taking into account all the difficulties of perform-
ing numerical simulations for the equations with fractional deriva-
tives.

The use of the FSM, which is equivalent to the original FDE,
allows performing thousands of runs of simulations of the kicked
fractional system with two parameters: K and α. The FSM also
allows making some analytic deductions and revealing some prop-
erties of the fractional attractors which were not reported before:

(a) The stability of the fixed point (0,0) of the FSM is different
not only from the stability of the fixed point in the domain of the
regular motion (zero Lyapunov exponent) of the SM, but also from
the stability of fixed attracting points of the regular (not fractional)
dissipative systems like, for example, the dissipative standard map
(Zaslavsky map) [33]. The difference is in the way in which trajec-
tories approach the attracting point. In the FSM this way depends
on the initial conditions. For example, in Fig. 1(f) there are two
trajectories approaching the same fixed point: one is fast spiraling
into the attractor and the other is slowly converging.

(b) Stable period 2 attracting trajectories exist only in the
asymptotic sense—they do not represent any real periodic solu-
tions. If the initial condition is chosen in a period two stable
attracting point, this trajectory will immediately jump out of this
point and where it will end depends on the values of K and α.

(c) All the FSM attractors exist in the sense that there are
trajectories which converge into those attractors. But if an initial
condition is taken on any of the attracting trajectories (except for
the fixed point), they will most likely not evolve along the same
trajectory.

8. Conclusion

In this Letter properties of the phase space of the FSM were
investigated. It was shown that islands of regular motion of the
SM in the FSM turn into attractors (points, attracting trajecto-
ries, and fractal-like structures). Properties of the attracting fixed
points, period two trajectories, ASCTs, and ASDTs were considered.
This consideration allows the description of the evolution of the
dynamical variable x of the original fractional dynamical system,
a system described by the FDE reducible to the FSM.

The explanation of the CBTTs, which are interesting phenom-
ena, requires further detailed investigation. Chaotic trajectories that
spend some time near CBTTs, which can be called “sticky attrac-
tors” in analogy to “sticky islands” of the SM, are good candidates
for the investigation of anomalous diffusion. Phase space transport
was not considered in this Letter. How general the properties of
the phase space of the FSM are will become clear after further in-
vestigations of different fractional maps, maps with memory which
can be derived from the FDEs, and particular those suggested in
[15], will be conducted. The fact that so many physical systems can
be reduced to studying of the SM gives a hope that those physi-
cal systems which can be reduced to studying the FSM will be
found.

Acknowledgements

We express our gratitude to H. Weitzner for many comments
and helpful discussions. The authors thank A. Kheyfits for suggest-
ing the use of generating functions to solve the FSM fixed point
stability problem. This work was supported by the Office of Naval
Research, Grant No. N00014-08-1-0121.

References

[1] B.V. Chirikov, Phys. Rep. 52 (1979) 263.
[2] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Springer,

Berlin, 1992.
[3] G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University

Press, Oxford, 2005.
[4] V.E. Tarasov, G.M. Zaslavsky, Chaos 16 (2006) 023110.
[5] V.E. Tarasov, J. Phys. A. 39 (2006) 14895.
[6] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[7] R.R. Nigmatullin, Theor. Math. Phys. 90 (1992) 242.
[8] F.Y. Ren, Z.G. Yu, J. Zhou, A. Le Mehaute, R.R. Nigmatullin, Physica A 246 (1997)

419.
[9] W.Y. Qiu, J. Lu, Phys. Lett. A 272 (2000) 353.

[10] R.R. Nigmatullin, Physica A 363 (2006) 282.
[11] V.E. Tarasov, G.M. Zaslavsky, Physica A 383 (2007) 291.
[12] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum

Mechanics, Springer, Wien, 1997.



M. Edelman, V.E. Tarasov / Physics Letters A 374 (2009) 279–285 285
[13] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives The-
ory and Applications, Gordon and Breach, New York, 1993.

[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

[15] V.E. Tarasov, G.M. Zaslavsky, J. Phys. A 41 (2008) 435101.
[16] A. Fulinski, A.S. Kleczkowski, Phys. Scr. 35 (1987) 119.
[17] E. Fick, M. Fick, G. Hausmann, Phys. Rev. A 44 (1991) 2469.
[18] K. Hartwich, E. Fick, Phys. Lett. A 177 (1993) 305.
[19] M. Giona, Nonlinearity 4 (1991) 911.
[20] J.A.C. Gallas, Physica A 195 (1993) 417;

J.A.C. Gallas, Physica A 198 (1993) 339 (Erratum).
[21] A.A. Stanislavsky, Chaos 16 (2006) 043105.
[22] G.M. Zaslavsky, A.A. Stanislavsky, M. Edelman, Chaos 16 (2006) 013102.
[23] A.A. Stanislavsky, Phys. Rev. E 70 (2004) 051103.
[24] A.A. Kilbas, B. Bonilla, J.J. Trujillo, Dokl. Math. 62 (2000) 222; Translated from
Dokl. Akad. Nauk 374 (2000) 445 (in Russian).

[25] A.A. Kilbas, B. Bonilla, J.J. Trujillo, Demonstratio Math. 33 (2000) 583.
[26] V.E. Tarasov, J. Phys. A 42 (2009) 465102.
[27] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley,

New York, 1968.
[28] R. Gilmore, M. Lefranc, The Topology of Chaos, Alice in Stretch and Sqeezeland,

Wiley, New York, 2002.
[29] M.S. Tavazoei, M. Haeri, Physica D 237 (2008) 2628.
[30] V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Chaos Solitons Fractals 41

(2009) 1095.
[31] V. Gafiychuk, B. Datsko, Phys. Lett. A 372 (2008) 4902.
[32] V. Gafiychuk, B. Datsko, V. Meleshko, Physica A 387 (2008) 418.
[33] G.M. Zaslavsky, Phys. Lett. A 69 (1978) 145.


	Fractional standard map
	Introduction
	FSM, initial conditions
	Stable fixed point
	Attracting slow diverging trajectories (ASDT)
	Period 2 stable trajectory
	Cascade of bifurcations type trajectories (CBTT)
	Fractional attractors and their stability
	Conclusion
	Acknowledgements
	References


