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Using the recently suggested vector calculus for non-integer dimensional space, we consider electrody-
namics problems in isotropic case. This calculus allows us to describe fractal media in the framework 
of continuum models with non-integer dimensional space. We consider electric and magnetic fields 
of fractal media with charges and currents in the framework of continuum models with non-integer 
dimensional spaces. An application of the fractal Gauss’s law, the fractal Ampere’s circuital law, the 
fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. 
Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective 
refractive index of non-integer dimensional space is suggested.
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1. Introduction

Fractal electrodynamics based on continuum models of fractal 
distribution of charges, currents and fields has been suggested in 
[1–5] ten years ago. These continuum models use the concept of 
power-law density of states and an application of fractional-order 
integration. It has been proved that D-order integration is con-
nected with D-dimensional integration [4]. Then these continuum 
models of fractal electrodynamics have been applied and devel-
oped in two directions: (a) fractional integral models by Baskin and 
Iomin [6,7], by Ostoja-Starzewski [8] to describe anisotropic fractal 
cases; (b) fractional (non-integer) dimensional models by Muslih, 
Baleanu and coauthors [9–11], by Zubair, Mughal, Naqvi [12–16], 
by Balankin with coauthors [17], to describe an anisotropic case, 
multipoles, and electromagnetic waves in fractional space. Effective 
continuum models of fractal electrodynamics, which is considered 
in papers [9–17], are based on Stillinger and Palmer–Stavrinou 
generalizations of the scalar Laplacian that are suggested in [18]
and [19], respectively. In these papers [18,19], the authors have 
proposed only the second order differential operators for scalar 
fields in the form of the scalar Laplacian in the non-integer di-
mensional space. The first order operators such as gradient, diver-
gence, curl operators, and the vector Laplacian are not considered 
in [18,19].

Possibility to use only the scalar Laplacian in non-integer di-
mensional space approach greatly restricts us in application of 
continuum models of fractal media. For example, Stillinger’s form 
of Laplacian cannot be used for the electric field E(r, t) and the 
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magnetic fields B(r, t) in electrodynamic continuum models with 
non-integer dimensional spaces.

In recent paper [21], it was suggested a generalization of vector 
differential operators of first orders (gradient, divergence, curl op-
erators) and the vector Laplacian for non-integer dimension spaces. 
This allows us to extend the scope of possible applications of con-
tinuum models with non-integer dimensional spaces. Using this 
new tool we can describe isotropic fractal media by using the non-
integer dimensional space approach.

For anisotropic fractal case, an attempt to suggest D-dimen-
sional vector operations of first order has been presented in the 
works [12–17]. In these papers, the gradient, divergence, and curl 
operators are suggested only as approximations of the square 
of the Palmer–Stavrinou form of Laplace operator. Recently [22]
a generalization of gradient, divergence, and curl has been sug-
gested without any approximation. The strict approach to contin-
uum models of anisotropic fractal media by the vector calculus on 
non-integer dimensional space has been described in [22], where 
a review of different approaches are also suggested.

It should not be confused fractal electrodynamics and fractional 
electrodynamics that is based on fractional-order vector calculus 
[23]. Note that first time the fractional calculus has been applied 
in the electrodynamics by Joseph Liouville about two hundred 
years ago [24]. An attempt to use a fractional calculus in electro-
dynamics by introducing some differential vector operations was 
made by Engheta [25–28]. In these papers, the fractional integral 
vector operations and fractional generalization of integral theo-
rems of Green, Stokes and Gauss are not considered. A rigorous 
self-consistent formulation of fractional differential and integral 
vector calculus was suggested in [23]. The fractional-order differ-
ential and integral vector operations are mutually agreed by the 
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use of the Caputo fractional derivatives as an inverse operation 
to the Riemann–Liouville fractional integration. Using this inter-
consistency of fractional differential and integral vector operators, 
the fractional Green’s, Stokes’ and Gauss’s theorems have been are 
proved. We can note that the theory of fractional-order derivatives 
and integrals has be applied to several specific electromagnetic 
problems (for example, see [29–37]).

It should be also noted that the term “fractal electrodynamics” 
is used in the narrow sense in engineering [38–40] to describe 
fractal antennas, arrays and apertures and electromagnetic wave 
scattering from fractal surfaces. We use this term in a broader 
sense to the theory of fractal distribution of charges, currents, 
fields, and to electrodynamics of fractal media, and electromag-
netic fields on fractal sets.

In this paper, we demonstrate an application of the vector cal-
culus on non-integer dimensional space, which is suggested in 
[21], to fractal electrodynamics in isotropic case. We give an ap-
plication of the fractal Gauss’s law, the fractal Ampere’s circuital 
law, the fractal Poisson equation for electric potential, and equa-
tion for fractal stream of charges.

2. D-dimensional integration and differentiation

Let us give some introduction to noninteger-dimensional in-
tegration and differentiation of integer orders (for details, see 
[18–22]).

The D-dimensional integration (see [18] and Section 4 of [20]) 
for scalar functions f (r) = f (|r|) can be defined in terms of ordi-
nary integration by the expression

∫
dD r f (r) =

∫
�D−1

d�D−1

∞∫
0

dr rD−1 f (r), (1)

where we can use∫
�D−1

d�D−1 = 2π D/2

�(D/2)
= S D−1. (2)

For integer D = n, equation (2) gives the well-known area Sn−1 of 
(n − 1)-sphere with unit radius.

As a result, the explicit expressions [20] of D-dimensional inte-
gration for arbitrary non-integer D has the form

∫
dD r f (|r|) = 2π D/2

�(D/2)

∞∫
0

dr rD−1 f (r). (3)

This equation reduced D-dimensional integration to ordinary one-
dimensional integration. It is obvious that the linearity and trans-
lation invariance follow from linearity and translation invariance of 
ordinary integration. The scaling and rotation covariance can also 
be derived from equation (3).

In the continuum models of fractal media, it is convenient 
to work with the physically dimensionless variables x/R0 → x, 
y/R0 → x, z/R0 → x, r/R0 → r, that yields dimensionless integra-
tion and dimensionless differentiation in D-dimensional space. In 
this case the physical quantities of fractal media have correct phys-
ical dimensions.

The volume of D-dimensional ball V D of radius R Is given by 
the expression

|V D | = π D/2

�(D/2 + 1)
R D , (4)

and surface area of the d-dimensional sphere Sd of radius R is 
given by
|Sd| = 2π(d+1)/2

�((d + 1)/2)
Rd. (5)

In general, the dimension d of the boundary Sd = ∂V D of the 
region V D of fractal medium and the dimension D of the region 
V D are not related by the equation d = D − 1. The difference be-
tween D and d defines a radial dimension αr = D −d of the fractal 
medium. If the radial dimension is equal to one, then (5) can be 
represented by

|Sd| = 2π D/2

�(D/2)
R D−1. (6)

The vector differential operators for non-integer dimension 
have been derived in [21] by analytic continuation in dimension 
from integer n to non-integer D .

For simplification we will consider two following cases:

1) Spherically symmetric case of fractal media, where scalar field 
ϕ and vector fields E, B are independent of angles

ϕ(r) = ϕ(r), E(r) = Er(r)er, B(r) = Br(r)er,

where er = r/r, r = |r| and Er = Er(r) Br = Br(r) are the radial 
component of E and B. In this case, we will work with rotation-
ally covariant functions only. This simplification is analogous to the 
simplification of integration over non-integer dimensional space 
suggested in [20].

2) Axially (cylindrical) symmetric case of fractal media, where the 
fields ϕ(r) and E(r) = Er(r) er , B(r) = Br(r) er are also axially sym-
metric. We assume that z-axis is directed along the axis of sym-
metry [21].

In [21], the equations of differential operators for non-integer 
D have been proposed in the following forms, where m = 1
and m = 2 describe spherically and axially (cylindrical) symmet-
ric cases, respectively.

The divergence in non-integer dimensional space for the vector 
field E = E(r) is

DivD
r E = ∂ Er(r)

∂r
+ D − m

r
Er(r). (7)

The gradient in non-integer dimensional space for the scalar 
field ϕ = ϕ(r) is

GradD
r ϕ = ∂ϕ(r)

∂r
er . (8)

The curl operator for the vector field E = E(r) is equal to zero, 
CurlD

r E = 0.
The scalar Laplacian in non-integer dimensional space for the 

scalar field ϕ = ϕ(r) is

S�D
r ϕ = DivD

r GradD
r ϕ = ∂2ϕ

∂r2
+ D − m

r

∂ϕ

∂r
. (9)

The vector Laplacian in non-integer dimensional space for the 
vector field E = Er(r) er is

V �D
r E = GradD

r DivD
r E

=
(∂2 Er(r)

∂r2
+ D − m

r

∂ Er(r)

∂r
− D − m

r2
Er(r)

)
er . (10)

For D = 3 equations (7)–(10) give the well-known expressions 
for the gradient, divergence, scalar Laplacian and vector Laplacian 
in R3 for fields ϕ = ϕ(r) and E(r) = Er(r) er .

The suggested operators allow us to reduce D-dimensional vec-
tor differentiations (7)–(10) to usual derivatives with respect to 
r = |r|. As a result, we can reduce partial differential equations 
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for fields in non-integer dimensional space to ordinary differen-
tial equations with respect to r. The fractal electrodynamics can be 
described by operators of integer orders.

We should note that Laplacian, suggested in [18], can be ap-
plied only for scalar fields and it cannot be used to describe vector 
fields E = Er(r) er and B = Br(r) er since Stillinger’s Laplacian for 
D = 3 is not equal to the usual vector Laplacian for R3. For the 
electric and magnetic vector fields E, B of isotopic fractal case, we 
should use the vector Laplace operator (10), which is proposed in 
[21]. Note that the gradient, divergence, curl operator and vector 
Laplacian are not considered in [18].

In general, the dimension D of the region V D of fractal media 
and the dimension d of boundary Sd = ∂V D of this region are not 
related by the equation d = D − 1, i.e.,

dim(∂V D) �= dim(V D) − 1, (11)

where dim(V D) = D . We denote dimension of the boundary 
Sd = ∂V D by

d = dim(Sd), (12)

and we will use the parameter

αr = D − d, (13)

which is a dimension of fractal medium along the radial direction. 
Using (13), the divergence operator can be written [21] in the form

DivD,d
r E = π(1−αr)/2 �((d + αr)/2)

�((d + 1)/2)

(
1

rαr−1

∂ Er(r)

∂r
+ d

rαr
Er(r)

)
.

(14)

This is (D, d)-dimensional divergence operator for fractal media 
with d �= D − 1. For αr = 1, i.e. d = D − 1, equation (14) gives (7).

The gradient for the scalar field ϕ(r) = ϕ(r) depends on the 
radial dimension αr [21] in the form

GradD,d
r ϕ = �(αr/2)

παr/2 rαr−1

∂ϕ(r)

∂r
er . (15)

Using the operators (15) and (14) for the fields ϕ = ϕ(r) and 
E = E(r) er , we get [21] the scalar and vector Laplace operators for 
the case d �= D − 1 by the equation

S�D,d
r ϕ = DivD,d

r GradD,d
r ϕ, V �D,d

r E = GradD,d
r DivD,d

r E.

(16)

Then the scalar Laplacian for d �= D − 1 for the field ϕ = ϕ(r) is

S�D,d
r ϕ = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

×
( 1

r2αr−2

∂2ϕ

∂r2
+ d + 1 − αr

r2αr−1

∂ϕ

∂r

)
, (17)

and the vector Laplacian for d �= D − 1 for the field E = Er(r) er is

V �D,d
r E = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

( 1

r2αr−2

∂2 Er(r)

∂r2

+ d + 1 − αr

r2αr−1

∂ Er(r)

∂r
− dαr

r2αr
Er(r)

)
er . (18)

Using �(1/2) = √
π , expressions (17) and (18) with αr = 1, 

which means d = D − 1, give (9) and (10).
The vector differential operators (15), (14), (17) and (18), which 

are suggested in [21], allow us to describe complex fractal media 
with the boundary dimension of the regions d �= D − 1 by the non-
integer dimensional space approach.
3. Gauss’s law of fractal electrodynamics

Gauss’s law may be expressed by the equation

	d
Sd

(E) = 1

ε0
Q D(V D), (19)

where ε0 is the electric constant, 	d
Sd

(E) is the electric flux 
through a closed surface Sd with non-integer dimension d enclos-
ing the region V D with fractal dimension D , such that ∂V D = Sd , 
and Q D(V D) is the total charge enclosed within Sd .

For spherically symmetric case of fractal media, the electric 
field E and the charge density ρ(r) are independent of angles

E(r) = Er(r)er, ρ(r) = ρ(r),

where Er = Er(r) is the radial component of E. For this case, the 
region V D is a ball with radius R , and the boundary Sd = ∂V D is a 
sphere.

The electric flux 	d
Sd

(E) is defined as a d-dimensional surface 
integral of the electric field. For spherically symmetric case, the 
electric flux 	d

Sd
(E) is defined by the equation

	d
Sd

(E) = 2π(d+1)/2

�((d + 1)/2)
Rd Er(R). (20)

The total charge in region V D with non-integer dimension 
dim(V D) = D is described by the integral

Q D(V D) =
∫

V D

ρ(r)dD r, (21)

where r is dimensionless vector variable. For a ball region with 
radius R and the charge density ρ(r) = ρ(r), the total charge is 
given by

Q D(V D) = 2π D/2

�(D/2)

R∫
0

dr ρ(r) rD−1. (22)

For the constant charge density ρ(r) = ρ0 = const, we have

Q D(V D) = ρ0 V D = π D/2 ρ0

�(D/2 + 1)
R D . (23)

This equation defines the charge of the fractal homogeneous ball 
with volume V D . For D = 3, equation (23) gives the well-known 
equation for charge of non-fractal ball Q 3(V 3) = (4ρ0π/3)R3 be-
cause �(3/2) = √

π/2 and �(x + 1) = x �(x).
Substitution of (20) and (22) into (19) represents Gauss’s law 

(19) of fractal electrodynamics in the form

Er(R) = π(D−d−1)/2 �((d + 1)/2)

ε0 Rd �(D/2)

R∫
0

dr ρ(r) rD−1 (24)

for spherically symmetric case. Equation (24) can be represented 
in the form

Er(R) = 1

ε0 εeff Rd

R∫
0

dr ρ(r) rD−1, (25)

where εeff is effective permittivity of the fractal medium

εeff = �(D/2)

π(D−d−1)/2 �((d + 1)/2)
. (26)

For example, we can consider hollow fractal ball with internal 
radius R1 and external radius R2 with the charge density ρ(r) =
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ρ0 rβ (β �= −D). Then the electric field for the ball point R1 < R <
R2 is

Er(R) = π(D−d−1)/2 �((d + 1)/2)

ε0 (D + β)�(D/2)

ρ0(R D+β − R D+β

1 )

Rd
. (27)

If R1 = 0, then

Er(R) = ρ0 π(αr−1)/2 �((d + 1)/2)

ε0 (D + β)�(D/2)
Rαr+β, (28)

where we use the radial dimension αr = D − d. For the constant 
charge density (ρ(r) = ρ0), equation (28) gives

Er(R) = ρ0 π(αr−1)/2 �((d + 1)/2)

ε0 D �(D/2)
Rαr , (29)

and the dependence of electric field Er(R) on the distance R from 
the center of the ball is defined by the radial dimension only.

4. Ampere’s circuital law of fractal electrodynamics

Ampere’s circuital law for fractal media states that the circula-
tion Eγ

Lγ
(B) of the magnetic field B around closed γ -dimensional 

line Lγ is proportional to the total current Id(Sd), passing through 
d-dimensional surface Sd (enclosed by Lγ ):

Eγ
Lγ

(B) = μ0 Id(Sd), (Lγ = ∂ Sd). (30)

For axially (cylindrical) symmetric case of fractal media, the 
magnetic field B(r) = Br(r) er and the total current density j(r) =
jr(r) er , are also axially symmetric, where Br = Br(r), jr = jr(r) are 
the radial component of B and j. The region Sd is a circle with ra-
dius R , and the boundary Lγ = ∂ Sd is a circle line.

The circulation Eγ
Lγ

(B) of the magnetic field B is γ -dimensional 
line integral of the vector field B around closed γ -dimensional 
line Lγ . For axially (cylindrical) symmetric case, the circulation 
Eγ

Lγ
(B) of the magnetic field B is defined by the equation

Eγ
Lγ

(B) = 2π(γ +1)/2

�((γ + 1)/2)
Rγ Br(R), (31)

and the total electric current Id(Sd) is

Id(Sd) = 2πd/2

�(d/2)

R∫
0

dr jr(r) rd−1. (32)

As a result, Ampere’s circuital law (30) of fractal electrodynam-
ics for axially (cylindrical) symmetric case has the form

Br(R) = μ0
π(d−γ −1)/2 �((γ + 1)/2)

�(d/2) Rγ

R∫
0

dr jr(r) rd−1, (33)

where we can use the second radial dimension α2 = d − γ . Equa-
tion (33) can be rewritten in the form

Br(R) = μ0 μeff

Rγ

R∫
0

dr jr(r) rd−1, (34)

where μeff is the effective permeability

μeff = π(d−γ −1)/2 �((γ + 1)/2)

�(d/2)
. (35)

For example, we can consider hollow fractal cylindrical current 
with internal radius R1 and external radius R2 with the current 
density jr(r) = j0 rβ (β �= −d). Then the magnetic field for the con-
ductor point is

Br(R) = μ0 j0 π(d−γ −1)/2 �((γ + 1)/2)

(d + β)�(d/2)

Rd+β − Rd+β

1

Rγ
. (36)

If R1 = 0, then

Br(R) = μ0 j0 π(α2−1)/2 �((γ + 1)/2)

(d + β)�(d/2)
Rα2+β . (37)

For the current density β = d − γ , the magnetic field in the con-
ductor point is constant.

For the constant electric current density ( j(r) = j0), equa-
tion (37) gives

Br(R) = μ0 j0 π(α2−1)/2 �((γ + 1)/2)

d �(d/2)
Rα2 , (38)

and the dependence of magnetic field Br(R) on distance R from 
the axis of the cylindrical conductor is defined by the radial di-
mension α2 = d − γ only.

5. Lorentz invariance and speed of light in fractal 
electrodynamics

In connection with the use of non-integer dimensions in the 
fractal electrodynamics, the question about preserving the Lorentz 
invariance arises for the suggested theory. In this regard, we note 
that non-integer dimensions are widely used in quantum field the-
ories, including quantum electrodynamics, to remove the ultravi-
olet divergences. These divergences can be removed by a singu-
lar redefinition of the parameters of the theory. This process is 
called the renormalization that are based on the regularization 
of the integrals. One of the best renormalization is based on the 
dimensional regularization [43,44,20]. The main advantage of di-
mensional regularization is that it preserves not only the Lorentz 
invariance and the Poincare invariance, but also it preserves the 
gauge invariance. This is a main motivation to consider the di-
mensional regularization as a best regularization in quantum field 
theories. The second advantage of the dimensional regularization 
is that the integrals do not change the form and the method of 
calculation has not changed also. As a result, we can state that the 
non-integer dimensional space approach allows us to preserve the 
Lorentz invariance, the Poincare invariance and the gauge invari-
ance in the fractal electrodynamics.

There is the second question about speed of light in the fractal 
electrodynamics. Gauss’s law and Ampere’s circuital law of frac-
tal electrodynamics allow us to conclude the following: the elec-
tric and magnetic fields in non-integer dimensional space can be 
considered as fields in an effective continuum with the effective 
permittivity εeff and the effective permeability μeff . The analogous 
conclusion has been suggested in [4]. Therefore, we can assume 
that the speed of light in fractional electrodynamics can be de-
fined by the equation

ceff = c√
εeff μeff

, (39)

where c is the speed of light in vacuum. Using effective permittiv-
ity (26) and effective permeability (35), the effective speed of light 
(39) is defined by the equation

c1
eff = c

√
π(D−2d+γ )/2 �((d + 1)/2)�(d/2)

�(D/2)�((γ + 1)/2)
. (40)

The refractive index of fractal (or non-integer dimensional space) 
is
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n(1)

eff (D,d, γ ) =
√

�(D/2)�((γ + 1)/2)

π(D−2d+γ )/2 �((d + 1)/2)�(d/2)
. (41)

For non-fractal case, which is defined by integer dimensions D = 3, 
d = 2 and γ = 1, we get n(1)

eff (D, d, γ ) = 1 and ceff = c. It should be 
noted that fractal case with d = D − 1 and γ = d − 1 is character-
ized by n(1)

eff = 1 and ceff = c. For D ∈ (0; 3], γ ∈ (0; 1] and d = 2, 

we have n(1)

eff ≥ 1. For D = 3, γ = 1 and d ∈ [2; 3), we have n(1)

eff ≥ 1. 
An anomalous fractal case is D = 3, γ = 1 and d ∈ (0; 2), when 
n(1)

eff < 1, that can be considered as an “effective tachyon mode”.
Using the wave equations for E, B, and ϕ , we get the effective 

speed of light

c(2)

eff = c

n(2)

eff (d,αr)
(42)

with the refractive index of fractal (or non-integer dimensional 
space) in the form

n(2)

eff (d,αr) =
√

�((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)
, (43)

where αr = D −d. It is easy to see that n(2)

eff (d, αr) does not depend 

on γ . For d = 2 and αr = 1, we have n(2)

eff (d, αr) = 1 and ceff = c. 
It is important to note that for all d ∈ (0; 2] and αr ∈ (0; 1], we 
have n(2)

eff (d, αr) ≥ 1 and ceff ≤ c. As a result, we get that the effec-
tive tachyon mode cased by non-integer dimensionality of space 
does not exist for the propagation of electromagnetic waves in 
non-integer dimensional spaces.

6. Poisson equation for electric potential in fractal 
electrodynamics

In fractal electrodynamics, the Poisson equation for electric po-
tential has the form

S�D,d
r ϕ = − 1

ε0
ρ, (44)

where S�
D,d
r is the scalar Laplacian. Using (17), the Poisson equa-

tion (44) can written as

�((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

( 1

r2αr−2

∂2ϕ

∂r2
+ d + 1 − αr

r2αr−1

∂ϕ

∂r

)

= − 1

ε0
ρ. (45)

If αr = 1 (i.e. d = D − 1), then we have the equation

∂2ϕ(r)

∂r2
+ D − m

r

∂ϕ(r)

∂r
= − 1

ε0
ρ(r), (46)

where m = 1 and m = 2 correspond to spherically and axially 
(cylindrical) symmetric cases, respectively.

Let us consider a uniformly fractal charged infinite circular 
cylinder of radius R with a constant charge density and non-
integer dimension 2 < D ≤ 3. Due to the axial symmetry of the 
charge distribution the potential is also axially symmetric. In the 
framework of non-integer dimensional space approach, the Pois-
son equation for scalar potential ϕ(r) created by an infinite circular 
cylinder has the form

∂2ϕ(r)

∂r2
+ D − 2

r

∂ϕ(r)

∂r
= − 1

ε0
ρ(r), (47)

where
ρ(r) =
{
ρ0 0 < r < R,

0 r > R.
(48)

The general solution of equation (47) is

ϕ(r) =
{

C1 + C2 r3−D − ρ

2ε0 (D − 1)
r2 0 < r < R,

C3 + C4 r3−D r > R,

(49)

where C1, C2, C3, C4 are the integration constants, and 2 < D ≤ 3. 
For the case D = 3, the general solution of equation (47) has the 
well-known form

ϕ(r) =
{

C1 + C2 ln(r) − ρ

4ε0
r2 0 < r < R,

C3 + C4 ln(r) r > R.
(50)

The electric field

E(r) = −GradD
r ϕ(r) = −∂ϕ(r)

∂r
er (51)

for potential (49) is

E(r) =
{(

(D − 3) C2 r2−D + ρ

ε0 (D − 1)
r
)

er 0 < r < R,

(D − 3) C4 r2−D er r > R.

(52)

The electric field E(r) must be finite at all points. Therefore we 
should use C2 = 0 since r2−D → ∞ for r → 0 for 2 < D ≤ 3. 
The potential can be normalized by the condition ϕ(0) = 0, then 
C1 = 0. Because there are no surface charges, then the electric 
field (51) at the surface of the cylinder r = R is continuous, i.e. 
the derivative of the potential should be continuous. The condi-
tions of continuity of the potential and its derivative at r = R give 
two algebraic equations that allow us to determine the remaining 
two constants C3 and C4 by the equations

C3 = − ρ R2

2ε0 (D − 3)
, C4 = ρ R D−1

ε0 (D − 1) (D − 3)
. (53)

As a result, the potential is

ϕ(r) =

⎧⎪⎨
⎪⎩

− ρ

2ε0 (D − 1)
r2 0 < r < R,

− ρ R2

2ε0 (D − 3)
+ ρ R D−1

ε0 (D − 1) (D − 3)
r3−D r > R.

(54)

Using (51) and (54), the electric field has the form

E(r) =

⎧⎪⎨
⎪⎩

ρ

ε0 (D − 1)
r er 0 < r < R,

ρ R D−1

ε0 (D − 1)
r2−D er r > R.

(55)

For D = 3, we get the well-known results of non-fractal case.
Equation (55) can be represented in the form

E(r) =

⎧⎪⎪⎨
⎪⎪⎩

ρ

2ε0εeff ,in
r er 0 < r ≤ R,

1

2π ε0 εeff ,out

τD

rD−2
er r > R,

(56)

where εeff ,in and εeff ,out are effective permittivity of fractal medium

εeff ,in = D − 1

2
, εeff ,out = D − 1

2 π(3−D)/2 �((D − 1)/2)
, (57)

and τD is the charge per unit length

τD = ρ V D−1 = ρ
π(D−1)/2 R D−1

�((D + 1)/2)
. (58)

For D = 3, we have τ3 = ρ π R2 for non-fractal charge cylinder.
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The electric field in the fractal homogeneous charged cylinder 
is analogous to the non-fractal case up to the factor εeff ,in . We 
have a linear dependence on the distance from the cylinder axis for 
0 < r ≤ R . Electric field outside the fractal charged cylinder differs 
from non-fractal case. For r ≥ R , we have power-law dependence 
on the distance from the cylinder axis. In addition the electric field 
outside the cylinder is reduced by the effective permittivity εeff ,out .

7. Fractal stream of charges

Let us find the current density as a function of distance r from 
the axis of a radially symmetrical parallel stream of charges if the 
magnetic field B(r) = Br(r)er inside the stream varies as Br(r) =
b ra , where a and b are positive constants.

Using the circulation theorem (33) in the form

R∫
0

dr jr(r) rd−1 = �(d/2) Rγ

μ0 π(d−γ −1)/2 �((γ + 1)/2)
Br(R), (59)

and using Br(R) = b Ra , we get the equation

R∫
0

dr jr(r) rd−1 = b �(d/2)

μ0 π(d−γ −1)/2 �((γ + 1)/2)
Ra+γ . (60)

The differentiation of (60) with respect to R gives

jr(r) = b �(d/2)

μ0 π(d−γ −1)/2 �((γ + 1)/2)
Ra+1−α2 , (61)

where we use the radial dimension α2 = d − γ . If a = α2 − 1, then 
the current density jr(r) does not depend on distance r from the 
axis of charge fractal stream.

8. Conclusion

Recently we propose [21,22] the vector calculus for non-integer 
dimensional space, which includes generalizations of differential 
operators of first orders (gradient, divergence, curl operators) and 
the vector Laplace operator. This D-dimensional vector calculus 
allows us to describe isotropic and anisotropic fractal media in 
the framework of continuum models with non-integer dimensional 
spaces. It allows us to extend the scope of possible applications of 
models with non-integer dimensional spaces. In this paper, we ap-
ply vector calculus for non-integer dimensional space suggested in 
[21] to describe fractal electrodynamics of isotropic fractal distri-
butions of charges, currents, fields and media. Let us note some 
possible generalization of the approach that is considered in this 
paper.

We assume that the fractal chains and lattices, which are sug-
gested in [41] (see also [42]), with charged particles in lattice sites 
can be characterized by fractal distributions of charges and the 
fractal electrodynamics can be used to describe electromagnetic 
fields of these chains and lattices.

As we noted in introduction, we should distinguish between 
two theories: the fractal electrodynamics and the fractional elec-
trodynamics. Fractional theory is based on fractional vector cal-
culus [23]. Note that the fractional-order integrals and derivatives 
of the Riesz type can be generalized for non-integer dimensional 
space by continuation in dimension. We assume that it can be used 
to unite the fractal electrodynamics and the fractional electrody-
namics into one general theory. For this aim, we should formulate 
a fractional-order vector calculus that is based on the Riesz type 
of derivatives and integrals, and then this calculus should be gen-
eralized for non-integer dimensional spaces. This approach will be 
proposed in the next paper.
The D-dimensional vector calculus suggested in [21] cannot be 
used to describe anisotropic fractal media and fields. To describe 
anisotropic fractal media the first order vector differential opera-
tors (grad, div, curl) are suggested in [12–17], where these opera-
tors are defined as approximations of the square of the Palmer–
Stavrinou form of Laplace operator. Generalizations of gradient, 
divergence, and curl operators to anisotropic fractal case without 
approximations have been suggested in [22]. Anisotropic fractal 
media and fields in the framework of continuum models can be 
described by the D-dimensional vector calculus that is proposed in 
paper [22]. Anisotropic fractal electrodynamics will be suggested in 
the next paper.
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