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There are different approaches to discretization of the Schrödinger equation with some approximations. In 
this paper we derive a discrete equation that can be considered as exact discretization of the continuous 
Schrödinger equation. The proposed discrete equation is an equation with difference of integer order 
that is represented by infinite series. We suggest differences, which are characterized by power-law 
Fourier transforms. These differences can be considered as exact discrete analogs of derivatives of integer 
orders. Physically the suggested discrete equation describes a chain (or lattice) model with long-range 
interaction of power-law form. Mathematically it is a uniquely highlighted difference equation that 
exactly corresponds to the continuous Schrödinger equation. Using the Young’s inequality for convolution, 
we prove that suggested differences are operators on the Hilbert space of square-summable sequences. 
We prove that the wave functions, which are exact discrete analogs of the free particle and harmonic 
oscillator solutions of the continuous Schrödinger equations, are solutions of the suggested discrete 
Schrödinger equations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Schrödinger equation in coordinate representation is a par-
tial differential equation that describes dynamics of pure quan-
tum state of Hamiltonian quantum system [1]. In the general 
form of quantum theory, we should consider dynamics of non-
Hamiltonian and open quantum systems, where quantum states 
are described by density operator [2]. The one-dimensional time-
dependent Schrödinger equation in coordinate representation has 
the form

i h̄
∂�(x, t)

∂t
= − h̄2

2μ

∂2�(x, t)

∂x2
+ V (x)�(x, t), (1)

where μ is the reduced mass, V (x) is the potential energy, i is the 
imaginary unit, h̄ is the Planck constant and �(x, t) is the wave 
function. Usually discretization of equation (1) is realized by us-
ing the standard central difference operator with the step a (for 
example, see [3,4]) for the second-order derivative

i h̄
d�n(t)

dt
= − h̄2

2μ

1

a2

(
�n+1(t)−2�n(t)+�n−1(t)

)
+ Vn �n(t),

(2)

where �n(t) = �(n a, t). It is well-known that the finite difference 
of integer order n cannot be considered as an exact discretization 
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of the derivative of this order [5]. For example, the central finite 
difference c�2

a of second order with step a can be represented [6]
in the form

c�2
a = 2

∞∑
m=1

a2m 1

(2m)!
∂2m

∂x2m
(3)

by using the well-known relations

exp

(
a

∂

∂x

)
�(x, t) = �(x + a, t). (4)

There are various approaches to discretization of the Schrödinger 
equation with some approximations [4]. In this paper, we do not 
consider these approaches. We consider a problem of an exact dis-
cretization of the continuous Schrödinger equation. The problems 
of exact discretization have been formulated in [28–30]. Mick-
ens proved that for differential equations there are “locally exact” 
finite-difference schemes, where the local truncation errors are 
zero. In this paper, we propose new approach that is based on 
new difference operators, which can be considered as an exact dis-
cretization of derivatives of integer orders. Using this approach, we 
get an exact discretization of the continuous Schrödinger equa-
tion. Our aim is a derivation of an exact discrete analogue of 
the Schrödinger equation. Using the Fourier transforms, we ob-
tain a discrete equation that exactly corresponds to the continuous 
Schrödinger equation (1). The proposed discrete Schrödinger equa-
tion is equation with new difference of second order that has a 
power-law form of the Fourier transform. Physically this equation 
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describes a model of chain or lattice with long-range interaction 
[7,8]. Mathematically it is uniquely given difference equation that 
exactly corresponds to the continuous Schrödinger equation. We 
prove not only an exact correspondence between the equations, 
but also an exact correspondence between solutions. We demon-
strate that exact discrete analogs of the free particle and harmonic 
oscillator solutions of the continuous Schrödinger equation are so-
lutions of the suggested difference equations in contrast to the 
situation with equations with the usual finite differences. For sim-
plification, we will consider one-dimensional Schrödinger equation 
only. A generalization for three-dimensional case can be easily re-
alized by the method proposed in [10,11].

2. From finite-difference equation to continuous Schrödinger 
equation

Let us give some details to prove that finite-difference equation 
(2) cannot exactly correspond to the continuous Schrödinger equa-
tion (1). For this aim we can use the Fourier series transform Fa,�

that is defined by the equation

�̂(k, t) = Fa,�{�n(t)} :=
+∞∑

n=−∞
�n(t) e−i k n a. (5)

Applying the transform Fa,� to the finite-difference equation (2), 
we get

i h̄
d�̂(k, t)

dt
= − h̄2

2μ

∞∑
m=1

2 (−1)m

(2m)!a2
(k a)2m �̂(k, t) + (V̂ ∗ �̂)(k, t),

(6)

where ∗ denotes the convolution. The inverse Fourier integral 
transform F−1, which is defined by the equation

�(x, t) = F−1{�̂(k, t)} := 1

2π

+∞∫
−∞

dk �̂(k, t) ei kx, (7)

leads us to the fact that the inverse Fourier transform F−1 of 
equation (6) gives

i h̄
d�(x, t)

dt
= − h̄2

2μ

∞∑
m=1

2 a2m−2

(2m)!
∂2m�(x, t)

∂x2m
+ V (x)�(x, t). (8)

Equation (8) also can be obtained (for details, see Section 8 
of [6]) by using the well-known relation (4). Equation (8) gives 
the Schrödinger equation (1) only in the limit a → 0, where

lim
a→0

∞∑
m=1

2 a2m−2

(2m)!
∂2m�(x, t)

∂x2m
= ∂2�(x, t)

∂x2
. (9)

As a result, we proved that equation (2) can give equation (1) by 
deleting all terms O (a2) or by passing to the limit a → 0 only. 
Therefore finite difference equation (2) cannot be considered as an 
exact discretization of (1).

The reason that equation (2) is an inexact (approximate) dis-
cretization of the Schrödinger equation (1) is the fact that the 
central finite difference c�2 of second order is characterized by 
the inequality

Fa,�

(
c�2

)
�= (i k a)2. (10)

This inequality directly leads us (see equation (8)) to the corre-
sponding inequality

1
2
F−1

(
Fa,�

(
c�2

))
�= ∂2

2
, (11)
a ∂x
which means that this finite difference of second orders cannot 
give exactly the derivative of second order ∂2/∂x2. Only in the 
limit a → 0, we get

lim
a→0

F−1
(
Fa,�

(
c�2

))
a2

= ∂2

∂x2
. (12)

Therefore the discrete equation (2) can be considered only as 
approximation of the Schrödinger equation (1). Finite difference 
equation (2) cannot be considered as an exact analogue of the 
Schrödinger equation (1).

3. Derivation of exact discrete Schrödinger equation from 
continuous equation

In the previous section, we prove that discrete equation (2) can-
not be considered as an exact discretization of the Schrödinger 
equation (1). In this section, we derive new discrete Schrödinger 
equation from the continuous Schrödinger equation (1) by using 
the Fourier transforms.

To have an exact discrete analogue of the continuous Schrödin-
ger equation (1), we should consider a problem of discretization of 
this equation in details. Let us consider a problem of derivation of 
an exact discrete analogue of the Schrödinger equation (1). To solve 
this problem, we should find new type of differences of integer or-
der n ∈N, which will be denoted by T �n , that exactly correspond 
to the derivatives ∂n/∂xn with n ∈ N. In order to the differences 
T �n of orders n ∈ N correspond to the derivatives ∂n/∂xn exactly, 
these differences should satisfy the condition

1

an
F−1

(
Fa,�

(
T �n �m(t)

))
= ∂n�(x, t)

∂xn
(13)

in contrast to the usual finite differences that are represented by 
infinite series of derivatives. Equation (13) can be considered as a 
characteristic property (criterion) of exact discretization.

Condition (13) can be realized if the difference T �n has the 
Fourier series transform in the form

Fa,�{T �n �m(t)} :=
+∞∑

m=−∞
e−i k a m T �n �m(t) = (i k a)n �̂(k, t)

(14)

In order to get (14), the differences T �α of order α ∈N should 
be represented by the convolution

T �α �n(t) :=
+∞∑

m=−∞
Kα(m)�n−m(t)

=
+∞∑

m=−∞
Kα(n − m)�m(t) (α ∈N), (15)

where the kernels Kα(m) are characterized by the equations

F1,�{K2s(m)} = (−1)s k2s,

F1,�{K2s−1(m)} = −i (−1)s k2s−1, (s ∈N) (16)

and

K2s(−m) = K2s(m), K2s−1(−m) = − K2s−1(m) (17)

that hold for all s ∈ N and m ∈ Z.
Using (16) and (17), the kernels Kα(m) can be defined by the 

equations
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K2s(m) = F−1
1,�{(−1)sk2s} = (−1)s 1

π

π∫
0

k2s cos(k m)dk, (18)

K2s−1(m) = F−1
1,�{−i (−1)s k2s−1}

= (−1)s 1

π

π∫
0

k2s−1 sin(k m)dk. (19)

Using equation 2.5.3.5 of [9], we obtain

K2s(m) =
s−1∑
k=0

(−1)m+k+s (2s)!π2s−2k−2

(2s − 2k − 1)!
1

m2k+2

(m ∈ Z, m �= 0), (20)

K2s−1(m) =
s−1∑
k=0

(−1)m+k+s+1 (2s − 1)!π2s−2k−2

(2s − 2k − 1)!
1

m2k+1

(m ∈ Z, m �= 0), (21)

and

K2s(0) = (−1)s π2s

2s + 1
, K2s−1(0) = 0. (22)

As a result, we obtain that T -differences are defined by equa-
tions (15) with the kernels (20)–(22). Let us give examples of the 
suggested T -differences of orders α = 1, 2, 3, 4.

The T -difference of first order has the form

T �1 �n(t) :=
+∞∑

m=−∞
m �=0

(−1)m

m
�n−m(t). (23)

The T -difference of second order has the form

T �2 �n(t) := −
+∞∑

m=−∞
m �=0

2 (−1)m

m2
�n−m(t) − π2

3
�n(t). (24)

The T -difference of third order is

T �3 �n(t) := −
+∞∑

m=−∞
m �=0

(
(−1)m π2

m
− 6 (−1)m

m3

)
�n−m(t). (25)

The T -difference of fourth order is

T �4 �n(t) :=
+∞∑

m=−∞
m �=0

(
4π2 (−1)m

m2
− 24 (−1)m

m4

)
�n−m(t)

+ π4

5
�n(t). (26)

Using the suggested T -differences, we can consider the follow-
ing discretization. Starting from the continuous Schrödinger equa-
tion (1), we obtain an exact discrete analogue of this continuous 
Schrödinger equation without approximation, which is based on 
deleting the terms O (a2) or on the passing to the limit a → 0.

Let us find an exact analogue of the Schrödinger equation. For 
this aim, we use the Fourier integral transform F , which is defined 
by equation

�̂(k, t) := F{�(x, t)} =
+∞∫

−∞
dx �(x, t) e−i kx. (27)

Applying this Fourier transform to the Schrödinger equation (1), 
we get
i h̄
∂�̂(k, t)

∂t
= h̄2

2μ
k2 �̂(k, t) + (V̂ ∗ �̂)(k, t), (28)

where ∗ denotes the convolution. Using the inverse Fourier series 
transform

�n(t) := F−1
a,�{�̂(k, t)} = a

2π

+π/a∫
−π/a

dk �̂(k, t) ei k n a, (29)

equation (28) gives

i h̄
d�n(t)

dt
= − h̄2

2μ

1

a2
T �2 �n(t) + Vn �n(t), (30)

where T �2 is the T -difference of second order that is defined by 
equation (24). Substituting (24) into (30), we obtain

i h̄
d�n(t)

dt
= h̄2

2μ

2

a2

+∞∑
m=−∞

m �=0

(−1)m

m2
�n−m(t)

+ h̄2

2μ

π2

3 a2
�n(t) + Vn �n(t). (31)

As a result, we derive the exact discrete analogue of the con-
tinuous time-dependent Schrödinger equation (1) in the form of 
the T -difference equation (31). The discrete Schrödinger equation 
(31) is the result of exact discretization of the continuous time-
dependent equation (1). Note that the suggested discretization of 
the Schrödinger equation is exact for wide class of potentials. In 
the next sections, we demonstrate that discrete analogs of solu-
tions of the continuous Schrödinger equation (1) can be solutions 
of the suggested discrete equation (31).

4. Mathematical remarks and Hilbert space

In this section, we give some mathematical remarks about the 
suggested T -difference Schrödinger equation (30).

In quantum mechanics the discrete wave-function �n(t) should 
belong to the Hilbert space l2 of square-summable sequences for 
all t ≥ 0. In addition, to use the Fourier series transform, we 
also should assume that the function �n(t) belongs to the Hilbert 
space l2, where the norm on the lp -space is defined by the equa-
tion

‖�‖p :=
( +∞∑

n=−∞
|�n|p

)1/p

.

It is easy to see that the T -differences (24) and (15) with (20) are 
defined by convolutions of �m(t) ∈ l2 and the functions

a2n(m) = (−1)m

m2n
(m �= 0, m ∈ Z, n ∈ N)

that belong to the space l1. Using the Young’s inequality for con-
volution (see [16,17] and Theorem 276 of [18]) in the form

‖T �2n �‖r = ‖a2n ∗ �‖r ≤ ‖a2n‖p ‖�‖q, (32)

where

1

r
+ 1 = 1

p
+ 1

q
, (33)

we get that r = 2 and the result of the action of operators T �2n on 
the function �n ∈ l2 also belongs to the Hilbert space l2 of square-
summable sequences, i.e.

T �2n �m ∈ l2, (34)
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since condition (33) holds. As a result, the T -differences are the 
operators on the Hilbert space l2 of square-summable sequences, 
i.e. T �2n : l2 → l2.

Note that using equation 5.1.2.3 of [9], we can get

∞∑
m=1

K2n(m) =
∞∑

m=1

2(−1)m

m2n
= 2 (21−2n − 1) ζ(2n)

= − 2

�(2n)

∞∫
0

x2n−1

ex + 1
dx = 2 T2n, (35)

where ζ(z) is the Riemann zeta function, �(z) is the Gamma func-
tion. For example, we have

T2 = −π2

12
, T4 = −7π4

720
,

T6 = − 31π6

32 · 945
, T8 = − 127π8

128 · 9450
.

As a result, the T -differences acting on constant converge to zero 
(T �2n const = 0).

The main property of the suggested differences is that the 
Fourier series transform Fa,� is represented by the equality

Fa,�

(
T �n

)
= (i k a)n, (36)

in contrast to equation (11) for finite difference. Equation (36)
leads us to the corresponding equality

1

an
F−1

(
Fa,�

(
T �n

))
= 1

an
F−1 (

(i k a)n) = ∂n

∂xn
, (37)

which means that this difference T �n of order n gives the deriva-
tive ∂n/∂xn exactly. We see that these T -differences of orders 
n are connected with the derivatives ∂n/∂xn without deleting all 
terms O (a2) and passing to the limit a → 0. The limit a → 0 also 
gives exactly the derivatives

lim
a→0

F−1
(
Fa,�

(T �n
))

an
= ∂n

∂xn
. (38)

As a result the suggested discrete Schrödinger equation (30)
with T -difference can be considered as an exact discretization of 
the continuous Schrödinger equation (1).

5. Discrete time-independent Schrödinger equations and free 
particle solution

In this section we compare the time-independent Schrödinger 
equation with finite difference and equation with the T -difference.

Substitution of the wave function of the form �n(t) =
�n e−i E t/h̄ into equation (30) with a = 1 gives the time-indepen-
dent Schrödinger equation

T �2 �n + 2μ

h̄2
(E − Vn)�n = 0. (39)

Substitution of (24) into (39) gives

−
+∞∑

m=−∞
m �=0

2 (−1)m

m2
�n−m +

(2μ

h̄2
(E − Vn) − π2

3

)
�n = 0. (40)

In the suggested T -difference approach to discretization, equation 
(40) is the eigenvalue equation for infinite matrix. As a result, 
the time-independent Schrödinger equation leads to an eigenvalue 
problem for infinite matrices [12–15].

Let us consider the free particle solution of the discrete time-
independent Schrödinger equations with finite and T differences. 
Free particle is a particle that has no external forces acting upon it, 
in other words the potential energy is constant Vn = U0 = const. 
In this case, the discrete time-independent Schrödinger equation 
with T -difference has the form

T �2 �n + k2 �n = 0, (41)

where T �2 is defined by (24) with a = 1, and

k = 1

h̄

√
2μ(E − U0). (42)

The discretization of equation (1) by the central difference has the 
form

c�2 �n + k2 �n = 0, (43)

where c�2 is the central finite difference of second order with the 
step a = 1. Let us compare solutions of equations (41) and (43)
that can be written in the form

−
+∞∑

m=−∞
m �=0

2 (−1)m

m2
�n−m − π2

3
�n + k2 �n = 0, (44)

and

�n−1 − 2�n + �n−1 + k2 �n = 0, (45)

for the differences T �2 and c�2, respectively.
Let us consider the wave functions of the form

�n = a cos(k n) + b sin(k n) = A cos
(

k n + φ0

)
, (46)

which is an exact discrete analogue of the solution �(x) =
A cos(k x + φ0) of the continuous time-independent Schrödinger 
equation.

Let us consider (46) for the finite-difference Schrödinger equa-
tion (45). For central finite difference, we can use the formula that 
expresses the cosine of sums of angles. Then the central difference 
gives

c�2 cos
(

k n + φ0

)
= 2 cos

(
k n + φ0

)(
cos(k) − 1

)
=

= −k2 cos
(

k n + φ0

)
−

∞∑
n=1

2 (−1)n

(2n)! k2n cos
(

k n + φ0

)
. (47)

It is easy to see that

c�2 cos
(

k n + φ0

)
�= −k2 cos

(
k n + φ0

)
.

Substitution of (47) into equation (45) cannot give the equality. 
As a result, we get that the wave function (46), which is an ex-
act discrete analogue of the solution of the continuous Schrödinger 
equation, cannot be a solution of the finite-difference Schrödinger 
equation (45). Therefore equation (45) cannot be considered as an 
exact discretization of the continuous Schrödinger equation. Equa-
tion (45) is discretization with an approximation.

Let us consider (46) for the T -difference Schrödinger equation 
(44). Using the relations

+∞∑
m=−∞

m �=0

2 (−1)m

m2
�n−m =

+∞∑
m=1

2 (−1)m

m2 (�n−m + �n+m) (48)

and

cos
(

k (n − m) + φ0

)
+ cos

(
k (n + m) + φ0

)
= 2 cos

(
k n + φ0

)
cos(k m), (49)
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we get the equation for the T -difference

T �2 cos
(

k n + φ0

)
= −4 cos

(
k n + φ0

) +∞∑
m=1

(−1)m

m2
cos(k m)

− π2

3
cos

(
k n + φ0

)
. (50)

Applying equation 5.4.2.8 or 5.4.2.12 of [9] in the form

+∞∑
m=1

(−1)m

m2
cos(k m) = 1

12
(3 k2 − π2) (−π ≤ k ≤ π), (51)

we get that equation (50) takes the form

T �2 cos
(

k n + φ0

)
= −4 cos

(
k n + φ0

)(1

4
k2 − π2

12

)

− π2

3
cos

(
k n + φ0

)
. (52)

As a result, we obtain the equation

T �2 cos
(

k n + φ0

)
= −k2 cos

(
k n + φ0

)
. (53)

Note that this equation is an exact discrete analogue of the equa-
tion (cos(k x))′′ = −k2 cos(k x).

Substitution of (53) into equation (44) gives the equality. As 
a result, we get that the wave function (46) is a solution of the 
T -difference Schrödinger equation (44). We prove that the wave 
function (46), which is an exact discrete analogue of the solution 
of the continuous Schrödinger equation, is a solution of the sug-
gested discrete Schrödinger equation (44). This demonstrates that 
equation (44) can be considered as an exact discretization of the 
continuous Schrödinger equation (1).

6. Discrete time-independent Schrödinger equations of quantum 
harmonic oscillator

Let us compare the time-independent Schrödinger equation 
with finite difference and the suggested T difference for quantum 
harmonic oscillator.

In coordinate representation, the time-independent Schrödinger 
equation of harmonic oscillator has the form

− h̄2

2μ

d2�(x)

dx2
+

(
μω2 x2

2
− E

)
�(x) = 0, (54)

where E denotes real number that is a time-independent energy, 
ω is the angular frequency of the oscillator. Using the variables

z = x

x0
, x0 =

√
h̄

μω
, λ = 2 E

h̄ ω
, (55)

equation (54) can be represented in the form

d2�(x)

dx2
+

(
λ − z2

)
�(x) = 0, (56)

where λ is the positive real parameter.
The exact discrete analog of the Schrödinger equation (56) is 

the T -difference equation of the form

T �2 �n + (λ − n2)�n = 0. (57)

We will seek a solution �n of equation (57) that belongs to the 
Hilbert space l2 in the form

�n = g[n] exp[−n2/2]. (58)

Note that exp[−n2/2] ∈ l2, since
+∞∑
n=−∞

|exp[−n2/2]|2 = θ3(0,1/e) < ∞, (59)

where θ3(z, q) is the Jacobi theta-functions.
Let us substitute (58) into (57). Then the Leibniz rule for 

T -difference of first order

T �1
(

g[n] exp[−n2/2]
)

= g[n]T �1 exp[−n2/2] + exp[−n2/2]T �1 g[n], (60)

and the equation

T �1 exp[−n2/2] = −n exp[−n2/2], (61)

which are proved by the Taylor series and the formula of difference 
of power-law function, give the equation for the function g[n] in 
the form

T �2 g[n] − 2 n T �1 g[n] + (λ − 1) g[n] = 0. (62)

To solve difference equation (62), we use the method of power 
series. Let us assume that

g[n] =
∞∑

k=0

ak nk. (63)

Substitution of (63) into (62), gives

∞∑
k=0

ak
T �2 nk − 2 n

∞∑
k=0

ak
T �1 nk + (λ − 1)

∞∑
k=0

ak nk = 0. (64)

Then we can use the following equations of T -difference of power-
law functions

T �1 nk = k nk−1, (k ≥ 1),

T �2 nk = k(k − 1)nk−2, (k ≥ 2) (65)
T �m nk = 0, (k < m, k,m ∈N), (66)

which are proved by the Cesaro and Poisson–Abel summations 
[24–27] that give the expressions

+∞∑
m=1

(−1)m = −1

2
,

+∞∑
m=1

(−1)m m2 j = 0 ( j ∈N). (67)

Then equation (64) has the form

∞∑
k=0

(
ak k (k − 1)nk−2 − 2 n ak k nk−1 + (λ − 1)ak nk

)
= 0. (68)

Changing the variable k → k + 2 of the first term and assuming 
a−1 = a−2 = 0, equation (68) can be written in the form

∞∑
k=0

(
ak+2 (k + 2) (k + 1) − ak (2 k − λ + 1)

)
nk = 0. (69)

In order condition (69) to hold for all n ∈ Z, we should have the 
equality

ak+2 = ak
2 k − λ + 1

(k + 2) (k + 1)
. (70)

Using the recurrence relation (70), we can see that
limn→±∞ |�n| = ∞. To obtain a solution �n ∈ l2, we assume that 
there exists an integer number N ∈ N such that ak = 0 for all 
k > N . In this case, the condition (70) gives λ = 2 N + 1, and equa-
tion (70) has the form

ak+2 = ak
2 (k − N)

. (71)

(k + 2) (k + 1)
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In this case, we get that g[n] is the discrete “physicists” Her-
mite polynomial of degree N and integer variable g[n] = Hph

N [n]. 
It should be noted that the discrete “physicists” Hermite polyno-
mials can be defined by the equation

Hph
N [n] := (−1)N en2 T �N e−n2

. (72)

As a result, the wave-function

�n,N = AN Hph
N [n] exp[−n2/2] (n ∈ Z), (73)

which is a solution of the Schrödinger T -difference equation (58)
that belongs to the Hilbert space l2 of square summable sequences, 
where AN is the normalization factor.

It should be noted that equation (73) defines the well-known 
exact discrete analog of the wave function of the harmonic oscilla-
tor. Solution (73) is similar to the solution �N (x) =
AN exp(−x2/2) H N (x) of the continuous Schrödinger equation (56).

Let us consider a discretization of the equation (56) by usual 
finite differences. For example, the discrete Schrödinger equation 
with forward difference has the form

f �2 �n + (λ − n2)�n = 0. (74)

This equation cannot have a solution that is similar to (73), which 
is discrete analog of �N (x) = AN exp(−x2/2) H N(x), since the Leib-
niz rule is not performed for the forward difference, i.e., we have 
the inequality

f �1
(

g[n] exp[−n2/2]
)

�= g[n] f �1 exp[−n2/2] + exp[−n2/2] f �1 g[n], (75)

and since the differences of power-law functions nk do not have 
the form (65),

f �nk = (n + 1)k − nk = k nk−1 +
k∑

j=2

(
k

j

)
n j �= k nk−1. (76)

It is easy to check that the equation with finite differences

f �2 g[n] − 2 n f �1 g[n] + (λ − 1) g[n] = 0 (77)

cannot give a solution in the form of the discrete Hermite poly-
nomials H N [n] by the method of power series, since we have 
inequality (76).

As a result, we get that the wave function (73) is a solution of 
the T -difference Schrödinger equation. We proved that the wave 
function (73), which is an exact discrete analogue of the solution of 
the continuous Schrödinger equation (56), is a solution of the sug-
gested discrete Schrödinger equation (44). This demonstrates that 
equation (57) can be considered as an exact discretization of the 
continuous Schrödinger equation. The Schrödinger equation with 
forward differences cannot be considered as an exact discretiza-
tion of the continuous Schrödinger equation.

It should be noted that there is another type of exact dis-
cretization that is based on an approach suggested in [28–30]. For 
example, an exact discretization of the classical harmonic oscilla-
tor has been proposed [31,32]. This approach means that for each 
new equation, we should use new difference operators. Our ap-
proach is based on T -differences T �n , which can be considered 
as exact discretizations of derivatives ∂n/∂xn . The suggested differ-
ences are represented by infinite series instead of finite series that 
are usually used in other difference approaches. The suggested dis-
cretization of the Schrödinger equation is exact for wide class of 
potentials. We demonstrate that discrete analogs of solutions of 
the continuous Schrödinger equation (1) can be solutions of the 
corresponding discrete equation (31).
7. Physical remarks and long-range interactions

In this section, we give remarks about direct connection of 
the suggested T -differences and chain (and lattice) models with 
long-range interactions. We can state that the suggested discrete 
Schrödinger equation (30) with T -differences corresponds to chain 
and lattice models with long-range interactions.

The main part of the previous discretizations of the Schrödin-
ger equation is based on the forward, backward and central finite 
differences. These discretizations assume a short ranged and a 
nearest-neighbor approximation. However, there exist physical sit-
uations that cannot be described in the framework of this approx-
imation. For example, the excitation transfer in molecular crys-
tals [33] and the vibron energy transport in polymers [34] are 
due to the transition dipole–dipole interaction that corresponds 
to K (n − m) = 1/|n − m|3. The DNA molecule contains charged 
groups with a long-range Coulomb interaction that corresponds to 
K (n −m) = 1/|n −m|1 between them. In systems, where the disper-
sion curves of two elementary excitations are close or intersect, we 
have an effective long-range transfer. Such a situation arises for ex-
citons and photons in molecular crystals and semiconductors, and 
it is called the polariton effects [33].

The well-known discrete nonlinear Schrödinger equation
(DNLSE) for one-dimensional case has the form

i h̄
d�n(t)

dt
= g

+∞∑
m=−∞

Kα(n − m)�m(t) + F (�n(t)), (78)

where g is a coupling constant, F (�n) is an interaction of the par-
ticles with the external on-site force, Kα(n −m) is the kernel of the 
dispersive long-range interaction. The most famous type of long-
range interaction [47,49–51,48,53] is given by

Kα(n − m) = 1

|n − m|α (n,m ∈ Z), (79)

where α is a positive real number. In this case, we have nonlo-
cal coupling given by the power-law function (79) with a physical 
relevant parameter α. Some integer values of α correspond to the 
well-known physical situations. For example, the Coulomb poten-
tial corresponds to α = 1 and the dipole–dipole interaction corre-
sponds to α = 3.

Classical and quantum systems with long-range interactions 
are the subject of continuing interest in physics beginning with 
the works of Dyson [35,36] in 1969, where the interaction ker-
nels of the form (79) are used. The long-range interactions have 
been studied in discrete systems as well as in their continu-
ous analogues. Models of spins with long-range interactions have
been studied in [35–43]. An infinite one-dimensional Ising model 
with long-range interactions is described by Dyson [35–37]. The 
d-dimensional classical Heisenberg model with long-range inter-
action is considered in [42], and its quantum generalization has 
been suggested in [38–41]. Kinks in lattice models with long-range 
particle interactions are studied in [52]. The breathers, which are 
time periodic spatially localized solutions, on discrete chains in the 
presence of long-range interactions are considered in [44–46]. En-
ergy and decay properties of discrete breathers in systems with 
long-range interactions have also been studied in the framework 
of the discrete nonlinear Schrödinger equations [47,49–51,48,53,
54]. The synchronization and dynamical chaos in chain models 
with long-range interaction of the form 1/|n|α are described in 
[58,56,55]. A remarkable property of the dynamics described by 
the lattice models with power-like long-range interactions is that 
the solutions have power-like tails [44,46,55–58]. Similar features 
were observed in continuous models that are described by differ-
ential equations with derivatives of non-integer orders. As it was 
shown in [7,8,10,11], the equations with fractional derivatives are 
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directly related to chain and lattice models with long-range inter-
actions.

If we consider the kernels Kα(n − m) in the form (20) and 
(21), which can be considered as linear combinations of the ker-
nels (79), then equation (78) takes the form

i h̄
d�n(t)

dt
= g T �α �m(t) + F (�n(t)), (α ∈N). (80)

This is a discrete nonlinear Schrödinger equation with long-range 
interactions in the form of T -differences.

It should be noted that the kernels (20) and (21) of the sug-
gested T -differences can be considered as linear combinations 
of kernels (79) with integer α ∈ N. The linear combinations (20)
and (21) are selected from the set of other combinations by the 
fact that they exactly correspond to the local continuous systems, 
which are described by differential equations of integer orders. 
The suggested type of long-range interactions, which are described 
by the kernels (20) and (21) of T -differences, is distinguished 
from others by exact discretization of corresponding differential 
equation of integer order and by preservation of the main (char-
acteristic) properties of differential equations and corresponding 
solutions.

It should be noted that computer simulations are actively used 
for the linear and nonlinear systems with long-range interactions 
of the form (79) with integer and non-integer α (for example, see 
[47,49–51,46,53,57,58]). It allows us assume that computer simu-
lations of equations with the suggested T -differences, which are 
defined by the kernels (20) and (21), can be successfully real-
ized since these kernels can be represented by linear combina-
tions of (79) with α ∈ N. We assume that the discrete nonlinear 
Schrödinger equations with T -differences can demonstrate new 
effects such as discrete kinks, solitons, breathers, synchronization 
and chaos by computer simulations.

8. Conclusion

In this paper, we suggest a discrete equation that corresponds 
to the continuous Schrödinger equation exactly. From a mathe-
matical point of view, these discrete equations are uniquely high-
lighted equations with differences that exactly correspond to the 
Schrödinger equations. Physically the discrete equations describe 
microstructural models of chains (lattices) with long-range inter-
actions. The main advantage of the suggested discrete equations is
the connection with continuum equations without any approxima-
tion. We also prove that suggested differences are operators on the 
Hilbert space of square-summable sequences. It has been proved 
that an exact discrete analogue of the free particle solution of the 
continuous Schrödinger equation, is a solution of the suggested 
discrete Schrödinger equation. For simplification, we consider one-
dimensional equations only. A generalization for three-dimensional 
case can be easily realized by the approach proposed in [10,11]. 
We assume that the suggested difference equations can be im-
portant in application since this allows us to reflect characteristic 
properties of complex systems and media [19–22] at the micro-
and nano-scale, where long-range interactions play a crucial role 
in determining the properties of these systems (see [23] and ref-
erences therein). For relativistic quantum theories, we assume that 
the proposed exact discretization approach can take into account 
the corresponding relativistic covariance by the methods consid-
ered in [22].
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