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The sigma model approach to the closed bosonic string on the affine-metric manifold is considered. The two-loop 
metric counterterms for the nonlinear two-dimensional sigma-model with affine-metric target manifold are calculated. 
The correlation of the metric and affine connection is considered as the result of the conformal invariance condition 
for the nonlinear sigma model. The examples of the nonflat nonriemannian manifolds resulting in the trivial metric 
beta-function are suggested. 

1. Introduction 

String theory in a curved space is a consistent quantum theory if the quantum nonlinear two-dimensional sigma 
model [1,2] is eonformally invariant. The conformal invariance requires that the sigma model beta-functions 
[ 1,2] be trivial [3]. Since the conformal anomaly of  the nonlinear sigma model depends on the geometrical 
structures (on the background fields) of  the curved space (manifold), the beta-function vanishing condition lead 
to the restrictions on consistent structures (backgrounds fields). 

Different geometrical structures can be defined on the manifold [4]. In the bosonic case a metric and a 
connection structures are used. Riemannian manifolds are considered as a field manifold for usual nonlinear 
sigma-model [ 1,2]. The connection strucure of  this manifold is uniquely constructed from metric, i.e. the "strong" 
correlation between the connection and metric structures is postulated. In general case these structures are 
not correlated [5 ] and the curved space is nonmetric nonRiemannian manifold. Therefore it was suggested to 
consider the nonlinear sigma model with nonmetric manifold [7] and to obtain the correlation between the 
metric and connection structures as the result of  the ultraviolet finiteness (or beta-function vanishing) condition 
for nonlinear sigma model [6]. 

The sigma model action depends only on the metric structure. Therefore it is surprising that the counterterms 
of  the sigma model with affine-metric manifold differ from counter terms of  the sigma model with Riemannian 
manifold [7 ]. This difference can not be reduced to the metric redefenition caused by infinitesimal coordinate 
transformation [2] or to the nonlinear renormalization of  the quantum fields [8 ]. In the paper [ 7] the counter 
terms are calculated for conventional sigma model without assuming a metric connection for the geodesic line 
equation in covariant background field method. In this approach the connection of  the sigma model equation 
of  motion is a metric connection and we must use a manifolds with two different connection structures and 
the metric structure. Therefore it seems more natural for the nonlinear sigma model with nonmetric manifold 
to consider both the geodesic line equation and the sigma model equation with nonmetric connection (i.e. not 
derived derived from the metric). It leads to a generalization of  the usual sigma model which describes the 
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string propagation in affine-metric curved space. String motion on the nonmetric (affine-metric) manifold can 
be considered as the motion of the string subjected to the dissipative forces. In order to see it we discuss a 
relationship between the geometrical structures of  the manifold and the equation of motion. 

The equation of motion for the particle subjected to the force Qi (q, u) has the form 

d u i / d t -  Q~(q,u) = 0, (1) 

where qi are the coordinates and u i = dq i /d t  (i = 1 ..... n ) .  We suggest that eq. (1) are invariant under general 
coordinate transformations and that for simplicity Qi (q, u) are the gomogeneous functions of  second power of 
u. It is known that the local Lagrange function exists and eq. (1) can be derived from least action principle if  
and only if the Helmholtz conditions are satisfied. In this case there are matrix multipliers [9,10 ] such that the 
eq. (1) become Euler-Lagrange equation. The spesial case Qi(q, u) = - [ikl]Ukul , where [ikt] is a Christoffel 
symbol, the n-dimensional curved space is Riemannian manifold and eq. ( l ) defines the usual one-dimensional 
nonlinear sigma model. ,On the other hand it is known that Lagrange function uniquely defines the metric 
structure on the (n + 1 )-dimensional configurational space [ 11 ]. That is the equation of motion derived from 
least action principle is equivalent to the geodesic line equation on metric manifold. The connection structure 
can be naturally defined on the metric manifold as Christoffel symbols. As the result the motion of the system 
subjected to potential forces is equivalent to the free motion of the test particle on the metric (Riemann, Finsler 
or Kawaguchi) manifold, i.e. manifold which connection and metric structures are correlated. 

I f  the Helmholtz conditions are not satisfied, the equation of motion (1) can be represented as the particle 
motion subjected to dissipative forces Q~ on the metric manifold with metric structure defined by the Lagrangian 

dui Qip(q,u) - Qid(q,u) = - ( g - 1 ) O D j L ( q , u )  - Q~(q,u) = 0 (2) 
dt 

where Dj is the Euler-Lagrange operator, L (q, u ) the Lagrange function and gij (q, u) the matrix multiplier [ 9 ]. 
The dissipative force for the one-dimensional sigma model with affine-metric field manifold is defined by the 
connection defect Q~ = --D~kl(q)uku t. Ifthe free motion ofthe test particle on the manifold are defined by eq. (2) 
then this manifold is nonmetric. This manifold usually called generalized path space [ 12 ] and allow naturally to 
define connection structure which coefficients are Fikt (q, u) = ( - 1 / 2 )  (02Qi/OukOu t ). In the generalized path 
space the connection structure is not correlated with the metric structure of  this space. As the result the motion 
of the systems subjected to dissipative forces on the metric manifold is equivalent to the free motion of the 
test particle on the nonmetric (generalized path) manifold. Note that the equation of motion and the geodesic 
line equation in the nonmetrical manifold can be derived from Sedov variational principle [ 13 ] which is the 
generalization of the least action principle. 

The affine-metric manifold [ 5 ] (path space with metric [18 ] ) is a simple example of the generalized path 
space with a metric structure. That is the consistent approach to the nonlinear sigma model with affine-metric 
target manifold lead to a generalization of the usual one-dimensional sigma model which represents a particle 
subject to dissipative forces. Analogously we have that the motion of  the string in affine-metric curved space is 
equivalent to the motion of  the string subjected to dissipative forces on Riemannian manifold [16]. For this reason 
the consistent theory of the bosonic string in the curved affine-metric space is a quantum dissipative theory. 
Note that the dissipative models in fundamental interactions theories are discussed in [23-27,16]. 

The quantum description of the dissipative systems without well-known ambiguities [20,9,10,24,16], without 
nonassociative violation of the canonical commutation relations [21 ] and beyond the sphere of quantum kinetics 
is suggested in [ 14-16]. This description uses Sedov variational principle in the phase space to generalize the 
canonical quantization. The suggested quantization does not violate Heisenberg algebra because it generalizes 
the canonical quantization by introducing the operator of the nonholonomic quantities in addition to the usual 
associative operators of the momentum, coordinate and holonomic functions. The generalization of the yon 
Neumann equation was derived from the dissipative Liouville equation [ 17,15 ] contrary to usual heuristical and 
therefore ambiguous generalization [22,23]. 
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In ref. [ 15] the conformal anomaly of the energy momentum tensor trace for closed bosonic string on the 
affine-metric manifold is considered and it is proved from the conformal invariance that metric and dilaton 
beta-functions of the sigma model with affine-metric field manifold must be trivial as usual [ 3 ]. 

In the present paper the two-loop ultraviolet metric counterterms and beta-function for the two-dimensional 
nonlinear sigma-model with affine-metric field manifold are calculated. The correlation between the connection 
and the metric structures on the manifold are derived from the beta-function vanishing condition. 

2. One-loop and two-loop calculations 

Let us consider now the closed bosonic string in curved space-time [ 19 ]. The world sheet swept out by the 
string is described by the map X (x) from two-dimensional parameter space N into n-dimensional space-time 
manifold M, i.e., X ( x )  : N ~ M. The two-dimensional parameter is x = (z ,a)  and the map X ( x )  is given by 
space-time coordinates X k (x). The classical equation of motion for the closed bosonic string in the n-dimensional 
affine-metric curved space-time has the form 

Oux/-g gUU OuX i .4- Fikl ( X )ouxkx/ ggUU OuX t = 0, (3) 

where gU,, (x) is the two-dimensional metric tensor; Fikl (X) the affine connection, which can be represented 
in the form [ikt] + Dikl; [ikl ] is the Christoffel symbol for the metric G 0 (X); Dikl (X) is a connection defect 
tensor which can be written in the form [ 5] 

Dikl(X) = (-1/2)GiJ(Kjlk + Kjkl --Kklj) "at" 2Qtkt) i + Qikl, (4) 

where Kkti = V iGkt is nonmetricity tensor and Qikl is torsion tensor. The equation of motion (3) is an equation of 
the two-dimensional geodesic flow on the affine-metric manifold (the two-dimensional analogue of the geodesic 
line). It is well known that this equation can not be derived from the least action principle. Note that the 
Riemannian geodesic flow (Dikl = 0 ) can be derived from this variational principle with the Lagrangian defined 
by 

L ( X )  = (1/2 )Gkl(X)ouxkx/'ggUU OuX t . (5) 

The affine-metric geodesic flow equation (3) can be derived from the Sedov variational principle [ 13 ] if the 
variation of the nonholonomic functional has the form 

6-~=/d2xaW=-f d2xDikl(X)OuXkv~g'UVouxl~xi. (6) 

The holonomic and nonholonomic functionals define a closed bosonic string propagating in the affine-metric 
curved space-time or in the presence of dissipative and nondissipative background fields. 

In loop calculation we use the generating functional for connected Green functions in the phase-space path- 
integral form for nonhamiltonian (dissipative) systems suggested in [ 14-16 ]. This generating functional is written 
in the form 

Z ( J , g )  = - i l n  f OXDPexp i  f d 2 x [ P k ( d X k / d z ) - H  + W + (i/2)O + K ( J ) ] ,  (7) 

where K ( J )  is the source term; 12 is defined in the Appendix (eq. (17) ) and h = I. To perform the calculation 
of the on-shell ultraviolet behavior in one- and two-loop order for sigma model we use the affine-metric covariant 
background field expansion in normal coordinates [ 18,7] and new generating functional Z (X0, g, J ) .  The co- 
variant background field method [2,14] in the phase space is defined by the usual expansion of the coordinates 
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X k (X) only. Note that the background field method can be considered as conservative model approximation for 
the quantum dissipative models. The generating functional Z (Xo, g, J )  is defined by 

exp iZ(Xo ,  g , J )  = / D ~ D P e x p i f  d 2 x ( P k - ~ X k - H + W + ( i / 2 ) g 2 +  Jk~k) ,  (8) 

where X = X (X0, ~); Xg (x) is the solution of classical equation of motion; ~k (X) the covariant field which is 
the tangent vector to the affine-metric geodesic line containing X0 k and X k. 

We produce the the Hamiltonian, nonholonomic functional and omega function in the conformal gauge as a 
power series in the field ~k (X): 

H = - ( 1 / 2 ) G k t ( X ) P k P t -  ( 1 / 2 ) G k t ( X ) x ' k x  't , (9) 

W = (1/2)JiktpkPt + (1/2)Zl2ktX'kx ' t ;  g2 = 2 D k ( X ) P k ,  (10) 

where X i = Xi (Xo,~);  D k ( x )  ---- D k i j ( X ) G i J ( x ) ;  X 'k =_ ( d X k ) / (  de);  Pk is the canonical momentum. The 
background field expansions of the A-operators are written in the form 

ztl kt = 2 D Y ( X o ) ~  i + O(~2); AZkt = -2Dikt(Xo)~ i + O(~2). (11) 

To obtain all of the one- and two-loop counterterms we need to expand Lagrangian, nonholonomic functional 
and omega function to fourth order in the quantum fields ~a (x). The functional integral of Z (X0, g, J )  over 
momentum P is the Gaussian integral. It is easy to derive the path integral form for the generating functional: 

Z (Xo, g , J )  = - i l n  f D~expi f d2x A ( X  (x0,~)). (12) 

The full expression of A (X) is complicated. Therefore let us consider terms of A (X) which give the nontrivial 
simple poles two-loop metric divergences only: 

A ( Xo, ~ ) = (1/  2 ) O/t~a ol~ a k- A abkO uXk ~ao ~ b "at- B abkg~ a~ bo ~ ko ~ (  lO -I- J abg aO ff~ bo,ff~ c q - C abcl~ ,w~ ~ a~ ~ ~ c 

+ Labca~a~bO~CO,~a + Eoecd,O,Xg~ a~ b~ cOU~ ~ + Faecg~ ~ sO ~ ~x ~"0 ~ d. 

where 

Aabk = [Gkj;i + Di(yk)-  (1/2)Gij;kle~eYb; Jabc = [(1/2)Gjk;i "l- (1/3)Di(jk)leiaeJbek, 

Babkt = [ ( l /2 )Rkijt + (1/  4 )Gkl;ij + (1/8 )Gpi,kGpj;t - (1/2 ) Gpj;kGtp;i + (1/2 ) Di(kt);j ) - (1/2 )Di(tp) Gpj;k ]eiae~ , 

Cabal = [ (2/3)R(k/ij/t) + (1/2)Gkt;ij -- (1 /2)  (Gpk;i + (2/3)Di(pk))Gpj;t + (2/3)Di(kt)j  ]eJ, e~e k , 

Eijktp = [ (5/36)Gn(t/;iRnjk/p) + (1/4 )Rtijp;k + (1/6)Gtp;ijk -- (1/4)Di(nk);jGnr~ + (1/6)Rn(ij)pDk(nt) 

i j k l  + (1/6)Rntij)lDktnp) + (1/4)Dti/Ip;/jk)]eaebec e d , 

Labial = [(1/6)Rkijl + (1/4)Gkt;,j + (1/4)D,kij]4eJbekeld ; Fijkl = 2Di(~k)Dj(~l)e~e~ekeld. 

In the conformal gauge kappa tensor has the form ~u~ = ( r ~ , r  ~ ,  ~f~) = ( -1 ,0 ,0 ) .  We use the following 
notations: 

Rijk I = Rijkl q- 2V[I/Qij/kl + 2Qnj[k/Qin/ll ; Rijkl = 20[k/Fij/l] ..{- 2Fnjil/Fin/k], 
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Fig. 1. (a), (b). 

~ k A i  = V k A i  + QnkiAn = OkA i -  Fn(k i )An  = At;k; GU;k ~--" Ki jk  Jr 2Q( i /k / j ) ,  

JB[n/raT/k]l = ( l /2 ) (BnmTkl  -- BkmTnl) ; B(j/k/I) = (1 /2) (Bjk t  + Blkj) 

and F i (kl) is the symmetry part of the affine connection. The terms of A (X0, ~) are usual [ 1,2] if and only if 
both the nonmetricity tensor K~jt and he symmetry part of torsion Q(jk)i are equal to zero. 

Note that in the expression A(Xo ,~ )  we take into account the additional nonmetric terms caused by the 
following. It is known that propagator of the quantum fields ~k (X) is not standard. Therefore we introduce an 
n-bein e~ (X) and define C a (x) = e ~  k ( x ) ,  where Vke'~ = 0. After this modification the kinetic terms become 

~ a  b k c • ~ a ,  where ~i,~ a = Ou~ a + A b~ekO,,Xo~ . This mixed covariant derivative for the affine-metric manifold 
M and the Minkowski space N involves the Schouten-Vranceanu connection [29 ] "4abc, which is equal to the Ricci 

~'a b rotation coefficient [ 30 ] and the object co~c = A bce k is spin connection [2] on the Riemannian manifold. Note in 
addition to diagrams of [ 7 ] we take into account the diagrams whose external background field lines involve the 
Schouten-Vranceanu connection. This diagrams must not cancel [ 15 ] in contrary to the usual nonlinear sigma- 
model [2] and give the tensor contribution. It caused by the relation "4(a/b/c) = (--1/2)(Ki.n + 2Q(i/t/j))eiaeJcet. 

The irreducible one-loop diagrams (figs. la, lb) produce the following simple poles divergences: 

( la)  = - (It2~/47te)BaaktCOl~xk00aX l , 

( lb)  = (#2e/8ne)atablkAtabllOaxko~x~, 

The nontrivial simple poles ultraviolet two-loop divergences are caused by the graphs of figs, 2-6. The two-loop 
simple poles divergences of these graphs are the following: 

(2a) = (It2~ / 16n2e ) C(~b)ck Ca [bcVO~,XkcOuXto, 

(2b) = (It2e/16rt2e) ( ffc(ab) -- Ja(bc) ) ( C(ab)cl;k Jr Dn(ka) C(nb)cl + Dn(kb) C(an)cl -t- Dn(kc) C(ab)nl )tglzxk oq,uX 1 , 

(2C)  = ( I t 2 8 / 3 2 r t 2 e ) ( J a ( b c ) ; t  -- Jc(ab);! + Dn(ta)Jn(bc) + Dn(lb)Ja(nc) -I- Dn(tc)Ja(bn) -Dn(lc)Jn(ba)  --Dn(tb)Jc(na) 

- Dn(la)Jc(bn)) (ga(bc);I + Dn(ka)Jn(bc) + Dn(kb)Ja(nc) + Dn(kc)ga(bn))ioq#XkigaXlo, 

(3a) = 

(3b) = 

(3c) = 

(3d) = 

(3e) = 

(4a) = 

- (it2~/16rt2e) (Zcc(ab) Jr L(ab)cc)B(ab)klOltxkoi.tXlo, 

(3it2~/32rt2e)E(cca)bkA [ab ]lO# X k  O,uX 1 , 

-- (it2~ /32n2e ) (Lcc(ab) + L(ab)cc) (A(ab)k;t + Dntka)Anbt + Dn(kb)Aant )ouxko,uXlo , 

(it2*/16n2e)( (-1/2)FcctaO) + (f l  + (1/2))Ftab)cc)Btab)ktOuXkoux~, 

(it2'/32n2e) ((3q + 1/2)Fcc<ab) - (1/2)Ftab)cc) (A(ab)k;l + Dn(ka)Anbl + Dn(kb)Aanl)OuXkOuXto, 

2e 2 # k I - (It /8n  e)L(ab)(ca)A[aclkAtbaltOuX ~ O~X6, 
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C, C, J ~ )  C, J, J 

Fig. 2. (a), (b), (c). 

L , E , L , F , F ~  B,A,A,B,A 

Fig. 3. (a), (b), (c), (d), (e). 

L,F 

A,A 
L,F 

) i A,A 

( ) A , A  

()A,A 

Fig. 4. (a), (b), (c), (d). 

J, d, J J,C,J 
\ /  

I B, A,A 

Fig. 5. (a), (b), (c). 

J 

a ( ) a  

J 

Fig. 6. (a), (b). 

(4b) = (/t2e/487t2e) ( L(ac)aa - 2Laa(ac) ) Atablk A[cb ltOuX~ OuXto , 

(4c, d) = (lt2~/327r2e)( (1/3)AtablkF(ac)aa - (fl + (4/3))Faa(ac)A~cal k)A[ab]lOuX ~kO#X~,l 

(5a) = (//2e/16/t2e)((3/2)Jd(bc)Badkl + Ja(Od)Bcdkl - 2JO(ad)Bcdk I + + 2Yd(ac)Bbdkl)Ja(bc)O,uXkoOt~X~, 

(5b) = (/z2'/16~tze) ( 2Jdcbc)Atadlk + (-- 2 ) Jbtcd)Ataalk + 2Ja(bd)Acdl, ) Ctab)ctouxk ouXto , 

(5C) = (/z2~/32n2e)((3/2)JabdJ~bd + JbdaJbdc + (--2)JbdaJab~)(Atab)k;t + D, tka)A,,d + D,,tk~)Aant)ouxkouxg, 

(6a) = (/z2~/16n2e ) ( (5 /3 )  J,,baJ~bd -- (28/3)  JbaaJ~ba - 4JbaaJdb~ + 6JbaaJbac )A [aslka [csltOuXff OuXg , 

(6b) = (IZ'U /16n2e ) ( JbapJd~p - 2JpabJdc p q- ( -1 /2  ) JpabJp¢ d "st" 2J,,bpJdc,,, ) Atc,qk AtbaltOuX~ OuXto , 

where Bac;c Ta = Bac;d TbGaO Gcd. 
The divergent integrals are calculated using the dimensional regularization (in n = 2 - 2e dimensions) with 

minimal  subtraction and general prescription for contraction of  the two-dimensional x u" tensor [ 15 ] x u~' q,,,,, = 
f (n) where f (n) = 1 + )fie + O ( t  2) and r/u~ is two-dimensional Minkowski metric. The different prescriptions 
may correspond to the different renormalization schemes and thus their results should be related through re- 
defenition of  the couplings by analogy to the two-dimensional nonlinear sigma-model with Wess-Zumino  term 
[28 ]. To distinguish between infrared and ultraviolet divergences we introduce an auxilliary mass term [31 ]. 

The two-loop simple poles divergences caused by one-loop counterterms are derivable from 
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P, P, V 

M,M 

PHYSICS LETTERS B 

A,B,A A ? A 

Fig.  7. (a ) ,  ( b ) ,  ( c ) ,  ( d ) .  

B,A A ? A  A 

t 

Fig. 8. (a), (b), (c). 

AL(~) tt 2~ k a b = "~(PabO~ao,u~ b "4- VabkOaXo~ Ot~ + ll2Mab~a~b), 

where 

i j Pab = [-Bc~ij + (1/2)Atcaj~Atcdlj]eae b 

17 March 1994 

(13) 

V~bk = [2Pk;;i - PnjGni;k ]e~e~; Mab = [(-I/6)Rtq~/j) - Gi~;,: - Gik.,tGkt;,/le~e~. 

The simple poles divergent part  of  the graphs (figs. 7, 8) are 

(7a) = - (It2~ / 32~tE e ) P(ab) ( h(ab)k;I + On(ka)Ancl "4- On(kc)Aanl )OIzxk alzX l , 

(7b) = - (I.~2e'/167t2e)P(ab)B(ab)klOt.txkot.tXlo, 

(7e) = (#2e/327t2e) V[ablkA[ab]lO.uxkoux 1, 

(8a) = (I.t2~/16n2e.)M(ab)B(ab)ktOuXkOuX~, 

(8b) = (I.t2~ /32n2e )M(ab) (A(ab)k;l + Dn(ka)Anct + Dn(kc)Aanl )OuXkOuXto, 

(7d) = (21.t2e/48n2e)P~ab)AtaclkAtbcltouxkouXto, 

( 8 C )  = --  (I.12e / 487t2 e ) M(ab )Ataclk A tbcllOuXk OuX 1 • 

The full expression for the metr ic  beta-function is complicated. Let us consider the special form of  the nonmetrici ty 
tensor: Kijt = Not = N(ijt), where Q(q)t = 0 and Nii(t;k) = Nn,kNt)j,,. The two-loop metric beta-function [ 1 ] 
for the bosonic nonlinear  two-dimensional  sigma model  with this affine-metric field manifold  has the form 

//k~ = (1 /2n )  [(1/8)N,,m(kNt),,m - (1/2)Rck/,,,,/t)] + (1 /4n  2) [ (1 /2 )  ((2/3)R(c/(ab)/k) 

-- (l/6)N,,(c/(,,Nb)/k),,)( (2/3)R(c/(aO)/t)- (2/3).R(b/(ac)/k) + (1/6)Nntb/(aNc)/k),,- (1/6)Nn(c/(aNb)/t),,) 

+ ((1/2)R(k/(ab)/t)- (1/8)Nn(a/(kNl)/b)n)((1/6).R(a/,,n/b)- (1/6)-R,,/(ab)/n) 

- ( (151/72)  + (1/2)f~)Nnm(aNb)nm)]. (14) 
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This metric beta-function leads to the well-known equation [1,2] on the Riemannian manifold (K~jt = 0 and 
Qik! = 0). 

It is easy to see the following ultraviolet finiteness conditions. The one loop and two loop parts of the metric 
beta-function for the two-dimensional nonlinear sigma-model with affine-metric manifold vanish if the correlation 
between the affine connection and the metric structures on the manifold M is given by 

VlGij NOt N(ijl) ; Q(ij)t 0 ; VttNk)ij P " ^ . . . .  N~(kNl)jp, Rtk/(ij)/l) = (1/4) N~k/(iNj)/l)p. 

These conditions have not the J] dependence and define nonflat space, the i.e. Riemannian curvature tensor is 
not equal to zero. Note that the part of the metric beta-function from the sigma model action only is zero in all 
loops if the affine-metric manifold with the nonmetrisity tensor K~jt and torsion tensor Qikt is defined by 

2 n Rkijl =-- Rkijl -- 2Vtj/Qki/tl - Q i[I/Qkn/j] = 0; VkGij gijk - 2Q<ij)k = O. 

It is easy to see that this affine-metric manifold is not flat. 
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Appendix 

The equation of motion and the geodesic line equation in a nonmetrical manifold can be derived from the 
Sedov variational principle [ 13 ] which is the generalization of the least action principle: 

JS(q)  + JW(q)  = 0, (15) 

where S (q) is the holonomic functional called action and W (q) is the nonholonomic functional (i.e. J J ' W  
J ' J W ) .  For eq. (2) the nonholonomic functional has the form 

a'~ = f dtaW = f dtQ~(q,u)gij,~q j, (16) 

i.e. nonholonomic functional is defined by the connection defect. Nonholonomic functional W is characterized 
by the following properties in the phase space: (1) [W, pk] = W~ and [W,q k ] = -Wp k i.e. the variation of 
the functional W is defined by J W  = W~:Jq k + wpkjpk. The brackets are the generalized (variational) Poisson 
brackets [ 15,16 ] which are coincide with usual Poisson brackets for the holonomic functions. 2) J [Zk, W, Zt ] = 
Jit Y~ O i f k ~ l w h e r e J [ A , B , C ]  = [A[BC]]  + [B[CA]]  + [C[AB]];  k = 1 ..... 2n andZi  = qi and 
Z~+i = pi if i = 1 .... n. The Jacobian dkt characterizes the deviation from the condition of integrability. The 
object W is the nonholonomic object if one of the Jkt is not trivial. Note in addition that the classical phase 
space equation of motion for dissipative systems has the form d Z k / d t  = [Zk, H - W] and Liouville equation 
for dissipative systems [ 17,15 ] has the form 

- ~ p ( q , p , t )  = - £ 2 ( q , p )  p ( q , p , t ) ,  where O ( q , p )  = ~ J[qi,  W, pi] .  (17) 
i=1  
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