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Bosonic string in affine-metric curved space
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The sigma model approach to the closed bosonic string on the affine-metric manifold is considered. The two-loop
metric counterterms for the nonlinear two-dimensional sigma-model with affine-metric target manifold are calculated.
The correlation of the metric and affine connection is considered as the result of the conformal invariance condition
for the nonlinear sigma model. The examples of the nonflat nonriemannian manifolds resulting in the trivial metric
beta-function are suggested.

1. Intreduction

String theory in a curved space is a consistent quantum theory if the quantum nonlinear two-dimensional sigma
model [1,2] is conformally invariant. The conformal invariance requires that the sigma model beta-functions
[1,2] be trivial [3]. Since the conformal anomaly of the nonlinear sigma model depends on the geometrical
structures (on the background fields) of the curved space (manifold), the beta-function vanishing condition lead
to the restrictions on consistent structures (backgrounds fields).

Different geometrical structures can be defined on the manifold [4]. In the bosonic case a metric and a
connection structures are used. Riemannian manifolds are considered as a field manifold for usual nonlinear
sigma-model [1,2]. The connection strucure of this manifold is uniquely constructed from metric, i.e. the “strong”
correlation between the connection and metric structures is postulated. In general case these structures are
not correlated [5] and the curved space is nonmetric nonRiemannian manifold. Therefore it was suggested to
consider the nonlinear sigma model with nonmetric manifold [7] and to obtain the correlation between the
metric and connection structures as the result of the ultraviolet finiteness (or beta-function vanishing) condition
for nonlinear sigma model [6].

The sigma model action depends only on the metric structure. Therefore it is surprising that the counterterms
of the sigma model with affine-metric manifold differ from counter terms of the sigma model with Riemannian
manifold [7]. This difference can not be reduced to the metric redefenition caused by infinitesimal coordinate
transformation [2] or to the nonlinear renormalization of the quantum fields [8]. In the paper [7] the counter
terms are calculated for conventional sigma model without assuming a metric connection for the geodesic line
equation in covariant background field method. In this approach the connection of the sigma model equation
of motion is a metric connection and we must use a manifolds with two different connection structures and
the metric structure. Therefore it seems more natural for the nonlinear sigma model with nonmetric manifold
to consider both the geodesic line equation and the sigma model equation with nonmetric connection (i.e. not
derived derived from the metric). It leads to a generalization of the usual sigma model which describes the
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string propagation in affine-metric curved space. String motion on the nonmetric (affine-metric) manifold can
be considered as the motion of the string subjected to the dissipative forces. In order to see it we discuss a
relationship between the geometrical structures of the manifold and the equation of motion.

The equation of motion for the particle subjected to the force Q' (g, ) has the form

du'/dt — Q'(q,u) = 0, (1)

where ¢’ are the coordinates and u' = dq'/df (i = 1,...,n) . We suggest that eq. (1) are invariant under general
coordinate transformations and that for simplicity Q' (g, u) are the gomogeneous functions of second power of
u. It is known that the local Lagrange function exists and eq. (1) can be derived from least action principle if
and only if the Helmholtz conditions are satisfied. In this case there are matrix multipliers [9,10] such that the
eq. (1) become Euler-Lagrange equation. The spesial case Q' (q,u) = —[';,1u*u!, where [,,] is a Christoffel
symbol, the n-dimensional curved space is Riemannian manifold and eq. (1) defines the usual one-dimensional
nonlinear sigma model. On the other hand it is known that Lagrange function uniquely defines the metric
structure on the (n + 1)-dimensional configurational space [11]. That is the equation of motion derived from
least action principle is equivalent to the geodesic line equation on metric manifold. The connection structure
can be naturally defined on the metric manifold as Christoffel symbols. As the result the motion of the system
subjected to potential forces is equivalent to the free motion of the test particle on the metric (Riemann, Finsler
or Kawaguchi) manifold, i.e. manifold which connection and metric structures are correlated.

If the Helmholtz conditions are not satisfied, the equation of motion (1) can be represented as the particle
motion subjected to dissipative forces Q) on the metric manifold with metric structure defined by the Lagrangian
du

& Qig,u) - Qita,w) = ~(g™)D;L(g,u) - Qhla,u) = 0, @)

where D; is the Euler-Lagrange operator, L(g,u) the Lagrange function and g;; (g, #) the matrix multiplier [9].
The dissipative force for the one-dimensional sigma model with affine-metric field manifold is defined by the
connection defect Q“', = —Diy(q)u* . If the free motion of the test particle on the manifold are defined by eq. (2)
then this manifold is nonmetric. This manifold usually called generalized path space [12] and allow naturally to
define connection structure which coefficients are I'';; (g, u) = (—1/2)(8?Q’/8u*8u'). In the generalized path
space the connection structure is not correlated with the metric structure of this space. As the result the motion
of the systems subjected to dissipative forces on the metric manifold is equivalent to the free motion of the
test particle on the nonmetric (generalized path) manifold. Note that the equation of motion and the geodesic
line equation in the nonmetrical manifold can be derived from Sedov variational principle [13] which is the
generalization of the least action principle.

The affine-metric manifold [5] (path space with metric [18]) is a simple example of the generalized path
space with a metric structure. That is the consistent approach to the nonlinear sigma model with affine-metric
target manifold lead to a generalization of the usual one-dimensional sigma model which represents a particle
subject to dissipative forces. Analogously we have that the motion of the string in affine-metric curved space is
equivalent to the motion of the string subjected to dissipative forces on Riemannian manifold [16]. For this reason
the consistent theory of the bosonic string in the curved affine-metric space is a quantum dissipative theory.
Note that the dissipative models in fundamental interactions theories are discussed in [23-27,16].

The quantum description of the dissipative systems without well-known ambiguities {20,9,10,24,16], without
nonassociative violation of the canonical commutation relations [21] and beyond the sphere of quantum kinetics
is suggested in [14-16]. This description uses Sedov variational principle in the phase space to generalize the
canonical quantization. The suggested quantization does not violate Heisenberg algebra because it generalizes
the canonical quantization by introducing the operator of the nonholonomic quantities in addition to the usual
associative operators of the momentum, coordinate and holonomic functions. The generalization of the von
Neumann equation was derived from the dissipative Liouville equation [17,15] contrary to usual heuristical and
therefore ambiguous generalization [22,23].
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In ref. {15] the conformal anomaly of the energy momentum tensor trace for closed bosonic string on the
affine-metric manifold is considered and it is proved from the conformal invariance that metric and dilaton
beta-functions of the sigma model with affine-metric field manifold must be trivial as usual [3].

In the present paper the two-loop ultraviolet metric counterterms and beta-function for the two-dimensional
nonlinear sigma-model with affine-metric field manifold are calculated. The correlation between the connection
and the metric structures on the manifold are derived from the beta-function vanishing condition.

2. One-loop and two-loop calculations

Let us consider now the closed bosonic string in curved space~time [19]. The world sheet swept out by the
string is described by the map X (x) from two-dimensional parameter space N into n-dimensional space-time
manifold M, i.e., X (x) : N — M. The two-dimensional parameter is x = (t,0) and the map X (x) is given by
space-time coordinates X* (x). The classical equation of motion for the closed bosonic string in the n-dimensional
affine-metric curved space-time has the form

OuVEL" X' + I'y(X)a, X" /gg"a,X' =0, (3)

where g* (x) is the two-dimensional metric tensor; I'';; (X) the affine connection, which can be represented
in the form [* wl + Diy; [F «] is the Christoffel symbol for the metric Gi; (X); Di (X) is a connection defect
tensor which can be written in the form [5]

D'u(X) = (=1/2)GY (Kji + Kjrt — Kitj) + 2Qun’ + Q'4ss (4)

where Ky;; = VG, is nonmetricity tensor and Q' is torsion tensor. The equation of motion (3) is an equation of
the two-dimensional geodesic flow on the affine-metric manifold (the two-dimensional analogue of the geodesic
line). It is well known that this equation can not be derived from the least action principle. Note that the
Riemannian geodesic flow (D’y; = 0) can be derived from this variational principle with the Lagrangian defined
by

L(X) = (1/2)Gu(X)8,X* /gg" 8, X" . (5)

The affine-metric geodesic flow equation (3) can be derived from the Sedov variational principle [13] if the
variation of the nonholonomic functional has the form

oW = / &’x oW = —/ d&*x Dy (X) 8, X" /28" 8, X' 6 X" . (6)

The holonomic and nonholonomic functionals define a closed bosonic string propagating in the affine-metric
curved space-time or in the presence of dissipative and nondissipative background fields.

In loop calculation we use the generating functional for connected Green functions in the phase-space path-
integral form for nonhamiltonian (dissipative) systems suggested in [ 14-16]. This generating functional is written
in the form

Z(J,g) = —iln/DXDPexpi/ Ex[P(dX*/dt) - H + W + (i/2)Q + K(J)]1, (7)
where K (J) is the source term; Q is defined in the Appendix (eq. (17) ) and & = 1. To perform the calculation
of the on-shell ultraviolet behavior in one- and two-loop order for sigma model we use the affine-metric covariant

background field expansion in normal coordinates [18,7] and new generating functional Z (X,, g, J). The co-
variant background field method [2,14] in the phase space is defined by the usual expansion of the coordinates
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X*(x) only. Note that the background field method can be considered as conservative model approximation for
the quantum dissipative models. The generating functional Z (Xy, g, J) is defined by

expiZ (Xo, 8,J) = /Da)Pexpi/ <12x(1>,c diTX"—H+ W+ (i/2)Q + Jkék), (8)

where X = X (Xo,&); X{(x) is the solution of classical equation of motion; &*(x) the covariant field which is
the tangent vector to the affine-metric geodesic line containing X¥ and X*.

We produce the the Hamiltonian, nonholonomic functional and omega function in the conformal gauge as a
power series in the field & (x):

= —(1/2)G* (X) PP — (1/2)Gu (X)X X", (9)

W= (1/2)4" PP + (1/2)4%,X"* X", Q = 2D*(X)P, (10)

where X! = X'(X,,£); D*(X) = D*;;(X)G"(X); X'* = (dx*)/(do); P is the canonical momentum. The
background field expansions of the 4-operators are written in the form

M = 2D (X0)E + OEY); 4% = —2Dy(X0)E' + O(E?). (11)

To obtain all of the one- and two-loop counterterms we need to expand Lagrangian, nonholonomic functional
and omega function to fourth order in the quantum fields £?(x). The functional integral of Z (Xg, g, J) over
momentum P is the Gaussian integral. It is easy to derive the path integral form for the generating functional:

Z(Xo,8,J) = —iln/Déexpi/dzx A(X (Xo,¢)). (12)

The full expression of A(X) is complicated. Therefore let us consider terms of A (X) which give the nontrivial
simple poles two-loop metric divergences only:

A(X0,8) = (1/2)0,8°0,8" + AariduX 58 0" + Banil %0 X §0,uX 5+ Jab& 070 £+ Coneld) XEED £
+ Labeal" &' 0uE 08" + EapeapduX 6% O ” + Fanod: €10 4 5 0.2,
where
Aak = [Grji + Digioy — (1/2)Gijalese] s Jave = [(1/2)Gjui + (1/3)Diuy lelefe
Babia = [(1/2)Riiji + (1/4)Graj + (1/8)GpieGpjis — (1/2) Gy Gipi + (1/2)Dicain;) — (1/2)DigipyGpyue Ike] ,
Caber = [2/3)Reziipny + (1/2)Grij ~ (1/2) (Gpi + (2/3)Dioiy)Gpja + (2/3) Dicunyy lelelel,
Eijkip = [(5/36)GnapiRujispy + (1/8) Riijpse + (1/6)Gpij — (1/4) Diuar,jGutp + (1/6) Roijyp Diccany
+ (1/6) RucijiDicnny + (1/4) Dy v Jebefelel,

Labea = [(1/6)Resjt + (1/4)Ggj + (1/4)Dyajleiefelel;  Fipg = 2DjouyDymyeieielel.

In the conformal gauge kappa tensor has the form x** = (k™,k™, ¥°?) = (-1,0,0). We use the following
notations:

Riju = R + 2V1Q 1y + 2Q% /@ wns Rl = 200 iy + 20 0T wjiy »
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B<> AQA

Fig. 1. (a), (b).

Vidi = Vidi + Q"idn = A = T iyAn = Aig; Gijre = Kijk + 2Qksjy »
Bium Ty = (1/2)(BamTii — BemTwi); By = (1/2)(Bjr; + Bij)

and I"* 4 is the symmetry part of the affine connection. The terms of A(X,,&) are usual [1,2] if and only if
both the nonmetricity tensor K;; and he symmetry part of torsion Q(;x); are equal to zero.

Note that in the expression A(Xy, &) we take into account the additional nonmetric terms caused by the
following. It is known that propagator of the quantum fields €* (x) is not standard. Therefore we introduce an
n-bein ef (X)) and define £%(x) = e,‘jé" (x), where eke;‘ = 0. After this modification the kinetic terms become
6,,{“6,.{“, where ¥ ull = 0,8% + /T“bce,’c’auX (’,‘ ¢, This mixed covariant derivative for the affine-metric manifold
M and the Minkowski space N involves the Schouten-Vranceanu connection [29] /Tabc, which is equal to the Ricci
rotation coefficient [30] and the object w?, = A2.e! is spin connection [2] on the Riemannian manifold. Note in
addition to diagrams of [7] we take into account the diagrams whose external background field lines involve the
Schouten-Vranceanu connection. This diagrams must not cancel [15] in contrary to the usual nonlinear sigma-
model [2] and give the tensor contribution. It caused by the relation A p/c) = (~1/2) (Kiji + 2Qqipy ) )eselel.

The irreducible one-loop diagrams (figs. 1a, 1b) produce the following simple poles divergences:

(1a) = — (U /4n€) Buac1Ou X5 0, X ,
(1b) = (1% /8ne) Arapik Arab1Ou Xe 0uXs s

The nontrivial simple poles ultraviolet two-loop divergences are caused by the graphs of figs. 2-6. The two-loop
simple poles divergences of these graphs are the following:

(2a) = (u*/167°) Cabyck Carbe1iOuXo Ou X,

(2b) = (4*/167%¢) (Joar) — Jatve)) (Ciabretk + DrtiayConsyet + DrikoyCiampet + DrnieerClapynt)8uX§8u XS,

(2c) = (u*/327°¢) (Jawwert — Jewanyt + DuttayTnisey + DnavyJatney + DuiieyJaony — Dntier Inteay — Duy Jetna)
— Dutaydesmy) atsert + DrtkayIntoey + Drcisy Jatney + Driker Jaiom) )OuXE8 XS

(3a) = — (u*/167%€) (Lectasy + Liabroe) BlabyiiOuXs8u X5 5

(3b) = (3% /327°€) E (cearoi A1ab10u X5 0, X5,

(3¢) = —(u®/32n%) (Lecwary + Lavrec) (Aavyks + DncearAnst + Dniiy Aant)0uX§0u.XE,

(3d) = (4%/167%€) ((~1/2) Freary + (fi + (1/2)) Fiapyce) Bapyci@uXo 0u X,

(3e) = (1*/327%) ((fi + 1/2)Fectan) — (1/2)Fianyec) (Atabriy + DrikarAnst + Drcioy Aant)0u X5 0,5 5

(4a) = — (4 /87°€) L (ab) (ca) Atacti Alpa1 Ou X 0 X
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Fig. 2. (a), (b), (c). A

Fig. 5. (a), (b), (c).
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Fig. 3. (a), (b), (<), (d), (e). A /TN a4
KT/
J
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J

Fig. 4. (a), (b), (c), (d).
Fig. 6. (a), (b).

(4b) = (4% /487%) (Liacrad ~ 2Ladcac) ) Aav1icA1cri0u X6 8u X4,
(4c,d) = (u*/327%) ((1/3) AasicFacraa — (fi + (4/3))Fdd(ac)A‘(‘mk)A[abllaﬂXgaﬂXé’
(52) = (u*/167°€) ((3/2)JatserBadkt + JaioaBeart — 2Jviad Beart + +2Ja(ac Boait)aoe)0u X5 0u X5 »
(5b) = (1*/167%) (2Jape) Araaie + (—2)JsccarAtaare + 2JacvarAcar) CabyciOuXg X 5
(Sc) = (#*/327%8) ((3/2) JusaJeva + Jodatoac + (—2)Joaaase) (Awabris + DrikarAnct + Drikor Aant)9u X3 0u Xy,
(6a) = (u*/167%€) ((5/3)JapaJera — (28/3)Jsaadesa — AJsdadabe + 6Jpdadbac) Alasik Ares 1O X6 0uXe »
(6b) = (4**/167°6) (JoapJucy — 2JpabJaep + (—1/2)TpabJpea + 2JabpJcp) Atcare A1payi0uXs 0uXs

where Buec Ty = Boea T G*0 G

The divergent integrals are calculated using the dimensional regularization (in » = 2 — 2¢ dimensions) with
minimal subtraction and general prescription for contraction of the two-dimensional ¥** tensor [15] k"' 5. =
f(n) where f(n) =1+ fie + 0(&?) and Nuv is two-dimensional Minkowski metric. The different prescriptions
may correspond to the different renormalization schemes and thus their results should be related through re-
defenition of the couplings by analogy to the two-dimensional nonlinear sigma-model with Wess—-Zumino term
[28]. To distinguish between infrared and ultraviolet divergences we introduce an auxilliary mass term [31].

The two-loop simple poles divergences caused by one-loop counterterms are derivable from
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P,P,V@A,B,A A n A
\TPI
Fig. 7. (a), (b), (c), (d).

M,M@ B, A A m A
\Tﬁ

Fig. 8. (a), (b), (c).

2
ALY = I (Pudue’0,8" + Vandu XSE 0" + " Muk ") (13)

where

Pop = [~ Beeij + (1/2) AjcayiAgear; 1€he}

Vask = [2Piji — PojGuixlee]; May = [(=1/6)Rymnsjy — Ginnj — GitaGurele] .
The simple poles divergent part of the graphs (figs. 7, 8) are

(Ta) = — (U /32n%e) Pavy (A(avyiy + DnikarAnct + DneerAant)0u X5 0, X,

(Tb) = — (u**/167¢) Prab) Blany1duXo 0uXs

(Tc) = (u*/320%€) Viabyie A1ab i 0u X5 OuXo

(82) = (u*/16m%e) M (ap) B abyiBuX§ 0uXs,

(8b) = (u*/327°¢) Map) (Atabiit + DutkarAnct + Doy Aant)9u X0 Xs

(7d) = (2% [487°€) Plab) Afgerc A B X0 0u X5,

(8¢) = — (u*/487°€) Mia) A aciic A bc110u X 0u X .

The full expression for the metric beta-function is complicated. Let us consider the special form of the nonmetricity

tensor: K;;; = Niji = Nyjy, where Qq;y = 0 and Njjuy = N";xNiyjn. The two-loop metric beta-function [1]
for the bosonic nonlinear two-dimensional sigma model with this affine-metric field manifold has the form

BE = (1/27)[(1/8) Numk Niyam — (1/2)Reggmnny] + (1/82%) [(1/2) ((2/3)R s aprsio
~ (1/6) Nate@Noyiom) ((2/3) Ricjiabryn = (2/3)Risjiacryiy + (1/6) NuiojiaNeyon = (1/6) NateyaNoyin)
+ ((1/2)Rayapry = (1/8)NaiaacNoygoon) ((1/6) Rajanjor = (1/6) Rascanyjmy
— ((151/72) + (1/2) ) Nam@Nsyam) 1 - (14)
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This metric beta-function leads to the well-known equation [1,2] on the Riemannian manifold (K;; = 0 and
Q' =0).

It is easy to see the following ultraviolet finiteness conditions. The one loop and two loop parts of the metric
beta-function for the two-dimensional nonlinear sigma-model with affine-metric manifold vanish if the correlation
between the affine connection and the metric structures on the manifold M is given by

ViGij = Niji = Nujnys Qujn =05 VaNuij = NiuNnjps  Ragapm = (1/4) ka/(iNj)/I)p-

These conditions have not the f; dependence and define nonflat space, the i.e. Riemannian curvature tensor is
not equal to zero. Note that the part of the metric beta-function from the sigma model action only is zero in all
loops if the affine-metric manifold with the nonmetrisity tensor K;;; and torsion tensor Q°;, is defined by

Riiji = Ruijt — 29 1) Quipny — 2Q"11/Qinsj1 = 0; ViGij = Kijx — 2Qujx = 0.

It is easy to see that this affine-metric manifold is not flat.

Acknowledgement

I would like to thank Belokurov V.V. and Stelle K.S. for helpful and valuable discussions and Theoretical High
Energy Physics Department of Nuclear Physics Institute of Moscow State University for their support during
the work.

Appendix

The equation of motion and the geodesic line equation in a nonmetrical manifold can be derived from the
Sedov variational principle [13] which is the generalization of the least action principle:

3S(q) +6W(q) =0, (15)

where S(q) is the holonomic functional called action and W(q) is the nonholonomic functional (i.e. 64’ w Z
8'6W). For eq. (2) the nonholonomic functional has the form

oW =/dt6W =/dtQ§(q,u)giqu’, (16)

1.e. nonholonomic functional is defined by the connection defect. Nonholonomic functional W is characterized
by the following properties in the phase space: (1) [W,pc] = W7 and (W,q"] = —W,,k i.e. the variation of
the functional W is defined by 6W = W}! oq* + ka Jpr. The brackets are the generalized (variational) Poisson
brackets [15,16] which are coincide with usual Poisson brackets for the holonomic functions. 2) J[Z;, W, Z;] =
Ju 20 if k # [ where J[4,B,C] = [A[BC]] + [B[CA]] + [C[A4B]]; k = 1,..,2n and Z; = ¢’ and
Z,yi = p; ifi = 1,..,n. The Jacobian Ji; characterizes the deviation from the condition of integrability. The
object W is the nonholonomic object if one of the Ji; is not trivial. Note in addition that the classical phase
space equation of motion for dissipative systems has the form dZ;/d¢ = [Z,, H — W] and Liouville equation
for dissipative systems [17,15] has the form

n

d .
5P @p.t) = -2(q,p) pq,p,1), where L2(g,p) = > Jid Wil (17)

i=1
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