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A microscopic model in the framework of fractional kinetics to describe spatial dispersion of

power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used

to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional

differential equations for electrostatic potential in the media with power-law spatial dispersion are

derived. The particular solutions of these equations for the electric potential of point charge in this

media are considered. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825144]

I. INTRODUCTION

In the macroscopic description, the spatial dispersion is

represented by non-local connection between the electric dis-

placement field D and the electric field E. The non-locality is

caused by the fact that the field D at the point r in the me-

dium depends on the values of the electric fields E not only

in a selected point r, but also in its neighborhood points r0.
Spatial dispersion can be described as a dependence of the

absolute permittivity tensor of the medium on the wave

vector.1–3 The electric field in the media with spatial disper-

sion of the power-law type is described in the recent paper.4

The spatial dispersion is a characteristic property of the

plasma-like media. The term “plasma-like media” was intro-

duced by Silin and Rukhadze in the book.1 The plasma-like

medium is characterized by the presence of free charge car-

riers, creating as they move in the medium, electric and mag-

netic fields, which significantly distorts the external field and

the effect on the motion of the charges themselves.1–3 The

plasma-like media includes a wide class of object such as

ionized gas, metals and semiconductors, molecular crystals,

and colloidal electrolytes. The spatial dispersion of the

media leads to the set of phenomena, such as the rotation of

the plane of polarization, anisotropy of cubic crystals, and

other.5–16

In the microscopic description of the non-local proper-

ties of the media can be considered in the framework of

models with long-range interactions of particles.17–19

Equations of motion for particles with the long-range inter-

actions in the continuous limit can give continuum equations

with spatial derivatives of non-integer orders.20–24 The

theory of integration and differentiation of non-integer

order25,26 has a long history,27,28 and it is concerned with the

names of famous mathematicians such as Leibniz, Liouville,

Riemann, Abel, Riesz, and Weyl. The fractional derivatives

and integrals are powerful tools to describe complex proper-

ties of media including long-term memory, non-locality of

power-law type, and fractality.18,19,29–36 Using the fractional

calculus, we can consider different generalizations of the

Liouville equation19,37–39 that can be used in the fractional

kinetics.40,41

We suggest to use the fractional Liouville equations to

describe fractional kinetics for plasma-like media with the

spatial dispersion of power-law type. Recently, a similar

topic including diffusion was considered in Refs. 42 and 43,

where using the fractional Fokker-Planck equation was

proved that even a small degree of fractionality gives a sig-

nificant change in the dynamics. The Fokker-Planck equa-

tions with fractional coordinate derivatives have been

suggested in Ref. 44 (see also Ref. 45) to describe chaotic

dynamics. It is known that Fokker-Planck equation for

phase-space can be derived from the Liouville equation.46–48

The Fokker-Planck equation with fractional derivatives is

obtained from the fractional Liouville equation in Ref. 38.

Instead of the fractional Fokker-Planck equation, we apply

the fractional Liouville equations to describe plasma-like

media with the power-law spatial dispersion.

In this paper, the Liouville equation with the Caputo

fractional derivatives is used to obtain the power-law de-

pendence of the absolute permittivity on the wave vector.

This allows us to have a microscopic model for the media

with the power-law spatial dispersion, which is described in

the recent paper.4 The appropriate fractional differential

equations for electric potential are considered and particular

solutions of these equations for the potential in the media

with power-law spatial dispersion are suggested. The differ-

ence between the point charge potential in the media with

this type of spatial dispersion and the Coulomb’s and

Debye’s potentials are described.

In the paper, the degree of spatial non-locality that is

described by the value of order a of fractional derivative in

the Liouville equation is 0 < a � 1. The reason of using this

range of parameter is caused by the fact that the Liouville

equation describes the law of conservation of probability,

which for the fractional case can be written for these parame-

ter values only. Mathematically, the conservation law for the

fractional case is based on fractional generalization of

Stokes’ and Gauss’s theorems,52 which cannot be formulated

for a > 1 by the properties of the Caputo fractional deriva-

tive and fractional Riemann-Liouville integration.

II. FRACTIONAL LIOUVILLE EQUATION

One of the basic principles of statistical mechanics is

the conservation of probability in the phase-space.50,51a)E-mail: tarasov@theory.sinp.msu.ru

1070-664X/2013/20(10)/102110/10/$30.00 VC 2013 AIP Publishing LLC20, 102110-1

PHYSICS OF PLASMAS 20, 102110 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

89.208.196.143 On: Tue, 03 Dec 2013 15:06:54

http://dx.doi.org/10.1063/1.4825144
http://dx.doi.org/10.1063/1.4825144
mailto:tarasov@theory.sinp.msu.ru
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4825144&domain=pdf&date_stamp=2013-10-16


The Liouville equation is an expression of the principle in a

convenient form for the analysis.

Let us consider dynamics of system in the phase space

with dimensionless coordinates ðx; pÞ ¼ ðx1; :::; xn; p1; :::; pnÞ.
The function qðt; x; pÞ describes probability density to find a

system in the phase volume dnxdnp. The evolution of q ¼
qðt; x; pÞ is described by the Liouville equation

@q
@t
þ pi

m
D1

xi
qþ Fi D1

pi
q ¼ 0; (1)

where Fi ¼ Fiðx; pÞ is the force field. Here, and later we mean

the sum on the repeated index i from 1 to n. Equation (1)

describes the probability conservation for the volume element

of the phase space. If q is the one-particle reduced distribution

function, then the Liouville equation describes collisionless sys-

tem. Using the fractional calculus, we can consider different

generalizations of the Liouville equation19,37–39,50 that includes

derivatives of non-integer orders.25

We can consider a fractional generalization of the

Liouville equation in the form

@q
@t
þ pi

m
C
0 Dai

xi
qþ Fi

C
0 Dbi

pi
q ¼ 0; (2)

where we use dimensionless variables xi and pi; ði ¼ 1; :::; nÞ.
Here, C

0 Da
x and C

0 Db
x are the Caputo fractional derivatives of

order a and b (see Appendix A).

We use Caputo fractional derivatives since a consistent

formulation of fractional vector calculus, which contains

fractional differential and integral vector operations, can be

realized for Caputo differentiation and Riemann-Liouville

integration only.52 It allows to prove the correspondent frac-

tional generalizations of the Green’s, Stokes’, and Gauss’s

theorems.52 The main distinguishing feature of the Caputo

fractional derivative is the form of the fractional generaliza-

tion of the Newton-Leibniz formula (see Lemma 2.22 in

Ref. 25) in the usual form

FðbÞ � FðaÞ ¼ aIa
b

C
a Da

xFðxÞ; ð0 < a < 1Þ: (3)

Note that relation (3) is not satisfied for a > 1. The other fea-

ture of the Caputo fractional derivative is that, like the inte-

ger order derivative, the Caputo fractional derivative of a

constant is zero.

For simplification, we consider the case ai ¼ a, and

bi ¼ 1 for all i ¼ 1; :::; n. The fractional Liouville equation

is

@q
@t
þ pi

m
C
0 Da

xi
qþ Fi D1

pi
q ¼ 0 ð0 < a � 1Þ: (4)

The Liouville equation with fractional derivatives with

respect to coordinates will be used to describe properties of

nonlocal media.

III. PERMITTIVITY OF PLASMA-LIKE NONLOCAL
MEDIA

In the absence of the force field (Fi¼ 0), the Liouville

Eq. (4) gives

@q
@t
þ pi

m
C
0 Da

xi
q ¼ 0: (5)

The solution of this equation is q0 ¼ qðt; x; pÞ, which is the

distribution function unperturbed by the fields.

For a weak force field, we use the charge distribution

function in the form

q ¼ q0 þ dq; (6)

where q0 is the stationary isotropic homogeneous distribu-

tion function unperturbed by the fields, and dq is the change

of q0 by the fields. In the linear approximation with respect

to field perturbation, we have

@dq
@t
þ pi

m
ðC0 Da

xi
dqÞ þ Fi D1

pi
q0 ¼ 0: (7)

If we consider plasma-like media, then the force F ¼ eiFi is

the Lorentz force

F ¼ qEðt; xÞ þ q½v;B�; (8)

where q is charge of particle moves with velocity v¼p/m in

the presence of an electric field E ¼ eiEiðt; xÞ and a magnetic

field B. Here, and late we use the International System of

Units (SI).

In an isotropic media, the distribution function depends

only on the magnitude of the momentum, q0 ¼ q0ðjpjÞ. For

such a function, the direction of the vector eiD
1
pi
q0 is the

same as that of p¼mv, and its scalar product with [v, B] is

equal to zero. Therefore, the magnetic field does not affect

the distribution function in the linear approximation. As a

result, we have

@dq
@t
þ pi

m
ðC0 Da

xi
dqÞ þ qEi D1

pi
q0 ¼ 0: (9)

We assume that the perturbation (the function dq and

the field E) is proportional to

dq;E � Ea½iðk; xÞa� � expf�ixtg; (10)

where Ea½z� is the Mittag-Leffler function25

Ea½z� :¼
X1
j¼0

zj

Cða jþ 1Þ; ðz 2 C; a > 0Þ: (11)

For a ¼ 1, this function is exponent Ea½z� ¼ expfzg, and

Ea½iðk; xÞa� expf�ixtg ¼ expfiðk; xÞ � ixtg:

We take the x-axis along k. Then, kx ¼ jkj; ðk; vÞ ¼
jkjvx and Eq. (9) give

i ðjkjavx � xÞdqþ qðEi D1
pi
q0Þ ¼ 0; (12)

where we use (see Lemma 2.23 in Ref. 25)

C
0 Da

xEa½kxa� ¼ kEa½kxa�; ða > 0; k 2 CÞ: (13)
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As a result, we have

dq ¼ �
qðEi D1

pi
q0Þ

i ðjkjavx � xÞ : (14)

In an unperturbed plasma-like media, the charge density

is equal zero, since the media is isotropic. The charge density

perturbed by the field is

qcharge ¼ q

ð
dq d3p ¼ iq2

ð ðEi D1
pi
q0Þ

jkjavx � x
d3p; (15)

where qcharge is the bound charge density. The electric polar-

ization vector P is defined by the relations

div P ¼ �qcharge: (16)

Then,

iðk;PÞ ¼ �qcharge: (17)

The polarization P defines the electric displacement field D

as D ¼ e0Eþ P, where e0 is the electric permittivity. Let the

field E be parallel to k. Then, P be parallel to k, and

P ¼ ðekðjkjÞ � e0ÞE; (18)

where ekðjkjÞ is the longitudinal permittivity.

Substitution of (15) and (18) into (17) gives

ðekðjkjÞ � e0Þ ðkj;EÞ ¼ �q2

ð
Ei D1

pi
q0

jkjavx � x� i0
d3p: (19)

We add to the frequency x an infinitesimal positive imaginary

part d > 0, i.e., x is we replaced by xþ id, where d! 0þ.

In this case, the unlimited increase of the field caused by the

factor expðd tÞ is unimportant as t!1, since the causality

principle shows that it cannot affect what is observed at finite

times t. As a result, we avoid the poles x ¼ jkjapx=m with

analogy of usual case (see Sec. 29 in Ref. 49).

Since we take the x-axis along the vector k, then

E¼ (E, 0, 0), and ðkj;EÞ ¼ jkjEx; Ei D1
pi
q0 ¼ Ex D1

px
q0. We

introduce the function

q0ðpxÞ ¼
ð

q0ðjpjÞdpydpz: (20)

As a result, the longitudinal permittivity can be calculated by

the equation

ekðjkjÞ ¼ e0 �
q2

jkj

ð
D1

px
q0ðpxÞ

jkjapx=m� x� i0
dpx: (21)

For isotropic homogeneous case, we can use an equilibrium

distribution q0ðpxÞ.

IV. LONGITUDINAL PERMITTIVITY FOR MAXWELL’S
DISTRIBUTION

As mentioned in Sec. II, we use the Liouville equation

with fractional derivatives with respect to coordinates (4)

and derivatives of integer order with respect to momenta for

simplification. This means that we consider the local case

with respect to momenta, we assume in our model only spa-

tial non-locality. This assumption leads to derivatives of in-

teger order with respect to momenta, and it allows us to use

a Maxwellian background. As a result, we can derive the lon-

gitudinal permittivity for a Maxwellian distribution. This

assumption is sufficient to explain properties of the media

with the power-law spatial dispersion, which are described

in Ref. 4.

Let us consider a plasma-like medium with the equilib-

rium Maxwell’s distribution

q0ðpxÞ ¼
Nqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p exp � p2

x

2mkBT

� �
; (22)

where kB ¼ 1:38065� 10�23 m2kg=ðs2KÞ is the Boltzmann

constant. Then,

D1
px

q0ðpxÞ ¼ �
2pxNqffiffiffi

p
p
ð2mkBTÞ3=2

exp � p2
x

2mkBT

� �
: (23)

Here, Nq is the particles number density.

We define the variables

z ¼ pxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p ; x ¼

ffiffiffiffiffiffiffiffiffiffi
m

2kBT

r
� x
jkja : (24)

Equation (21) can be rewritten in the form

ekðjkjÞ ¼ e0 þ
q2Nq

jkj1þa

2mffiffiffi
p
p
ð2mkBTÞ3=2

ðþ1
�1

px

px � mx=jkja � i0

� exp � p2
x

2mkBT

� �
dpx: (25)

Using (24), we have

ekðjkjÞ ¼ e0 þ
q2

jkj1þa

1ffiffiffi
p
p

kBT

ðþ1
�1

z e�z2

z� x� i0
dz: (26)

Consider the integral of Eq. (26). Using the formulaðþ1
�1

f ðzÞ
z� i0

dz ¼ P:V:

ðþ1
�1

f ðzÞ
z

dzþ ip f ð0Þ;

and the relations

z e�z2

z� x
¼ e�z2 þ xe�z2

z� x
;

ðþ1
�1

e�z2

dz ¼
ffiffiffi
p
p

;

we obtain

ðþ1
�1

z e�z2

z� x� i0
dz ¼

ffiffiffi
p
p
þ P:V:

ðþ1
�1

xe�z2

z� x
dzþ ipxe�x2

:

(27)

We obtain two limiting expressions of (27), and there-

fore (26), for large and small x.
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A. The case of small x

For x� 1, we use the variable y¼ z�x. Then,

P:V:

ðþ1
�1

xe�z2

z� x
dz ¼ P:V:

ðþ1
�1

xe�ðyþxÞ2

y
dy: (28)

Using

e�ðyþxÞ2 ¼ e�y2 � 2ye�y2

xþ ð2y2 � 1Þe�y2

x2

þ 1

6
ð12y� 8y3Þe�y2

x3 þ ::: ;

we get

P:V:

ðþ1
�1

e�y2 x

y
�2x2�x3

y
þ2x3yþ2x4�ð4=3Þy2x4þ :::

 !
dy

¼�2
ffiffiffi
p
p

x2þ
ffiffiffi
p
p

x4þ ::: ; (29)

where we take into account that the integrals of the odd

terms in y are zero.

Substitution of (29) and (27) into (26) gives

ekðjkjÞ ¼ e0 þ
q2Nq

jkj1þa

1

kBT
1� mx2

kBT jkj2a þ
m2x4

4k2
BT2 jkj4a þ :::

 !

ð0 < a � 1Þ: (30)

As a result, we have

ekðjkjÞ ¼ e0 þ
q2Nq

kBT jkj1þa �
q2Nqmx2

k2
BT2 jkj3aþ1

þ q2Nqm2x4

4k3
BT3 jkj5aþ1

þ :::

ð0 < a � 1Þ: (31)

The imaginary part of the permittivity is relatively small (not

exponentially small), in this case because of the smallness of

the phase volume in which the condition jkjapx=m� x ¼ 0

is satisfied. (See comments about the imaginary part in

Sec. III.)

The Debye radius of screening is equal to

rD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e0kBT

Nqq2

s
: (32)

The Langmuir frequency for charged particle is

XL ¼

ffiffiffiffiffiffiffiffiffiffi
Nqq2

me0

s
: (33)

Then, the variable (24) can be represented in the form

x ¼ 1

rD XL

ffiffiffi
2
p � x

jkja :

Note that k, r, and xi are dimensionless variable.

Using the Debye radius (32) and the Langmuir fre-

quency (33), we rewrite (31) in the form

ekðjkjÞ 	 e0 þ e0

1

r2
D jkj

1þa � e0

x2

r4
D X2

L jkj
3aþ1

þ e0

x4

4r6
D X4

L jkj
5aþ1

ð0 < a � 1Þ: (34)

Using (34), we can derive an equation for the scalar poten-

tials of electric field.

B. The case of large x

For x
 1, we write

P:V:

ðþ1
�1

xe�z2

z� x
dz ¼ �

ðþ1
�1

e�z2

1� z=x
dz

¼ �
ðþ1
�1

e�z2

1þ
X1
s¼1

z

x

� �s
 !

dz: (35)

Integrals of the odd terms are zero. Then,

P:V:

ðþ1
�1

xe�z2

z� x
dz ¼ �

ffiffiffi
p
p
�

ffiffiffi
p
p

2x2
� 3

ffiffiffi
p
p

4x4
� ::: ðx
 1Þ:

(36)

Substituting (36) and (27) into (26), we get

ekðjkjÞ ¼ 1� q2Nq

e0jkj1þa

1

kBT

kBT

mx2
jkj2a þ 3k2

BT2

m2x4
jkj4a þ :::

� �

ð0 < a � 1Þ: (37)

The imaginary part of ekðjkjÞ is exponentially small, since in

a Maxwell’s distribution only an exponentially small part of

the charged particles have the velocity vx ¼ x=jkj 
 vT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, where vT is the average velocity of charged

particles.

As a result, we have

ekðjkjÞ ¼ e0�
q2Nq

mx2
jkja�1� 3q2NqkBT

m2x4
jkj3a�1þ :::

ð0 < a� 1Þ: (38)

Using the Debye radius (32) and the Langmuir fre-

quency (33), we rewrite (38) in the form

ekðjkjÞ 	 e0 � e0

X2
L

x2
jkja�1 � e0

3r2
DX4

L

x4
jkj3a�1 ð0 < a � 1Þ:

(39)

Using Eqs. (34) and (39), we can obtain the scalar poten-

tials of electric field in power-law nonlocal media, and then

describes the difference of these potentials from the well-

known Coulomb’s and Debye’s potentials.

V. SCALAR POTENTIAL OF ELECTRIC FIELD IN
NONLOCAL MEDIA

In the case of a static external field sources can create an

inhomogeneous electric field E(t, r)¼E(r). The electric field

in the medium to be a potential
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EðrÞ ¼ �grad UðrÞ; (40)

where UðrÞ is a scalar potential of electric field.

Let us consider the 3-dimensional Fourier transform

EðrÞ ¼ 1

ð2pÞ3
ð

R3
eþiðk;rÞ EðkÞ d3k;

UðrÞ ¼ 1

ð2pÞ3
ð

R3
eþiðk;rÞ Uk d3k:

(41)

The relation (40) gives

EðkÞ ¼ �ik Uk: (42)

Substituting (42) into the Maxwell equation

iðk;Eðx; kÞÞ eðkÞ ¼ qðx; kÞ; (43)

we obtain

jkj2 ek ðjkjÞUk ¼ qk; (44)

where qk ¼ qð0; kÞ. Note that Eq. (44) does not contain the

transverse permittivity e?ðjkjÞ.
When the field source in the medium is the resting point

charge, the charge density is described by delta-distribution

qðrÞ ¼ Q dð3ÞðrÞ; (45)

where we have assumed that the charge is at the beginning

of the coordinate system. Therefore, the electrostatic poten-

tial of the point charge in the isotropic medium according to

Eq. (44) has the form

UðrÞ ¼ Q

ð2pÞ3
ð

R3
eþiðk;r�r0Þ 1

jkj2 ekðjkjÞ
d3k: (46)

The electric potential (46) created by a point charge Q at a

distance jrj from the charge.

A. The case of the Coulomb potential

If we consider only the first term in Eq. (34), then

ekðjkjÞ ¼ e0;

where e0 is the vacuum permittivity ðe0 	 8:854� 10�12Fm�1Þ.
Substituting ekðjkjÞ ¼ e0 into (44), we obtain

jkj2 Uk ¼
1

e0

qk: (47)

The inverse Fourier transform of (47) gives

DUðrÞ ¼ � 1

e0

qðrÞ; (48)

where D is the 3-dimensional Laplacian for which we have

F½Df ðrÞ�ðkÞ ¼ �jkj2 F½f ðrÞ�ðkÞ: (49)

As a result, the electrostatic potential of the point charge

(45) is

UðrÞ ¼ 1

4pe0

Q

jrj : (50)

This is the Coulomb’s form of the potential.

B. The case of the first two terms in Eq. (34) with a51

If we consider only the first two terms in Eq. (34) with

a ¼ 1, then

ekðjkjÞ ¼ e0 1þ 1

r2
Djkj

2

 !
: (51)

Substituting (51) into (44), we obtain

jkj2 þ 1

r2
D

� �
Uk ¼

1

e0

qk: (52)

The inverse Fourier transform of (47) gives

DUðrÞ � 1

r2
D

UðrÞ ¼ � 1

e0

qðrÞ: (53)

As a result, we get the screened potential of the point charge

(45) in the Debye’s form

UðrÞ ¼ 1

4pe0

Q

jrj � exp � jrj
rD

� �
; (54)

where rD is the Debye radius of screening. It is easy to see

that the Debye’s potential differs from the Coulomb’s poten-

tial by factor CDðjrjÞ ¼ expð�jrj=rDÞ. Debye’s sphere is a

region with Debye’s radius, in which there is an influence of

charges, and outside of which charges are screened.

C. The case of the first two terms in Eq. (34) with a 6¼ 1

If we consider only the first two terms in Eq. (34) with

a 6¼ 1, then the longitudinal permittivity ekðjkjÞ is

ekðjkjÞ ¼ e0 1þ 1

r2
D jkj

aþ1

 !
: (55)

Substituting (55) into (44), we obtain

jkj2 þ 1

r2
D

jkj1�a
� �

Uk ¼
1

e0

qk: (56)

The inverse Fourier transform of (56) gives

�DUðrÞ þ 1

r2
D

ð�DÞð1�aÞ=2UðrÞ ¼ 1

e0

qðrÞ; (57)

where ð�DÞa=2
is the fractional Laplacian in the Riesz form

(see Appendix B).

Equation (57) is solvable, and its particular solution (see

Appendix C) has the form
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UðrÞ ¼ 1

e0

ð
R3

G1�a;2ðr� r0Þqðr0Þ d3r0; (58)

where

G1�a;2ðrÞ ¼
jrj�1=2

ð2pÞ3=2

ð1
0

ðr�2
D k1�a þ k2Þ�1k3=2 J1=2ðkjrjÞ dk:

(59)

The electrostatic potential of the point charge (45) is

UðrÞ ¼ 1

4pe0

Q

jrj � C1�a;2ðjrjÞ ð0 < a � 1Þ; (60)

where the function

C1�a;2ðjrjÞ ¼
ffiffiffiffiffiffiffiffi
2jrj
p

r ð1
0

k3=2 J1=2ðkjrjÞ
r�2

D k1�a þ k2
dk

¼ 2

p

ð1
0

k sinðkjrjÞ
r�2

D k1�a þ k2
dk; ð0 < a � 1Þ (61)

describes the difference between this potential and the

Coulomb’s potential (50).

Using Sec. 2.3.1 in the book,57 we obtain the following

asymptotic behavior for C1�a;2ðjrjÞ with 0 < a � 1, when

jrj ! 1

C1�a;2ðjrjÞ ¼
2

p

ð1
0

k sinðkjrjÞ
k2 þ r�2

D k1�a dk

	 A0ð1� aÞ 1

jrj1þa þ
X1
k¼1

Akð1� aÞ 1

jrjð1þaÞðkþ1Þ ;

(62)

where the coefficients A0 and Ak are defined by the relations

A0ð1� aÞ ¼ 2

pr�2
D

Cð1þ aÞ cos
p
2

a
� �

; (63)

Akð1� aÞ ¼ � 2

pr
�2ðkþ1Þ
D

ð1
0

zð1þaÞðkþ1Þ�1 sinðzÞ dz: (64)

As a result, we have that generalized non-local properties of

plasma-like media deform the Debye’s screening such that

the exponential decay is replaced by the fractional power-

law decay

C1�a;2ðjrjÞ 	
A0

jrj1þa ð0 < a � 1Þ: (65)

The electrostatic potential of the point charge in the media

with this type of spatial dispersion is

UðrÞ 	 A0

4pe0

� Q

jrj2þa ð0 < a � 1Þ (66)

on the long distance jrj 
 1. Equation (66) demonstrates a frac-

tional non-Debye screening of the electric field in the plasma-

like media with spatial dispersion of fractional power-law type.

D. The case of the first three terms in Eq. (34) with
a 6¼ 1

If we consider the first three terms in Eq. (34) with

a 6¼ 1, then

ekðjkjÞ ¼ e0 1þ 1

r2
D jkj

1þa �
x2

r4
D X2

L jkj
3aþ1

 !
: (67)

Substitution of (67) into (44) gives

jkj2 þ 1

r2
D

jkj1�a � x2

r4
D X2

L

jkj1�3a

 !
Uk ¼

1

e0

qk: (68)

The inverse Fourier transform of (68) gives

�DUðrÞ þ 1

r2
D

ð�DÞð1�aÞ=2UðrÞ � x2

r4
D X2

L

ð�DÞð1�3aÞ=2UðrÞ

¼ 1

e0

qðrÞ; (69)

where we use the fractional Laplacian ð�DÞa=2
(see

Appendix B). If 1=3 < a � 1, then the operator ð�DÞð1�3aÞ=2

is the Riesz fractional integral (Riesz potential) of the order

ð3a� 1Þ=2.26

Equation (69) is solvable, and its particular solution (see

Appendix C) has the form

UðrÞ ¼ 1

e0

ð
R3

G1�a;1�3a;2ðr� r0Þqðr0Þ d3r0; (70)

where

a1 ¼
1

r2
D

; a2 ¼
x2

r4
D X2

L

; (71)

and

G1�a;1�3a;2ðrÞ ¼
jrj�1=2

ð2pÞ3=2

ð1
0

k3=2 J1=2ðkjrjÞ
a1k

1�a � a2k
1�3a þ k2

dk:

(72)

The electrostatic potential of the point charge (45) is

UðrÞ ¼ 1

4pe0

Q

jrj C1�a;1�3a;2ðjrjÞ; (73)

where 0 < a � 1, and the function

C1�a;1�3a;2ðjrjÞ ¼
2

p

ð1
0

k sinðkjrjÞ
a1k

1�a � a2k
1�3a þ k2

dk;

ð0 < a � 1Þ (74)

describes the difference between this potential and the

Coulomb’s potential. As a result, characteristic features of

the plasma-like with fractional power-law spatial dispersion

are non-integer power-law tails analogous to (62), and a frac-

tional power-law decrease of the electric field in such

plasma-like media as (66).
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E. The case of the first three terms in Eq. (39) with
a 6¼ 1

If we consider the first three terms in Eq. (39) with

a 6¼ 1, then

ekðjkjÞ ¼ e0 1� X2
L

x2
jkja�1 � 3r2

DX4
L

x4
jkj3a�1

� �
: (75)

Substitution of (75) into (44) gives

jkj2 � X2
L

x2
jkjaþ1 � 3r2

DX4
L

x4
jkj3aþ1

� �
Uk ¼

1

e0

qk: (76)

The inverse Fourier transform of (76) gives

�DUðrÞ � X2
L

x2
ð�DÞðaþ1Þ=2UðrÞ

� 3r2
DX4

L

x4
ð�DÞð3aþ1Þ=2UðrÞ ¼ 1

e0

qðrÞ; (77)

where ð�DÞa=2
is the fractional Laplacian (see Appendix B).

If we consider only the first two terms in Eq. (39) with

a 6¼ 1, then we have the fractional differential equation

�DUðrÞ � X2
L

x2
ð�DÞðaþ1Þ=2UðrÞ ¼ 1

e0

qðrÞ: (78)

The electrostatic potential of the point charge (45) has form

UðrÞ ¼ 1

4pe0

Q

jrj � Caþ1;2ðjrjÞ: (79)

The function

Caþ1;2ðjrjÞ ¼
2

p

ð1
0

k sinðkjrjÞ
k2 � ðX2

L=x
2Þ kaþ1

dk ð0 < a � 1Þ

(80)

describes the difference between this potential and the

Coulomb’s potential.

Using Sec. 2.3.1 in the book,57 we obtain the asymptotic

behavior for C1þa;2ðjrjÞ with 0 < a � 1, when jrj ! 1 in

the form

C1þa;2ðjrjÞ ¼
2

p

ð1
0

k sinðkjrjÞ
k2 � ðX2

L=x
2Þk1þa dk

	 A0ð1þ aÞ 1

jrj1�a þ
X1
k¼1

Akð1þ aÞ 1

jrjð1�aÞðkþ1Þ ;

(81)

where the coefficients A0ð1þ aÞ and Akð1þ aÞ are defined by

A0ð1þ aÞ ¼ � 2

pðX2
L=x

2Þ
Cð1� aÞ cos

p
2

a
� �

; (82)

Akð1þ aÞ ¼ � 2

pð�X2
L=x

2Þðkþ1Þ

ð1
0

zð1�aÞðkþ1Þ�1 sinðzÞ dz:

(83)

The generalized non-local properties deform the Debye’s

screening such that the exponential decay is replaced by the

fractional power-law decay

C1þa;2ðjrjÞ 	
A0

jrj1�a ð0 < a � 1Þ: (84)

The correspondent electrostatic potential of the point charge

in the media with this type of fractional spatial dispersion is

given by

UðrÞ 	 A0

4pe0

� Q

jrj2�a ð0 < a � 1Þ (85)

on the long distance jrj 
 1. As a result, we have a non-

Debye screening of the electric field in the plasma-like

media with fractional power-law spatial dispersion.

VI. CONCLUSION

The suggested fractional kinetics of plasma-like media

gives a microscopic model for the electrodynamics of con-

tinuous media with the power-law spatial dispersion of

power-law type that is considered in the recent paper.4 The

fractional kinetics is based on a generalization of the

Liouville equations that include the Caputo fractional

derivatives.25 Using the fractional Liouville equation, we

obtain the power-law dependence of the absolute permittiv-

ity on the wave vector. This dependence leads to fractional

differential equations for electrostatic potential that

includes Riesz fractional derivatives. Particular solutions of

these equations, which describe the electric potential of the

point charge in the media with power-law spatial dispersion

is suggested.

An interesting problem of considerable practical impor-

tance is the link between the plasma-like media with frac-

tional power-law spatial dispersion and the identifiable

physical and structural features in the media. The following

questions relating to this subject can be formulated. What

material conditions must be satisfied for the fractional

power-law spatial property to be observed? What are the

physical interpretations of this type of behavior? We assume

that the link between the plasma-like media with fractional

power-law spatial dispersion and the physical and structural

features in the media (as described in Sec. 5 of Ref. 56) can

be realized by the generalized polarizable point dipoles

method with fractional screening in molecular dynamics and

Monte Carlo simulations. Using these simulations, the pres-

ence of identified defects in the structure of plasma-like

media can also be taken into account. To realize this sug-

gested approach, additional investigations are required.

The suggested kinetic models allow us to explain by mi-

croscopic point, the properties of the media with the frac-

tional power-law spatial dispersion, which are described in

Ref. 4. It can help to find new plasma-like media found

among objects such as ionized gas, metals and semiconduc-

tors, molecular crystals, and colloidal electrolytes. A charac-

teristic feature of such media is non-integer power-law tails,

a fractional power-law decrease of the electric field in such
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plasma-like media. This feature allows us to find the new

materials and media by experiments.

Note that the model of fractional dynamics of plasma-

like media with power-law spatial dispersion can be consid-

ered as new media with a common or universal behavior in

space by analogy with the universal behavior of low-loss

dielectrics in time.53–56 This universality and non-Debye

screening of the electric field allows us to assume that these

media are important for applications.

APPENDIX A: CAPUTO FRACTIONAL DERIVATIVE

The Caputo fractional derivative C
a Da

x can be defined for

functions belonging to the space ACn½a; b� of absolutely con-

tinuous functions.25 Let a > 0 and let n be given by n ¼
½a� þ 1 for a 62N, and n ¼ a for a 2N. If f ðxÞ 2 ACn½a; b�,
then the Caputo fractional derivatives exist almost every-

where on [a,b]. If a 62N, then

ð C
a Da

x f ÞðxÞ ¼ ðaIn�a
x Dnf ÞðxÞ ¼ 1

Cðn� aÞ

ðx

a

dz
Dn

z f ðzÞ
ðx� zÞa�nþ1

;

where n ¼ ½a� þ 1. If a ¼ n 2N, then

ð C
a Da

x f ÞðxÞ ¼ Dn
x f ðxÞ:

It can be directly verified that the Caputo fractional differentia-

tion of the power functions ðx� aÞb yields power functions

C
a Da

xðx� aÞb ¼ Cðbþ 1Þ
Cðaþ bþ 1Þ ðx� aÞb�a;

where b > �1. In particular, then the Caputo fractional

derivatives of a constant C are equal to zero

C
a Da

xC ¼ 0:

For k ¼ 0; 1; 2; :::; n� 1, we have

C
a Da

xðx� aÞk ¼ 0:

The Mittag-Leffler function Ea½kðx� aÞa� is invariant25 with

respect to the Caputo derivatives C
a Da

x , i.e.,

C
a Da

xEa½kðx� aÞa� ¼ kEa½kðx� aÞa�:

This means that the Mittag-Leffler function is analogous to

the exponential for the Caputo fractional derivative.25

APPENDIX B: RIESZ FRACTIONAL DERIVATIVE

For a > 0 and “sufficiently good” functions f(x),

x 2 Rn, the Riesz fractional differentiation is defined25,26 in

terms of the Fourier transform F by

ð�DÞa=2
x f ðxÞ ¼ F�1ðjkjaðF f ÞðkÞÞ: (B1)

For a > 0, the Riesz fractional derivative ð�DÞa=2
can be

defined in the form of the hypersingular integral (Sec. 26 in

Ref. 26) by

ð�DÞa=2
x f ðxÞ ¼ 1

dnðm; aÞ

ð
Rn

1

jzjaþnðD
m
z f ÞðzÞ dz;

where m > a, and ðDm
z f ÞðzÞ is a finite difference of order m

of a function f(x) with a vector step z 2 Rn and centered at

the point x 2 Rn

ðDm
z f ÞðzÞ ¼

Xm

j¼0

ð�1Þj m!

j! ðm� jÞ! f ðx� jzÞ:

The constant dnðm; aÞ is defined by

dnðm; aÞ ¼
p1þn=2 AmðaÞ

2aCð1þ a=2ÞCðn=2þ a=2Þsinðpa=2Þ ;

where

AmðaÞ ¼
Xm

j¼0

ð�1Þj�1 m!

j!ðm� jÞ! ja:

Note that the hypersingular integral ð�DÞa=2
x f ðxÞ does not

depend on the choice of m > a.

If f(x) belongs to the space of “sufficiently good” func-

tions, then the Fourier transform F of the Riesz fractional

derivative is given by

ðFð�DÞa=2 f ÞðkÞ ¼ jkjaðF f ÞðkÞ:

This equation is valid for the Lizorkin space26 and the space

C1ðRnÞ of infinitely differentiable functions on Rn with

compact support.

APPENDIX C: FRACTIONAL DIFFERENTIAL EQUATION

Let us consider the fractional partial differential equation

Xm

k

akð�DÞak=2UðrÞ þ a0UðrÞ ¼
1

e0

qðrÞ; (C1)

where am > ::: > a1 > 0, and ak 2 R are constants. Here,

ð�DÞak=2
are the fractional Laplacians in the Riesz form.

We apply the Fourier method for solving fractional

Eq. (C1). The Fourier transform of the fractional Laplacian

ð�DÞa=2
is defined by

F½ð�DÞa=2f ðrÞ�ðkÞ ¼ jkja F½f ðrÞ�ðkÞ: (C2)

Applying the Fourier transform F to both sides of (C1) and

using (C2), we have

ðFUÞðkÞ ¼ 1

e0

�Xm

k¼1

akjkjak þ a0

��1

ðFqÞðkÞ: (C3)

We define the fractional analog of the Green function25

GaðrÞ ¼ F�1

"�Xm

k¼1

akjkjak þ a0

��1
#
ðrÞ

¼
ð

R3

�Xm

k¼1

akjkjak þ a0

��1

eþiðk;rÞ d3k; (C4)

where a ¼ ða1; :::; amÞ—is the multi-index.
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The following relationð
Rn

eiðk;rÞ f ðjkjÞ dnk ¼ ð2pÞn=2

jrjðn�2Þ=2

ð1
0

f ðkÞ kn=2 Jn=2�1ðkjrjÞ dk

(C5)

holds (see Lemma 25.1 of Ref. 26) for any function f such

that the integral in the right-hand side of (C5) is convergent.

Here, J� is the Bessel function of the first kind. As a result,

the Fourier transform of a radial function is also a radial

function.

Using (C5), the Green function (C4) can be represented

(see Theorem 5.22 in Ref. 25) in the form of the one-

dimensional integral involving the Bessel function of the first

kind J1=2

GaðrÞ ¼
jrj�1=2

ð2pÞ3=2

ð1
0

�Xm

k¼1

akk
ak þ a0

��1

k3=2 J1=2ðkjrjÞ dk;

(C6)

where we use n¼ 3, and a ¼ ða1; :::; amÞ—is the multi-index.

If am > 1 and Am 6¼ 0; A0 6¼ 0, then Eq. (C1) is solvable.25

The solution of Eq. (C1) can be represented in the form of the

convolution of the functions G(r) and qðrÞ

UðrÞ ¼ 1

e0

ð
R3

Gaðr� r0Þqðr0Þ d3r0; (C7)

where the Green function GaðzÞ is defined by (C6).

We can consider fractional partial differential Eq. (C1)

with a0¼ 0 and a1 6¼ 0, when m 2N; m � 1. If a1 < 3;
am > 1;m� 1; a1 6¼ 0; am 6¼ 0; am > ::: > a1 > 0, then equation

Xm

k¼1

akð�DÞak=2UðrÞ ¼ 1

e0

qðrÞ (C8)

is solvable (Theorem 5.23 in Ref. 25), and its particular solu-

tion is given by

UðrÞ ¼ 1

e0

ð
R3

Gaðr� r0Þqðr0Þ d3r0; (C9)

where

GaðrÞ ¼
jrj�1=2

ð2pÞ3=2

ð1
0

�Xm

k¼1

akk
ak

��1

k3=2

ffiffiffiffiffi
2

pz

r
sinðzÞ dk:

(C10)
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