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Pure stationary states of open quantum systems
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Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipa-
tive quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary
states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are
suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary
states for open quantum systems which are quantum analogs of classical dynamical bifurcations.
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[. INTRODUCTION Neumann equation for density matrix evolution such that this
Liouville generator of the equation is a function of some
The open quantum systems are of strong theoretical inteHamiltonian operator. Open quantum systems with pure sta-
est. As a rule, any microscopic system is always embeddelipnary states of linear harmonic oscillator are suggested. We
in some(macroscopigenvironment and therefore it is never derive stationary states for quantum Markovian master equa-
really closed. Frequently, the relevant environment is in printion usually called the Lindblad equation. The suggested ap-
ciple unobservable or it is unknow,2]. This would render ~Proach allows one to use theory of bifurcations for a wide
the theory of open quantum systems a fundamental generaflass of quantum open systems. We consider the example of
zation of quantum mechani¢8,4]. bifurcation of pure stationary states for open quantum sys-
Classical open and dissipative systems can have regular &ms.
strange attractoris,6]. Regular attractors can be considered In Sec. Il, we introduce pure stationary states for closed
as a set of(stationary states for closed classical systemsguantum systems and some mathematical background is con-
correspondent to open systems. Quantization of evolutiogidered. In Sec. Ill, we consider Liouville—von Neumann
equations in phase space for dissipative and open classic@fiuation for an open quantum system and pure stationary
systems was suggested in Réfg8]. This quantization pro- states for this equation. In Sec. IV, simple examples of sta-
cedure allows one to derive quantum analogs of open classiionary states for open quantum systems are considered. In
cal systems with regular attractors such as nonlinear oscillaS€c. V, we study some proporties of the quantum system to
tor [7,9]. In the paper§7—9] were derived quantum analogs have dynamical bifurcations and catastrophes. In the Sec. VI,
of dissipative systems with strange attractors such as Lorens'€ suggest an example of the quantum system with fold
like system, Ressler and Newton-Leipnik systems. It is intercatastrophe. Finally, a short conclusion is given in Sec. VII.
esting to consider quantum analogs for regular and strang® the Appendix, the mathematical backgroufidouville
attractors. The regular “quantum” attractors can be considspace, superoperatotis considered.
ered as stationary states of open quantum systems. The exis-
Fence qf stationary states_ 'for open quantum s_ystems is an II. PURE STATIONARY STATE
interesting fact. The condition given by Davies in Ref0]
defines the stationary state of an open quantum system. An In the general case, the time evolution of the quantum
example, where the stationary state is unique and approachsthte|p;) can be described by the Liouville—von Neumann
by all states for long times is considered by LindbJad] for =~ equation
Brownian motion of quantum harmonic oscillator. In Refs.
[12—-14 Spohn derives sufficient condition for the existence d .
of a unique stationary state for the open quantum system a|Pt)=A|Pt), (@]
described by Lindblad equatid5]. The stationary solution
of the Wigner function evolution equation for an open quan- .
tum system was discussed in Rgfs6,17]. Quantum effects whereA is a Liouville superoperator on Liouville spade)
in the steady states of the dissipative map are considered ia a density matrix operator as an element of Liouville space.
Ref.[18]. For the concept of Liouville space and superoperators see the
In this paper we consider stationary pure states of somAppendix and Refs[20—37. For closed systems, the Liou-
open quantum systems. These open systems look like clos&tdlle superoperator has the form
guantum systems in the pure stationary states. We consider
the quantum analog of dynamical bifurcations considered by R i L
Thompson and Lunfil9] for classical dynamical systems. In A=— g(LH— Ry) or A=Lg, 2
order to describe these systems, we consider Liouville—von

whereH=H(q,p) is a Hamilton operator. If the Liouville
*Email address: tarasov@theory.sinp.msu.ru superoperatof‘\ cannot be represented in the fof@), then
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quantum system is called open, non-Hamiltonian or dissipa- ¢ i A s o
tive quantum systerf86—38. The stationary state is defined &|pt) =— %(LH— Ry)|p)+ > FiNW(Ly . Ry py)-
by the following condition: k=1 ©

Alp)=0. B Here ¥ is some superoperator andj(Ly,Ry), wherek

=1, ... s, are superoperator functions.

For closed quantum system@), this condition has the Let |py) be a pure stationary state of the closed quantum

simple form system defined by Hamilton operatdr If Egs. (5) are sat-
N - N isfied, then the statgpy) is a stationary state of the closed
Lulpd) =Rulpy) or Lylp)=0. (4 system associated with the open syst@rand is defined by
In the general case, we can consider the Liouville superop- d i ~
erator as a superoperator functigh8,36: a|Pt) == 7 (Ln— Ru)lpo).- 9

A el oy A~ s A R R
A=A(Lx Lx) or A=A(Lx,Rx), If the vector|py) is an eigenvector of operators, andRy,

) ) then the Liouville—von Neumann equati@8) for the pure
where X is a set of linear operators. For exampl¥,  gtate|p,) has the form

={q,p,H} or X={H4, ... Hg. In this paper we use the

special form of the superoperatdr such that d .
m|P\p):gl Fulpw)NW(E,E),

S

- i . A A A
A== %(LH_RH”k; PN Ru), where the functiond\,(E,E) are defined by

whereN,(L,,Ry) are some superoperator functions &d Nk(E,E)= ([N (L ,Ru)|pw)-

is an arbitrary nonzero superoperator.

It is known that a pure staigy,) is a stationary state of a If all functions Ny(E,E) are equal to zero

closed quantum systefiqgs.(1), (2)], if the state] pq,) is an N (E,E)=0, (10)
eigenvector of the Liouville space for superoperatogsand
Ry: then the stationary statgy,) of the closed quantum system
(9) is the stationary state of the open quantum sy<{@m
|:H|P«y):|qu)E, §H|PW):|PW)E- (5) Note that functions\,(E,E) are eigenvalues angy) is

the eigenvector of superoperatdig(L,, ,Ry), since
Equivalently, the statépy,) is an eigenvector of superopera-

torsL,; andL; such that Ni(Lr . Ru) pw) = pw)NW(E,E).
r _ r- _ _ Therefore stationary states of the open quantum sy$&m
Lilpw)=lpw)E, L =|py)-0=0. . .
Hlpw)=lpw) ulpw)=lpw) are defined by zero eigenvalues of superoperators
The energy variabl& can be defined by Ni(Ln,Rn)-
E=(|Lylpw)=|Rylpw) =L pw). IV. OPEN SYSTEMS WITH OSCILLATOR
STATIONARY STATES
The superoperatotisy andRy, for linear harmonic oscil- In this section, simple examples of open quantum systems
lator are (8) are considered.
. 5 L 5 (1) Let us consider the nonlinear oscillator with friction
- ~p Mol - ao  MO™ . defined by the equation
_ 2 2 _ 2 2
LH—ﬁLp"‘ TLq, RH_ﬁRp—'—TRq' (6) . .
i i
- L are2 02 2
It is known that pure stationary stata@nzp?l,n of linear dePt h[H’p‘] 2h Ala®ppctppl, (1Y)

harmonic oscillatof6) exists if the variabléE is equal to _
where the operata is the Hamiltom operator of the non-
E,=3hw(2n+1). (7) linear oscillator:
~  P° mO*q® g’
IIl. PURE STATIONARY STATES OF OPEN SYSTEMS H= >m + T+T
Let us consider the Liouville—von Neumann equatitn
for the open quantum system defined of the form Equation(11) can be rewritten in the form
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As the result, stationary states of open the quantum system
(13) coincide with pure stationary states of the linear har-
monic oscillator. If the parametes, is equal tofw(2m
+1), then quantum system43) and (14) have stationary
states of the linear harmonic oscillator witifk,m)=2km
+k+m and

d A a_
a|pt):LH|pt)+2mBLq2

1 . Y. A L
— N2, 7 \2_ T

(12

N w
whereA=Q2?— w? and the superoperatdr; is defined for Engm =" (2k+1)(2m+1).
the Hamilton operatoH of the linear harmonic oscillator by

Egs.(2) and(6). Equation(12) has the form(8), with (3) Let us consider
Ni(Ly ,Ry) in the form

the superoperator function

N R = 5 S(Lu+Ry)— F=2mpl,

2,8 ' A~ A 1 A ~ ~
| _ Ne(Lh Ry) = o7 2 okl 2LARE-LE ™= RE™),
In this case the functioh(E,E) has the form nm
and all superoperatois, are equal td, . In this case, the
N(E,E)=E— 28" Liouville—von Neumann equatiof8) can be represented by
the Lindblad equatiof40,41,38:
Let y=Bm?w?. The open quantum systefhl) has one sta-
tlonary state of the linear harmonic oscillator with energy —|Pt)——
=(hwl/2)(2n+1), if A=2Bhw(2n+1), wheren is an
mteger non-negative number. This stationary state is one of

i . 1 A A a
7 (En=Rle)+ 55 2 2LyRy-LyLy

the stationary states of the linear harmonic oscillator with the - I’:\leﬁVkNpt)l (15
massm and frequencyo. In this case we can have the quan- .
tum analog of dynamical Hopf bifurcatidi9,39. with linear operators/, defined by
(2) Let us consider the open quantum system described by
the time evolution equation V= En: viH™, VE: % vE HM. (16)

d n “ ma,
a|pt):LH|pt)+LqC0 S_OLH lpy), (13

where the superoperatﬁrg is defined by formulag2) and
(6). Equation(13) has the form(8) if the superoperator§
andN(L, ,Ry) are defined by

The functionN(E,E) has the form

0

N(E.E) S<7TE) 5 1 (in)Zm
,E)=cod —|= —_—|—

go/ m=o (2m)!
The stationary state conditiqi0) has the solution

E=%0on+1

wheren is an integer number. If parametey is equal toh w,

then quantum system@3) and (14) have pure stationary

states of the linear harmonic oscillator with the enefgy

If |py) is a pure stationary statéb), then all functions
N, (E,E) are equal to zero and this stdgey) is a stationary
state of the open quantum systéib).

If the Hamilton operatoH is defined by

1 Ma?

= p2+ 2242 (gp+pa)
2m 2 2 !

17)

then we have some generalization of the quantum model for
the Brownian motion of a harmonic oscillator considered in
Ref.[11]. Note that in the moddll1] operatorsV, are linear
V=ap+b,g, butin our generalizationd 5) and(16) these
operators are nonlinear. For example, we can use

V= ayp+byq+cyp?+ dyg®+ e (gp+pa).

The casec,=d,=e€,=0 is considered in Refll]. Let real
parametersy and 8 exist and

bk: agy, Ck:ﬂak, dk=m2w2,8ak, ek:m)\ﬂak.

In this case, the pure stationary states of the linear oscillator
(17) exist if >\ and the variablé is equal to

E,=2hw(2n+1)V1—\?/w?.

V. DYNAMICAL BIFURCATIONS AND CATASTROPHES

Let us consider a special case of open quantum systems
(8) such that the vector function
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N (E,E)=(I|Nk(Ly,Rn)|p)

be a potential function and the Hamilton operatbican be
represented in the form

S
= H,
&1

In this case we have a functio(E) called potential, such
that the following conditions are satisfied:

IV(E)
IE,

=Ny(E,E),

where E,=(1|Lyy, |p)=(1|Ry [p). If potential V(E) exists,
then the stationary state conditi¢t0) for the open quantum
system(8) is defined by critical points of the potentid(E).
If the system has one variabig then the functioiN(E,E) is

always a potential function. In general, the vector function

N (E,E) is potential, if

INWEE)

IN|(E,E)
JE, '

JE,

Stationary states of the open quantum syst8nwith the

potential vector functioN,(E,E) depend on critical points

It allows one to use the theory of
bifurcations and catastrophes for the parametric set of func-
tionsV(E). Note that a bifurcation in a vector space of vari-

of the potentialV(E).

ables E={E,|k=1, ... s} is a bifurcation in the vector
space of eigenvalues of the Hamilton operatqr.

For the polynomial superoperator functiof (L ,Ry),
we have

N n
-3 > AR
n=0 m=0

In generalm andn are multi-indices. The functioN(E,E)
is a polynomial,

N

N(E,E)=> a

k
we,

where the coefficienta) are defined by

n

3 3
=3

We can define the variableg=E,—a, (I=1,....5),
such that functiondN,(E,E) =N,(x+a,x+a) do not have
the termsx!*

N

Ne(x+a,x+a)= >, al(x+al)"

N n n!
z 2 (k)— m(a(k))n—m

b iy O m!(n—m)!

PHYSICAL REVIEW E 66, 056116 (2002

If the coefficient of the term(ln'fl is equal to zero

k k k) _— (k K k) _
agl)m a+a = a®na+a® =0,

then we have the following coefficients:

(k)
n-1

()
n

ak—_ M
Niay

If we change parameters, then an open quantum sys-
tem can have pure stationary states of the system. For ex-
ample, the bifurcation with the birth of linear oscillator pure
stationary state is a quantum analog of dynamical Hopf bi-
furcation[19,39 for a classical dynamical system.

Let a vector space of energy variablés be a one-
dimensional space. If the functidw(E,E) is equal to

n-1

N(E,E)=* a,E"+ X, ajE n=2,
i=1

then the potential/(x) is defined by the following equation:

n—1
V(X):ix““JrJZl ax, n=2,

and we have catastrophe of type .

If we have s variablesE,;, wherel=1,2,...s, then
guantum analogs of elementary catastrophes,, D,
E.s, E;, andEg can be realized for open quantum systems.
Let us write the full list of potentiald/(x), which leads to
elementary catastrophe&ero modal defined by V(x)
=V(x) +Q(x), where

n—-1
Al Vo(X):iXTH’LJ—Zl ajx;, n=2,

n—-1
Dan: Vo(X)=x2X,+X5~ +z apxb+ X XY,

j=n-2

2 5
. /3 4 j i—3
E.q: Vo(x)—(xlixz)JrJZl ajx12+j23 ajxixh 7,

4 6
Er: Vo(X)=X3+xx3+ >, axh+ > axgxbh 2,
=1 <5

3 7
Eg: Vo(x)=x§+xg+;l ajxh+ ;4 ajxyxh ?

Here Q(x) is the nondegenerate quadratic form with vari-
ablesx,,xs, ... Xs for AL, and parametergs, ... X for
other cases.
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VI. FOLD CATASTROPHE

In this section, we suggest an example of the open qua

tum system with catastroph#e, called fold.
Let us consider the Liouville—von Neumann equati{8h
for a nonlinear quantum oscillator with friction, where mul-

tiplication superoperators,, and R, are defined by Eq(6)

and superoperatos and N(L,,,R,) are given by the fol-
lowing equations:

F=-20,L;, (18

N(I:H,IEQH)=a0|:|++a1I:ﬁ+a2(IA_,ﬁ)2. (19)

In this case, the functiohl(E,E) is equal to
N(E,E)=ag+ a;E+ a,E?.

A pure stationary statgpy,) of the linear harmonic oscil-
lator is a stationary state of the open quantum systE9)) if
N(E,E)=0. Let us define the new real variabteand pa-
rametern by the following equation:

2
B daga,— aj

X=E+—
4a§

2a2'

Then we have the stationary conditi?f{ E,E)=0 in the

form x2—\=0. If A<0, then the open quantum system has

no stationary states. K>0, then we have pure stationary
states for a discrete set of parameter value$ parameters
aq,a,, and\ satisfy the following conditions

2

m
_32 2
N=nh 7

a
——lzﬁw(

1 m
n+_-+—-|,
2a2

2 2

wheren and m are non-negative integer numbers, then the

open quantum systen{48) and(19) have two pure station-

PHYSICAL REVIEW &6, 056116 (2002

pative quantum systems as a quantum computer with mixed
stated44—46. A mixed statg(operator of density matr)xof

™ two-level quantum system@®pen or closech-qubit sys-

tem) is an element of the dimensional operator Hilbert
space(Liouville spacsg. It allows one to use a quantum com-
puter model with four-valued logig44—46. The quantum
gates of this model are real, completely positive, trace-
preserving superoperators that act on mixed sfatke4§.
Bifurcations of pure quantum states can be used for quantum
gate control.

ACKNOWLEDGMENT

This work was partially supported by the RFBR Grant
No. 02-02-16444.

APPENDIX

For the concept of Liouville space and superoperators see
Refs.[20-37.

Liouville space

The space of linear operators acting on a Hilbert sgdce
is a complex linear spacH. We denote an eleme#t of H
by a ket-vectofA). The inner product of two elementa)
and |B) of H is defined as A|B)=Tr(A'B). The norm
[|All=V(AJA) is the Hilbert-Schmidt norm of operatdx. A
new Hilbert spaceé with the inner product is called Liou-
ville space attached t#( or the associated Hilbert space, or
Hilbert-Schmidt spac§20-37.

Let {|x)} be an orthonormal basis 6{:

(X|x"y=8(x—x"), f dx|x)(x|=1.

ary states of the linear harmonic oscillator. The energies of N€n|x.x") =|[x){x'[) is an orthonormal basis of the Liou-

these states are equal to
E,=fho(n+3), E, m=ho(nh+m+3).

VII. CONCLUSION

Open gquantum systems can have pure stationary states.
Stationary states of open quantum systems can coincide with

pure stationary states of clos@damiltonian systems. As an

ville spaceH:

(x,x"|y,y")=8(x=x")8(y—y"),

example, we suggest open quantum systems with pure sta-

tionary states of linear oscillator. Note that using BB, it is
easy to get opefdissipative quantum systems with station-

f dxf dx’|x,x")(x,x"|=1. (A1)
For an arbitrary elemenf\) of H we have
|A)=f dxf dx’'[x,x")(x,x"|A), (A2)

ary states of the hydrogen atom. For a special case of open
systems, we can use usual bifurcation and catastrophe theowhere
It is easy to derive quantum analogs of classical dynamical

bifurcations. Physical instances with bifurcation behavior

can be realized in quantum opti€42] and deep inelastic
collisions[43].

XA =tr((x)p(x ) TA) =tr(|x" ) (x| A) = (x| A|x")
=A(X,x")

Open quantum systems with two stationary states can be

considered as qubits. It allows one to consider opeubit
guantum system described by E§) as a quantum computer

is a kernel of the operat@k. An operatorp of density matrix
(trp=1,0"=p,p=0) can be considered as an elemjgntof

with pure states. In general, we can consider open and disdihe Liouville spaceH. Using Eq.(A2), we get

056116-5



VASILY E. TARASOV

)= [ ax[ dxbex oo, (A3)

where the trace is represented by
(||p)=tl’p=f dx (x,x|p)=1.

Superoperators

Operators that act oK are called superoperators and we

denote them, in general, by a hat.

For an arbitrary superoperat& on H, which is defined
by

AlA)=|A(A)),

we have
(x,x’IAIA)=fdyf dy’ (x,x'|Aly,y" ) (y.y'|A)

:f dyJ dy"A(x,x",y,y )AY,Y"),

whereA (x,x’,y,y’) is a kernel of the superoperatdr.
Let A be a linear operator in the Hilbert spake We can

define the multiplication superoperatdrs and R, by the
following equations:

LalB)=|AB), Ra|B)=|BA).

The superoperator kernels can be easily derived. For ex-

ample, in the basif,x’) we have
(valll:AlB):deJ dy’ (xx'[Laly,y )(y.y'[B)

=fdyf dy'La(x,x",y,y" )B(y,y’).
Using
(xx[AB) = (ABIx')= [ ay [ dy'(xIAy)(yIBly')

Xqy'|x'),

we get kernel of the left multiplication superoperator

PHYSICAL REVIEW E 66, 056116 (2002

(LA XY,y ) = (XAl X [y ) =A(X,y) 8(x" —y").

Left superoperatori,f are defined as Lie and Jordan
multiplication by

. 1 R 1
[AB=1-(AB-BA), L[[B=3(AB+BA).

The left superoperatoﬂ%,f and right superoperatof%ﬁ are
connected by

Ly,=—R,, Li=R;.

An algebra of the superoperatats, is defined[8] by the

following relations:
(1) Lie relations

(2) Jordan relations
Liappct LaLela+LALELE
=LaelétLaclatlacts,
Liappctlalela+LALELS
=Lebaptlalactialac,
LélaptLlalactlalac=Laple+Llacla+Lacks .
(3) Mixed relations
Lre=Lals-L5l4,
Lae=Cale+Lala,

2

Lie=Lils— 7 Lala,
e A a h2.
LgL;—L;Lg=—ZL;,B,

where

1 1
A:-B=(AB=BA), A°B=3(AB+BA).
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