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Pure stationary states of open quantum systems

Vasily E. Tarasov*
Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia

~Received 19 September 2001; revised manuscript received 12 September 2002; published 19 November 2002!

Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipa-
tive quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary
states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are
suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary
states for open quantum systems which are quantum analogs of classical dynamical bifurcations.

DOI: 10.1103/PhysRevE.66.056116 PACS number~s!: 05.30.Ch, 03.65.2w, 03.65.Yz
te
d
r

rin

ra

ar
ed
s

tio
si

s
ill
s
en
te
n
id
e
s

.
ch

fs
ce
te

n

d

m
os
id
b

n
vo

his
e

sta-
We
ua-
ap-
de
le of
ys-

ed
con-
n
ary
ta-
. In
to

. VI,
old
II.

um
nn

ce.
the

-

I. INTRODUCTION

The open quantum systems are of strong theoretical in
est. As a rule, any microscopic system is always embed
in some~macroscopic! environment and therefore it is neve
really closed. Frequently, the relevant environment is in p
ciple unobservable or it is unknown@1,2#. This would render
the theory of open quantum systems a fundamental gene
zation of quantum mechanics@3,4#.

Classical open and dissipative systems can have regul
strange attractors@5,6#. Regular attractors can be consider
as a set of~stationary! states for closed classical system
correspondent to open systems. Quantization of evolu
equations in phase space for dissipative and open clas
systems was suggested in Refs.@7,8#. This quantization pro-
cedure allows one to derive quantum analogs of open cla
cal systems with regular attractors such as nonlinear osc
tor @7,9#. In the papers@7–9# were derived quantum analog
of dissipative systems with strange attractors such as Lor
like system, Ressler and Newton-Leipnik systems. It is in
esting to consider quantum analogs for regular and stra
attractors. The regular ‘‘quantum’’ attractors can be cons
ered as stationary states of open quantum systems. The
tence of stationary states for open quantum systems i
interesting fact. The condition given by Davies in Ref.@10#
defines the stationary state of an open quantum system
example, where the stationary state is unique and approa
by all states for long times is considered by Lindblad@11# for
Brownian motion of quantum harmonic oscillator. In Re
@12–14# Spohn derives sufficient condition for the existen
of a unique stationary state for the open quantum sys
described by Lindblad equation@15#. The stationary solution
of the Wigner function evolution equation for an open qua
tum system was discussed in Refs.@16,17#. Quantum effects
in the steady states of the dissipative map are considere
Ref. @18#.

In this paper we consider stationary pure states of so
open quantum systems. These open systems look like cl
quantum systems in the pure stationary states. We cons
the quantum analog of dynamical bifurcations considered
Thompson and Lunn@19# for classical dynamical systems. I
order to describe these systems, we consider Liouville–
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Neumann equation for density matrix evolution such that t
Liouville generator of the equation is a function of som
Hamiltonian operator. Open quantum systems with pure
tionary states of linear harmonic oscillator are suggested.
derive stationary states for quantum Markovian master eq
tion usually called the Lindblad equation. The suggested
proach allows one to use theory of bifurcations for a wi
class of quantum open systems. We consider the examp
bifurcation of pure stationary states for open quantum s
tems.

In Sec. II, we introduce pure stationary states for clos
quantum systems and some mathematical background is
sidered. In Sec. III, we consider Liouville–von Neuman
equation for an open quantum system and pure station
states for this equation. In Sec. IV, simple examples of s
tionary states for open quantum systems are considered
Sec. V, we study some proporties of the quantum system
have dynamical bifurcations and catastrophes. In the Sec
we suggest an example of the quantum system with f
catastrophe. Finally, a short conclusion is given in Sec. V
In the Appendix, the mathematical background~Liouville
space, superoperators! is considered.

II. PURE STATIONARY STATE

In the general case, the time evolution of the quant
stateur t) can be described by the Liouville–von Neuma
equation

d

dt
ur t)5L̂ur t), ~1!

whereL̂ is a Liouville superoperator on Liouville space,ur)
is a density matrix operator as an element of Liouville spa
For the concept of Liouville space and superoperators see
Appendix and Refs.@20–37#. For closed systems, the Liou
ville superoperator has the form

L̂52
i

\
~ L̂H2R̂H! or L̂5L̂H

2 , ~2!

whereH5H(q,p) is a Hamilton operator. If the Liouville
superoperatorL̂ cannot be represented in the form~2!, then
©2002 The American Physical Society16-1
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quantum system is called open, non-Hamiltonian or diss
tive quantum system@36–38#. The stationary state is define
by the following condition:

L̂ur t)50. ~3!

For closed quantum systems~2!, this condition has the
simple form

L̂Hur t)5R̂Hur t) or L̂H
2ur t)50. ~4!

In the general case, we can consider the Liouville super
erator as a superoperator function@7,8,36#:

L̂5L~ L̂X
2 ,L̂X

1! or L̂5L~ L̂X ,R̂X!,

where X is a set of linear operators. For example,X
5$q,p,H% or X5$H1 , . . . ,Hs%. In this paper we use the
special form of the superoperatorL̂ such that

L̂52
i

\
~ L̂H2R̂H!1 (

k51

s

F̂kNk~ L̂H ,R̂H!,

whereNk(L̂H ,R̂H) are some superoperator functions andF̂k

is an arbitrary nonzero superoperator.
It is known that a pure stateurC) is a stationary state of a

closed quantum system@Eqs.~1!, ~2!#, if the stateurC) is an
eigenvector of the Liouville space for superoperatorsL̂H and
R̂H :

L̂HurC)5urC)E, R̂HurC)5urC)E. ~5!

Equivalently, the stateurC) is an eigenvector of superoper
tors LH

1 andLH
2 such that

L̂H
1urC)5urC)E, L̂H

2urC)5urC)•050.

The energy variableE can be defined by

E5~ I uL̂HurC!5~ I uR̂HurC!5~ I uL̂H
1urC!.

The superoperatorsL̂H andR̂H for linear harmonic oscil-
lator are

L̂H5
1

2m
L̂p

21
mv2

2
L̂q

2 , R̂H5
1

2m
R̂p

21
mv2

2
R̂q

2 . ~6!

It is known that pure stationary statesrCn
5rCn

2 of linear

harmonic oscillator~6! exists if the variableE is equal to

En5 1
2 \v~2n11!. ~7!

III. PURE STATIONARY STATES OF OPEN SYSTEMS

Let us consider the Liouville–von Neumann equation~1!
for the open quantum system defined of the form
05611
a-

p-

d

dt
ur t)52

i

\
~ L̂H2R̂H!ur t)1 (

k51

s

F̂kNk~ L̂H ,R̂H!ur t).

~8!

Here F̂k is some superoperator andNk(L̂H ,R̂H), where k
51, . . . ,s, are superoperator functions.

Let urC) be a pure stationary state of the closed quant
system defined by Hamilton operatorH. If Eqs. ~5! are sat-
isfied, then the stateurC) is a stationary state of the close
system associated with the open system~8! and is defined by

d

dt
ur t)52

i

\
~ L̂H2R̂H!ur t). ~9!

If the vectorurC) is an eigenvector of operatorsL̂H andR̂H ,
then the Liouville–von Neumann equation~8! for the pure
stateurC) has the form

d

dt
urC)5 (

k51

s

F̂kurC)Nk~E,E!,

where the functionsNk(E,E) are defined by

Nk~E,E!5„I uNk~ L̂H ,R̂H!urC….

If all functions Nk(E,E) are equal to zero

Nk~E,E!50, ~10!

then the stationary stateurC) of the closed quantum system
~9! is the stationary state of the open quantum system~8!.

Note that functionsNk(E,E) are eigenvalues andurC) is
the eigenvector of superoperatorsNk(L̂H ,R̂H), since

Nk~ L̂H ,R̂H!urC)5urC)Nk~E,E!.

Therefore stationary states of the open quantum system~8!
are defined by zero eigenvalues of superopera
Nk(L̂H ,R̂H).

IV. OPEN SYSTEMS WITH OSCILLATOR
STATIONARY STATES

In this section, simple examples of open quantum syste
~8! are considered.

~1! Let us consider the nonlinear oscillator with frictio
defined by the equation

d

dt
r t52

i

\
@H̃,r t#2

i

2\
b@q2,p2r t1r tp

2#, ~11!

where the operatorH̃ is the Hamiltom operator of the non
linear oscillator:

H̃5
p2

2m
1

mV2q2

2
1

gq4

2
.

Equation~11! can be rewritten in the form
6-2
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d

dt
ur t)5L̂H

2ur t)12mbL̂q2
2

3S 1

2m
~ L̂p

1!21
g

2mb
~ L̂q

1!22
D

4b
L̂ I D ur t),

~12!

whereD5V22v2 and the superoperatorL̂H
2 is defined for

the Hamilton operatorH of the linear harmonic oscillator by
Eqs.~2! and ~6!. Equation~12! has the form~8!, with

N~ L̂H ,R̂H!5
1

2
~ L̂H1R̂H!2

D

2b
L̂ I , F̂52mbL̂q2

2 .

In this case the functionN(E,E) has the form

N~E,E!5E2
D

2b
,

Let g5bm2v2. The open quantum system~11! has one sta-
tionary state of the linear harmonic oscillator with ener
En5(\v/2)(2n11), if D52b\v(2n11), wheren is an
integer non-negative number. This stationary state is on
the stationary states of the linear harmonic oscillator with
massm and frequencyv. In this case we can have the qua
tum analog of dynamical Hopf bifurcation@19,39#.

~2! Let us consider the open quantum system describe
the time evolution equation

d

dt
ur t)5L̂H

2ur t)1L̂q
2cosS p

«0
L̂H

1D ur t), ~13!

where the superoperatorL̂H
2 is defined by formulas~2! and

~6!. Equation~13! has the form~8! if the superoperatorsF̂
andN(L̂H ,R̂H) are defined by

F̂52
i

\
~ L̂q2R̂q!,

N~ L̂H ,R̂H!5cosS p

2«0
~ L̂H1R̂H! D

5 (
m50

`
1

~2m!! S ip

2«0
D 2m

~ L̂H1R̂H!2m. ~14!

The functionN(E,E) has the form

N~E,E!5cosS pE

«0
D5 (

m50

`
1

~2m!! S ipE

«0
D 2m

.

The stationary state condition~10! has the solution

E5
«0

2
~2n11!,

wheren is an integer number. If parameter«0 is equal to\v,
then quantum systems~13! and ~14! have pure stationary
states of the linear harmonic oscillator with the energy~7!.
05611
of
e

by

As the result, stationary states of open the quantum sys
~13! coincide with pure stationary states of the linear h
monic oscillator. If the parameter«0 is equal to\v(2m
11), then quantum systems~13! and ~14! have stationary
states of the linear harmonic oscillator withn(k,m)52km
1k1m and

En(k,m)5
\v

2
~2k11!~2m11!.

~3! Let us consider the superoperator functi
Nk(L̂H ,R̂H) in the form

Nk~ L̂H ,R̂H!5
1

2\ (
n,m

vknvkm* ~2L̂H
n R̂H

m2L̂H
n1m2R̂H

n1m!,

and all superoperatorsF̂k are equal toL̂ I . In this case, the
Liouville–von Neumann equation~8! can be represented b
the Lindblad equation@40,41,36#:

d

dt
ur t)52

i

\
~ L̂H2R̂H!ur t)1

1

2\ (
j

~2L̂Vk
R̂V

k
†2L̂Vk

L̂V
k
†

2R̂V
k
†R̂Vk

!ur t), ~15!

with linear operatorsVk defined by

Vk5(
n

vknH
n, Vk

†5(
m

vkm* Hm. ~16!

If urC) is a pure stationary state~5!, then all functions
Nk(E,E) are equal to zero and this stateurC) is a stationary
state of the open quantum system~15!.

If the Hamilton operatorH is defined by

H5
1

2m
p21

mv2

2
q21

l

2
~qp1pq!, ~17!

then we have some generalization of the quantum mode
the Brownian motion of a harmonic oscillator considered
Ref. @11#. Note that in the model@11# operatorsVk are linear
Vk5akp1bkq, but in our generalizations~15! and~16! these
operators are nonlinear. For example, we can use

Vk5akp1bkq1ckp
21dkq

21ek~qp1pq!.

The caseck5dk5ek50 is considered in Ref.@11#. Let real
parametersa andb exist and

bk5aak , ck5bak , dk5m2v2bak , ek5mlbak .

In this case, the pure stationary states of the linear oscill
~17! exist if v.l and the variableE is equal to

En5 1
2 \v~2n11!A12l2/v2.

V. DYNAMICAL BIFURCATIONS AND CATASTROPHES

Let us consider a special case of open quantum syst
~8! such that the vector function
6-3
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Nk~E,E!5„I uNk~ L̂H ,R̂H!ur…

be a potential function and the Hamilton operatorH can be
represented in the form

H5 (
k51

s

Hk .

In this case we have a functionV(E) called potential, such
that the following conditions are satisfied:

]V~E!

]Ek
5Nk~E,E!,

where Ek5(I uL̂Hk
ur)5(I uR̂Hk

ur). If potential V(E) exists,
then the stationary state condition~10! for the open quantum
system~8! is defined by critical points of the potentialV(E).
If the system has one variableE, then the functionN(E,E) is
always a potential function. In general, the vector funct
Nk(E,E) is potential, if

]Nk~E,E!

]El
5

]Nl~E,E!

]Ek
.

Stationary states of the open quantum system~8! with the
potential vector functionNk(E,E) depend on critical points
of the potentialV(E). It allows one to use the theory o
bifurcations and catastrophes for the parametric set of fu
tionsV(E). Note that a bifurcation in a vector space of va
ables E5$Ekuk51, . . . ,s% is a bifurcation in the vector
space of eigenvalues of the Hamilton operatorHk .

For the polynomial superoperator functionNk(L̂H ,R̂H),
we have

Nk~ L̂H ,R̂H!5 (
n50

N

(
m50

n

an,m
(k) L̂H

mR̂H
n2m .

In general,m andn are multi-indices. The functionNk(E,E)
is a polynomial,

Nk~E,E!5 (
n50

N

an
(k)En,

where the coefficientsan
(k) are defined by

an
(k)5 (

m50

n

an,m
(k) .

We can define the variablesxl5El2al ( l 51, . . . ,s),
such that functionsNk(E,E)5Nk(x1a,x1a) do not have
the termsxl

n21 .

Nk~x1a,x1a!5 (
n50

N

an
(k)~x1a(k)!n

5 (
n50

N

(
m50

n

an
(k) n!

m! ~n2m!!
xm~a(k)!n2m.
05611
c-

If the coefficient of the termxl
nl21 is equal to zero

anl

(k) nl !

~nl21!!
al

(k)1anl21
(k) 5anl

(k)nlal
(k)1anl21

(k) 50,

then we have the following coefficients:

al
(k)52

anl21
(k)

nlanl

(k)
.

If we change parametersan
(k) , then an open quantum sys

tem can have pure stationary states of the system. For
ample, the bifurcation with the birth of linear oscillator pu
stationary state is a quantum analog of dynamical Hopf
furcation @19,39# for a classical dynamical system.

Let a vector space of energy variablesE be a one-
dimensional space. If the functionN(E,E) is equal to

N~E,E!56anEn1 (
j 51

n21

a jE
j , n>2,

then the potentialV(x) is defined by the following equation

V~x!56xn111 (
j 51

n21

ajx
j , n>2,

and we have catastrophe of typeA6n .
If we have s variables El , where l 51,2, . . . ,s, then

quantum analogs of elementary catastrophesA6n , D6n ,
E66 , E7, andE8 can be realized for open quantum system
Let us write the full list of potentialsV(x), which leads to
elementary catastrophes~zero modal! defined by V(x)
5V0(x)1Q(x), where

A6n : V0~x!56x1
n111 (

j 51

n21

ajx1
j , n>2,

D6n : V0~x!5x1
2x26x2

n211 (
j 51

n23

ajx2
j 1 (

j 5n22

n21

x1
j 2(n23) ,

E66 : V0~x!5~x1
36x2

4!1(
j 51

2

ajx2
j 1(

j 53

5

ajx1x2
j 23 ,

E7 : V0~x!5x1
31x1x2

31(
j 51

4

ajx2
j 1(

j 55

6

ajx1x2
j 25 ,

E8 : V0~x!5x1
31x2

51(
j 51

3

ajx2
j 1(

j 54

7

ajx1x2
j 24 .

Here Q(x) is the nondegenerate quadratic form with va
ablesx2 ,x3 , . . . ,xs for A6n and parametersx3 , . . . ,xs for
other cases.
6-4
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VI. FOLD CATASTROPHE

In this section, we suggest an example of the open qu
tum system with catastropheA2 called fold.

Let us consider the Liouville–von Neumann equation~8!
for a nonlinear quantum oscillator with friction, where mu
tiplication superoperatorsL̂H and R̂H are defined by Eq.~6!

and superoperatorsF̂ and N(L̂H ,R̂H) are given by the fol-
lowing equations:

F̂522L̂q
2L̂p

1 , ~18!

N~ L̂H ,R̂H!5a0L̂ I
11a1L̂H

11a2~ L̂H
1!2. ~19!

In this case, the functionN(E,E) is equal to

N~E,E!5a01a1E1a2E2.

A pure stationary stateurC) of the linear harmonic oscil-
lator is a stationary state of the open quantum system~19!, if
N(E,E)50. Let us define the new real variablex and pa-
rameterl by the following equation:

x5E1
a1

2a2
, l5

4a0a22a1
2

4a2
2

.

Then we have the stationary conditionN(E,E)50 in the
form x22l50. If l<0, then the open quantum system h
no stationary states. Ifl.0, then we have pure stationar
states for a discrete set of parameter valuesl. If parameters
a1 ,a2, andl satisfy the following conditions

2
a1

2a2
5\vS n1

1

2
1

m

2 D , l5\2v2
m2

4
,

wheren and m are non-negative integer numbers, then
open quantum systems~18! and ~19! have two pure station
ary states of the linear harmonic oscillator. The energies
these states are equal to

En5\v~n1 1
2 !, En1m5\v~n1m1 1

2 !.

VII. CONCLUSION

Open quantum systems can have pure stationary st
Stationary states of open quantum systems can coincide
pure stationary states of closed~Hamiltonian! systems. As an
example, we suggest open quantum systems with pure
tionary states of linear oscillator. Note that using Eq.~8!, it is
easy to get open~dissipative! quantum systems with station
ary states of the hydrogen atom. For a special case of o
systems, we can use usual bifurcation and catastrophe th
It is easy to derive quantum analogs of classical dynam
bifurcations. Physical instances with bifurcation behav
can be realized in quantum optics@42# and deep inelastic
collisions @43#.

Open quantum systems with two stationary states can
considered as qubits. It allows one to consider openn-qubit
quantum system described by Eq.~8! as a quantum compute
with pure states. In general, we can consider open and d
05611
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pative quantum systems as a quantum computer with m
states@44–46#. A mixed state~operator of density matrix! of
n two-level quantum systems~open or closedn-qubit sys-
tem! is an element of the 4n-dimensional operator Hilber
space~Liouville space!. It allows one to use a quantum com
puter model with four-valued logic@44–46#. The quantum
gates of this model are real, completely positive, tra
preserving superoperators that act on mixed state@44,46#.
Bifurcations of pure quantum states can be used for quan
gate control.
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APPENDIX

For the concept of Liouville space and superoperators
Refs.@20–37#.

Liouville space

The space of linear operators acting on a Hilbert spaceH
is a complex linear spaceH̄. We denote an elementA of H̄
by a ket-vectoruA). The inner product of two elementsuA)
and uB) of H̄ is defined as (AuB)5Tr(A†B). The norm
iAi5A(AuA) is the Hilbert-Schmidt norm of operatorA. A
new Hilbert spaceH̄ with the inner product is called Liou
ville space attached toH or the associated Hilbert space,
Hilbert-Schmidt space@20–37#.

Let $ux&% be an orthonormal basis ofH:

^xux8&5d~x2x8!, E dxux&^xu5I .

Then ux,x8)5uux&^x8u) is an orthonormal basis of the Liou
ville spaceH̄:

~x,x8uy,y8!5d~x2x8!d~y2y8!,

E dxE dx8ux,x8)~x,x8u5 Î . ~A1!

For an arbitrary elementuA) of H̄ we have

uA)5E dxE dx8ux,x8)~x,x8uA!, ~A2!

where

~x,x8uA!5tr~~ ux&^x8u!†A!5tr~ ux8&^xuA!5^xuAux8&

5A~x,x8!

is a kernel of the operatorA. An operatorr of density matrix
(trr51,r†5r,r>0) can be considered as an elementur) of
the Liouville spaceH̄. Using Eq.~A2!, we get
6-5
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ur)5E dxE dx8ux,x8)~x,x8ur!, ~A3!

where the trace is represented by

~ I ur!5trr5E dx ~x,xur!51.

Superoperators

Operators that act onH̄ are called superoperators and w
denote them, in general, by a hat.

For an arbitrary superoperatorL̂ on H̄, which is defined
by

L̂uA)5uL̂~A!…,

we have

~x,x8uL̂uA!5E dyE dy8~x,x8uL̂uy,y8!~y,y8uA!

5E dyE dy8L~x,x8,y,y8!A~y,y8!,

whereL(x,x8,y,y8) is a kernel of the superoperatorL̂.
Let A be a linear operator in the Hilbert spaceH. We can

define the multiplication superoperatorsL̂A and R̂A by the
following equations:

L̂AuB)5uAB), R̂AuB)5uBA).

The superoperator kernels can be easily derived. For
ample, in the basisux,x8) we have

~x,x8uL̂AuB!5E dyE dy8~x,x8uL̂Auy,y8!~y,y8uB!

5E dyE dy8LA~x,x8,y,y8!B~y,y8!.

Using

~x,x8uAB!5^xuABux8&5E dyE dy8^xuAuy&^yuBuy8&

3^y8ux8&,

we get kernel of the left multiplication superoperator
-

05611
x-

~ L̂A!~x,x8,y,y8!5^xuAuy&^x8uy8&5A~x,y!d~x82y8!.

Left superoperatorsL̂A
6 are defined as Lie and Jorda

multiplication by

L̂A
2B5

1

i\
~AB2BA!, L̂A

1B5
1

2
~AB1BA!.

The left superoperatorsL̂A
6 and right superoperatorsR̂A

6 are
connected by

L̂A
252R̂A

2 , L̂A
15R̂A

1 .

An algebra of the superoperatorsL̂A
6 is defined@8# by the

following relations:
~1! Lie relations

L̂A•B
2 5L̂A

2L̂B
22L̂B

2L̂A
2 .

~2! Jordan relations

L̂ (A+B)+C
1 1L̂B

1L̂C
1L̂A

11L̂A
1L̂C

1L̂B
1

5L̂A+B
1 L̂C

11L̂B+C
1 L̂A

11L̂A+C
1 L̂B

1 ,

L̂ (A+B)+C
1 1L̂B

1L̂C
1L̂A

11L̂A
1L̂C

1L̂B
1

5L̂C
1L̂A+B

1 1L̂B
1L̂A+C

1 1L̂A
1L̂B+C

1 ,

L̂C
1L̂A+B

1 1L̂B
1L̂A+C

1 1L̂A
1L̂B+C

1 5L̂A+B
1 L̂C

11L̂B+C
1 L̂A

11L̂A+C
1 L̂B

1 .

~3! Mixed relations

L̂A•B
1 5L̂A

2L̂B
12L̂B

1L̂A
2 ,

L̂A+B
2 5L̂A

1L̂B
21L̂B

1L̂A
2 ,

L̂A+B
1 5L̂A

1L̂B
12

\2

4
L̂B

2L̂A
2 ,

L̂B
1L̂A

12L̂A
1L̂B

152
\2

4
L̂A•B

2 ,

where

A•B5
1

i\
~AB2BA!, A+B5

1

2
~AB1BA!.
n
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