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Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional
integrals are used to describe fractal distribution. The fractional integrals are considered as
approximations of integrals on fractals. Using the fractional generalization of integral Maxwell
equation, the simple examples of the fields of homogeneous fractal distribution are considered. The
electric dipole and quadrupole moments for fractal distribution are derived. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1994787�

I. INTRODUCTION

Derivatives and integrals of fractional order1 have found
many applications in recent studies in physics. The interest in
fractional analysis has been growing continually in recent
years. Fractional analysis has numerous applications: kinetic
theories,2–4 statistical mechanics,5–7 dynamics in complex
media,8–12 electromagnetic theory,13–16 and many others. The
new type of problem has increased rapidly in areas in which
the fractal features of a process or the medium impose the
necessity of using nontraditional tools in “regular” smooth
physical equations. In order to use fractional derivatives and
fractional integrals for fractal distribution, we must use some
continuous medium model.9 We propose to describe the frac-
tal distribution by a fractional continuous medium,9 where all
characteristics and fields are defined everywhere in the vol-
ume but they follow some generalized equations which are
derived by using fractional integrals. In many problems the
real fractal structure of medium can be disregarded and the
fractal distribution can be replaced by some fractional con-
tinuous mathematical model. Smoothing of microscopic
characteristics over the physically infinitesimal volume
transforms the initial fractal distribution into fractional con-
tinuous model9 that uses the fractional integrals. The order of
fractional integral is equal to the fractal dimension of distri-
bution. The fractional integrals allow us to take into account
the fractality of the distribution. Fractional integrals are con-
sidered as approximations of integrals on fractals.17,18 In Ref.
17, the authors proved that integrals on net of fractals can be
approximated by fractional integrals. In Ref. 5, we proved
that fractional integrals can be considered as integrals over
the space with fractional dimension up to numerical factor.
In order to prove, we use the formulas of dimensional
regularizations.19

We can consider electric and magnetic fields of fractal
distribution of charged particles. Fractal distribution can be
described by fractional continuous medium model.4,9,11,12 In
the general case, the fractal distribution of particles cannot be
considered as continuous medium. There are points and do-
mains that have no particles. In Ref. 9, we suggest to con-
sider the fractal distributions as special �fractional� continu-
ous media. We use the procedure of replacement of the

distribution with fractal mass dimension by some continuous
model that uses fractional integrals. This procedure is a frac-
tional generalization of Christensen approach.20 Suggested
procedure leads to the fractional integration and differentia-
tion to describe fractal distribution. In this paper, we consider
the electric and magnetic fields of fractal distribution of
charged particles. In Sec. II, the densities of electric charge
and current for fractal distribution are considered. In Secs. III
and IV, we consider the simple examples of the fields of
homogeneous fractal distribution. In Sec. V, we consider the
fractional generalization of integral Maxwell equation. In
Sec. VI, the examples of electric dipole and quadrupole mo-
ments for fractal distribution are considered. Finally, a short
conclusion is given in Sec. VII.

II. ELECTRIC CHARGE AND CURRENT DENSITIES

A. Electric charge for fractal distribution

Let us consider a fractal distribution of charged particles.
For example, we can assume that charged particles with a
constant density are distributed over the fractal. In this case,
the number of particles N enclosed in a volume with charac-
teristic size R satisfies the scaling law N�R��RD, whereas
for a regular n-dimensional Euclidean object we have N�R�
�Rn.

For charged particles with number density n�r , t�, we
have that the charge density can be defined by

��r,t� = qn�r,t� ,

where q is the charge of a particle �for electron, q=−e�. The
total charge of region W is then given by the integral

Q�W� = �
W

��r,t�dV3,

or Q�W�=qN�W�, where N�W� is a number of particles in the
region W. The fractional generalization of this equation can
be written in the following form:

Q�W� = �
W

��r,t�dVD,

where D is a fractal dimension of the distribution, and dVD is
an element of D-dimensional volume such thata�Electronic mail: tarasov@theory.sinp.msu.ru
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dVD = c3�D,r�dV3. �1�

For the Riesz definition of the fractional integral,1 the
function c3�D ,r� is defined by the relation

c3�D,r� =
23−D��3/2�

��D/2�
�r�D−3. �2�

The initial points of the fractional integral are set to zero.
The numerical factor in Eq. �2� has this form in order to
derive usual integral in the limit D→ �3−0�. Note that the
usual numerical factor �3

−1�D�=��1/2� /2D�3/2��D /2�,
which is used in Ref. 1 leads to �3

−1�3−0�
=��1/2� /23�3/2��3/2� in the limit D→ �3−0�.

For the Riemann-Liouville fractional integral,1 the func-
tion c3�D ,r� is defined by

c3�D,r� =
�xyz�D/3−1

�3�D/3�
. �3�

Here we use Cartesian’s coordinates x, y, and z. In order to
have the usual dimensions of the physical values, we can use
vector r, and coordinates x ,y ,z as dimensionless values.

Note that the interpretation of fractional integration is
connected with fractional dimension.5,6 This interpretation
follows from the well-known formulas for dimensional
regularizations.19 The fractional integral can be considered as
an integral in the fractional dimension space up to the nu-
merical factor ��D /2� / �2�D/2��D��.

If we consider the ball region W= �r : �r��R	 and the
spherically symmetric distribution of charged particles
�n�r , t�=n�r��, then we have

N�R� = 4�
23−D��3/2�

��D/2� �
0

R

n�r�rD−1dr, Q�R� = qN�R� .

For the homogeneous �n�r�=n0� fractal distribution, we get

N�R� = 4�n0
23−D��3/2�

��D/2�
RD

D
� RD.

Fractal distribution of particles is called a homogeneous frac-
tal distribution if the power law N�R��RD does not depend
on the translation of the region. The homogeneity property of
the distribution can be formulated in the following form: For
all regions W and W� such that the volumes are equal,
V�W�=V�W��, we have that the numbers of particles in these
regions are equal too, N�W�=N�W��. Note that the wide class
of fractal media satisfies the homogeneous property. In Ref.
9, the continuous medium model for the fractal distribution
of particles was suggested. Note that the fractality and ho-
mogeneity properties can be realized in the following forms:

�1� Homogeneity: The local number density of homoge-
neous fractal distribution is a translation invariant value
that has the form n�r�=n0=const.

�2� Fractality: The number of particles in the ball region W
obeys a power-law relation ND�W��RD, where D�3, R
is the radius of the ball.

B. Electric current of fractal distribution

For charged particles with number density n�r , t� flowing
with velocity u=u�r , t�, the resulting density current J�r , t�
is given by

J�r,t� = qn�r,t�u ,

where q is the charge of a particle �for electron, q=−e�.
The electric current is defined as the flux of electric

charge. Measuring the field J�r , t� passing through a surface
S=�W gives the current �flux of charge�

I�S� = �J�S� = �
S

�J,dS2� ,

where J=J�r , t� is the current field vector, dS2=dS2n is a
differential unit of area pointing perpendicular to the surface
S, and the vector n=nkek is a vector of normal. The fractional
generalization of this equation for the fractal distribution can
be written in the following form:

I�S� = �
S

�J�r,t�,dSd� ,

where we use

dSd = c2�d,r�dS2, c2�d,r� =
22−d

��d/2�
�r�d−2. �4�

Note that c2�2,r�=1 for d=2. In general, the boundary �W
has the dimension d. In the general case, the dimension d is
not equal to 2 and is not equal to �D−1�.

C. Charge conservation for fractal distribution

The electric charge has a fundamental property estab-
lished by numerous experiments: the change of the quantity
of charge inside a region W bounded by the surface S=�W is
always equal to the flux of charge through this surface. This
is known as the law of charge conservation. If we denote by
J�r , t� the electric current density, then charge conservation
is written

dQ�W�
dt

= − I�S� ,

or, in the form

d

dt
�

W

��r,t�dVD = − 

�W

�J�r,t�,dSd� . �5�

In particular, when the surface S=�W is fixed, we can write

d

dt
�

W

��r,t�dVD = �
W

���r,t�
�t

dVD. �6�

Using the fractional generalization of the mathematical
Gauss’s theorem �see Appendix�, we have
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�W

�J�r,t�,dSd� = �
W

c3
−1�D,r�

�

�xk
�c2�d,r�Jk�r,t��dVD.

�7�

Substituting the right-hand sides of Eqs. �6� and �7� in Eq.
�5�, we find the law of charge conservation in differential
form

c3�D,r�
���r,t�

�t
+

�

�xk
�c2�d,r�Jk�r,t�� = 0.

This equation can be considered as a continuity equation for
fractal distribution of particles.11

III. ELECTRIC FIELD OF FRACTAL DISTRIBUTION

A. Electric field and Coulomb’s law

For a point charge Q at position r� �i.e., an electric
monopole�, the electric field at a point r is defined in MKS
by

E =
Q

4��0

r − r�

�r − r��3
,

where �0 is a fundamental constant called the permittivity of
free space.

For a continuous stationary distribution ��r�� of charge,
the electric field E at a point r is given in MKS by

E�r� =
1

4��0
�

W

r − r�

�r − r��3
��r��dV3�, �8�

where �0 is the permittivity of free space. For Cartesian’s
coordinates dV3�=dx�dy�dz�.

The fractional generalization of Eq. �8� for a fractal dis-
tribution of charge is given by the equation

E�r� =
1

4��0
�

W

r − r�

�r − r��3
��r��dVD� , �9�

where dVD� =c3�D ,r��dV3�. Equation �9� can be considered as
Coulomb’s law written for a fractal stationary distribution of
electric charges.

Measuring the electric field passing through a surface
S=�W gives the electric flux

�E�S� = �
S

�E,dS2� ,

where E is the electric-field vector, and dS2 is a differential
unit of area pointing perpendicular to the surface S.

B. Gauss’s law for fractal distribution

Gauss’s law tells us that the total flux �E�S� of the elec-
tric field E through a closed surface S=�W is proportional to
the total electric charge Q�W� inside the surface,

�E��W� =
1

�0
Q�W� . �10�

The electric flux out of any closed surface is proportional to
the total charge enclosed within the surface.

For the fractal distribution, Gauss’s law states

�
S

�E,dS2� =
1

�0
�

W

��r,t�dVD �11�

in MKS, where E=E�r , t� is the electric field, and ��r , t� is
the charge density, dVD=c3�D ,r�dV3, and �0 is the permit-
tivity of free space.

Gauss’s law by itself can be used to find the electric field
of a point charge at rest, and the principle of superposition
can then be used to find the electric field of an arbitrary
fractal charge distribution.

If we consider the stationary spherically symmetric frac-
tal distribution ��r , t�=��r� and the ball region W= �r : �r�
�R	, then we have

Q�W� = 4��
0

R

��r�c3�D,r�r2dr ,

where c3�D ,r� is defined in Eq. �2�, i.e.,

Q�W� = 4�
23−D��3/2�

��D/2� �
0

R

��r�rD−1dr . �12�

Using the sphere S= �r : �r�=R	 as a surface S=�W, we get

�E��W� = 4�R2E�R� . �13�

Substituting Eqs. �12� and �13� in Gauss’s law �10�, we get
the equation for electric field. As a result, Gauss’s law for
fractal distribution with spherical symmetry leads us to the
equation for electric field

E�R� =
23−D��3/2�
�0R2��D/2��0

R

��r�rD−1dr .

For example, the electric field of homogeneous ���r�=��
spherically symmetric fractal distribution is defined by

E�R� = �
23−D��3/2�
�0D��D/2�

RD−2 � RD−2.

IV. MAGNETIC FIELD OF FRACTAL
DISTRIBUTION

A. Magnetic field and Biot-Savart law

The Biot-Savart law relates magnetic fields to the cur-
rents which are their sources. In a similar manner, Coulomb’s
law relates electric fields to the point charges which are their
sources. Finding the magnetic field resulting from a fractal
current distribution involves the vector product and is inher-
ently a fractional calculus problem when the distance from
the current to the field point is continuously changing.

For a continuous distribution the Biot-Savart law in
MKS has the form

B�r� =
	0

4�
�

W

�J�r��,r − r��
�r − r��3

dV3�, �14�

where �,� is a vector product, J is the current density, 	0 is
the permeability of free space.

The fractional generalization of Eq. �14� for a fractal
distribution in MKS has the form
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B�r� =
	0

4�
�

W

�J�r��,r − r��
�r − r��3

dVD� . �15�

This equation can be considered as Biot-Savart law written
for a steady current with fractal distribution of electric
charges. The Biot-Savart law �15� can be used to find the
magnetic field produced by any fractal distribution of steady
currents.

B. Ampere’s law for fractal distribution

The magnetic field in space around an electric current is
proportional to the electric current which serves as its source,
just as the electric field in space is proportional to the charge
which serves as its source. In the case of static electric field,
the line integral of the magnetic field around a closed loop is
proportional to the electric current flowing through the loop.
The Ampere’s law is equivalent to the steady state of the
integral Maxwell equation in free space, and relates the spa-
tially varying magnetic field B�r� to the current density J�r�.

Note that, as mentioned by Lutzen in his article,21

Liouville, who was one of pioneers in development of frac-
tional calculus, was inspired by the problem of fundamental
force law in Ampre’s electrodynamics and used fractional
differential equation in that problem.

Let be a closed path around a current. Ampere’s law
states that the line integral of the magnetic field B along the
closed path L is given in MKS by



L

�B,dl� = 	0I�S� ,

where dl is the differential length element, and 	0 is the
permeability of free space. For the fractal distribution of
charged particles, we use

I�S� = �
S

�J,dSd� ,

where dSd=c2�d ,r�dS2.
If we consider the cylindrically symmetric fractal distri-

bution, we have

I�S� = 2��
0

R

J�r�c2�d,r�rdr ,

where c2�d ,r� is defined in Eq. �4�, i.e.,

I�S� = 4�
22−d

��d/2��0

R

J�r�rd−1dr .

Using the circle L=�W= �r : �r�=R	, we get



L

�B,dl� = 2�RB�R� .

As a result, Ampere’s law for fractal distribution with cylin-
drical symmetry leads us to the equation for magnetic field

B�R� =
	022−d

R��d/2��0

R

J�r�rd−1dr .

For example, the magnetic field B�r� of homogeneous �J�r�
=J0� fractal distribution is defined by

B�R� = j0
	022−d

d��d/2�
Rd−1 � Rd−1.

V. FRACTIONAL INTEGRAL MAXWELL
EQUATIONS

The Maxwell equations are the set of fundamental equa-
tions governing electromagnetism �i.e., the behavior of elec-
tric and magnetic fields�. The equations that can be expressed
in integral form are known as Gauss’s law, Faraday’s law, the
absence of magnetic monopoles, and Ampere’s law with dis-
placement current. In MKS, these become



S

�E,dS2� =
1

�0
�

W

�dVD,



L

�E,dl1� = −
�

�t
�

S

�B,dS2� ,



S

�B,dS2� = 0,



L

�B,dl1� = 	0�
S

�J,dSd� + �0	0
�

�t
�

S

�E,dS2� .

Let us consider the special case such that the fields are
defined on fractal22 only. The hydrodynamic and thermody-
namics fields can be defined in the fractal media.4,11 Suppose
that the electromagnetic field can be defined on fractal as an
approximation of some real case with fractal medium. If the
electric field E�r� and magnetic fields B�r� can be defined on
fractal and does not exist outside of fractal in Eucledian
space E3, then we must use the fractional generalization of
the integral Maxwell equations in the form



S

�E,dSd� =
1

�0
�

W

�dVD,



L

�E,dl�� = −
�

�t
�

S

�B,dSd� ,



S

�B,dSd� = 0,



L

�B,dl�� = 	0�
S

�J,dSd� + �0	0
�

�t
�

S

�E,dSd� .

These fractional integral equations have unusual properties.
Note that fractional integrals are considered as an approxi-
mation of integrals on fractals.17,18
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Using the fractional generalization of Stokes’s and
Gauss’s theorems �see Appendix�, we can rewrite the frac-
tional integral Maxwell equations in the form

�
W

c3
−1�D,r�div�c2�d,r�E�dVD =

1

�0
�

W

�dVD,

�
S

c2
−1�d,r��curl�c1��,r�E�,dSd� = −

�

�t
�

S

�B,dSd� ,

�
W

c3
−1�D,r�div�c2�d,r�B�dVd = 0,

�
S

c2
−1�d,r��curl�c1��,r�B�,dSd�

= 	0�
S

�J,dSd� + �0	0
�

�t
�

S

�E,dSd� .

As a result, we have the following differential Maxwell
equations:

div�c2�d,r�E� =
1

�0
c3�D,r�� ,

curl�c1��,r�E� = − c2�d,r�
�

�t
B ,

div�c2�d,r�B� = 0,

curl�c1��,r�B� = 	0c2�d,r�J + �0	0c2�d,r�
�E

�t
.

Note that the law of absence of magnetic monopoles for
the fractal leads us to the equation div�c2�d ,r�B�=0. This
equation can be rewritten in the form

div B = − �B,grad c2�d,r�� .

In the general case �d�2�, the vector grad�c2�d ,r�� is not
equal to zero and the magnetic field satisfies div B�0. If d
=2, we have div�F��0 only for nonsolenoidal field F.
Therefore the magnetic field on the fractal is similar to the
nonsolenoidal field. As a result, the magnetic field on fractal
can be considered as a field with some “fractional magnetic
monopole” qm��B , �c2�.

VI. MULTIPOLE MOMENTS FOR FRACTAL
DISTRIBUTION

A. Electric multipole expansion

A multipole expansion is a series expansion of the effect
produced by a given system in terms of an expansion param-
eter which becomes small as the distance away from the
system increases. Therefore, the leading one of the terms in a
multipole expansion are generally the strongest. The first-
order behavior of the system at large distances can therefore
be obtained from the first terms of this series, which is gen-
erally much easier to compute than the general solution.
Multipole expansions are most commonly used in problems

involving the gravitational field of mass aggregations, the
electric and magnetic fields of charge and current distribu-
tions, and the propagation of electromagnetic waves.

To compute one particular case of a multipole expansion,
let R=Xk ek be the vector from a fixed reference point to the
observation point, r=xk ek be the vector from the reference
point to a point in the body, and d=R−r be the vector from
a point in the body to the observation point. The law of
cosines then yields

d2 = R2 + r2 − 2rR cos 
 = R2�1 +
r2

R2 − 2
r

R
cos 
� ,

where d= �d�, and cos 
= �r ,R� / �rR�, so

d = R1 +
r2

R2 − 2
r

R
cos 
 .

Now define �=r /R, x=cos 
, then

1

d
=

1

R
�1 − 2�x + �2�−1/2.

But �1−2�x+�2�−1/2 is the generating function for
Legendre polynomials Pn�x� as follows:

�1 − 2�x + �2�−1/2 = �
n=0

�

�nPn�x� ,

so, we have the equation

1

d
=

1

R
�
n=0

� � r

R
�n

Pn�cos 
� .

Any physical potential that obeys a �1/d� law can therefore
be expressed as a multipole expansion

U =
1

4��0
�
n=0

�
1

Rn+1�
W

rnPn�cos 
���r�dVD. �16�

The n=0 term of this expansion, called the monopole term,
can be pulled out by noting that P0�x�=1, so

U =
1

4��0

1

R
�

W

��r�dVD

+
1

4��0
�
n=1

�
1

Rn+1�
W

rnPn�cos 
���r�dVD. �17�

The nth term

Un =
1

4��0

1

Rn+1�
W

rnPn�cos 
���r�dVD �18�

is commonly named according to the following: n-multipole,
0-monopole, 1-dipole, 2-quadrupole.

B. Electric dipole moment of fractal distribution

An electric multipole expansion is a determination of the
voltage U due to a collection of charges obtained by per-
forming a multipole expansion. This corresponds to a series
expansion of the charge density ��r� in terms of its moments,
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normalized by the distance to a point R far from the charge
distribution. In MKS, the electric multipole expansion is
given by Eq. �16�,

U =
1

4��0
�
n=0

�
1

Rn+1�
W

rnPn�cos 
���r�dVD, �19�

where Pn�cos 
� is a Legendre polynomial and 
 is the polar
angle, defined such that

cos 
 = �r,R�/��r��R�� .

The first term arises from P0�x�=1, while all further
terms vanish as a result of Pn�x� being a polynomial in x for
n1, giving Pn�0�=0 for all n1.

If we have

Q�W� = �
W

��r�dVD = 0,

then the n=0 term vanishes. Set up the coordinate system so
that 
 measures the angle from the charge-charge line with
the midpoint of this line being the origin. Then the n=1 term
is given by

U1 =
1

4��0

1

R2�
W

rP1�cos 
���r�dVD

=
1

4��0

1

R2�
W

r cos 
��r�dVD

=
1

4��0

1

R2�
W

�r,R�
R

��r�dVD

=
1

4��0

1

R3�
W

�r,R���r�dVD

=
1

4��0

1

R3�R,�
W

r��r�dVD� .

For a continuous charge distribution, the electric dipole
moment is given by

p = �
W

r��r�dV3, �20�

where r points from positive to negative. Defining the dipole
moment for the fractal distribution by the equation

p�D� = �
W

r��r�dVD, �21�

then gives

U1 =
1

4��0

�R,p�D��
R3 =

1

4��0

p�D� cos �

R2

where cos �= �R ,p�D�� / �p�D�R�, and

p�D�=�px
�D��2+ �py

�D��2+ �pz
�D��2.

Let us consider the dipole moment for the fractal distri-
bution by Eq. �21�, where we use the Riemann-Liouville
fractional integral, and the function c3�D ,r� in the form

c3�D,r� =
�xyz�a−1

�3�a�
, a = D/3. �22�

Let us consider the example of electric dipole moment for
the homogeneous ���r�=�� fractal distribution of electric
charges in the parallelepiped region

W = ��x;y ;z�:0 � x � A,0 � y � B,0 � z � C	 . �23�

In this case, we have Eq. �21� in the form

px
�D� =

�

�3�a��0

A

dx�
0

B

dy�
0

c

dzxaya−1za−1

=
��ABC�a

�3�a�
A

a2�a + 1�
.

The electric charge of parallelepiped region �23� is defined
by

Q�W� = ��
W

dVD =
��ABC�a

a3�3�a�
.

Therefore, we have the dipole moments for fractal distribu-
tion in parallelepiped in the form

px
�D� =

a

a + 3
Q�W�A, py

�D� =
a

a + 3
Q�W�B,

pz
�D� =

a

a + 3
Q�W�C ,

where we can use a / �a+1�=D / �D+3�. As a result, we get

pk
�D� =

2D

D + 3
pk

�3�, �24�

where pk
�3� are the dipole moments for three-dimensional ho-

mogeneous distribution. If we use the following limits
2�D�3, then we have

0.8 �
2D

D + 3
� 1.

C. Electric quadrupole moment of fractal
distribution

While this is the dominant term for a dipole, there are
also higher-order terms in the multipole expansion that be-
come smaller as R becomes large. The electric quadrupole
term in MKS is given by

U2 =
1

4��0

1

R3�
W

r2P2�cos 
���r�dVD

=
1

4��0

1

R3�
W

r2�3

2
cos2 
 −

1

2
���r�dVD

=
1

4��0

1

2R3�
W

r2�3 cos2 
 − 1���r�dVD

=
1

4��0

1

2R3�
W
� 3

R2 �R,r�2 − r2���r�dVD.
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The electric quadrupole is the third term in an electric
multipole expansion and can be defined in MKS by

U2 =
1

4��0

1

2R3 �
k,l=1

3
XkXl

R2 Qkl,

where �0 is the permittivity of free space, R is the distance
from the fractal distribution of charges, and Qkl is the electric
quadrupole moment, which is a tensor.

The electric quadrupole moment is defined by the equa-
tion

Qkl = �
W

�3xkxl − r2�kl���r�dVD,

where xk=x ,y, or z. From this definition, it follows that

Qkl = Qlk and �
k=1

3

Qkk = 0.

Therefore, we have Qzz=−Qxx−Qyy. In order to compute the
values

Qxx
�D� = �

W

�3x2 − �x2 + y2 + z2����r�dVD

= �
W

�2x2 − y2 − z2���r�dVD,

Qyy
�D� = �

W

�3y2 − �x2 + y2 + z2����r�dVD

= �
W

�− x2 + 2y2 − �z2����r�dVD,

Qzz
�D� = �

W

�3z2 − �x2 + y2 + z2����r�dVD

= �
W

�− x2 − y2 + �2z2����r�dVD,

we consider the following expression:

Q��,�,�� = �
W

��x2 + �y2 + ��z2����r�dVD, �25�

where we use the Riemann-Liouville fractional integral,1 and
the function c3�D ,r� in the form

c3�D,r� =
�xyz�a−1

�3�a�
, a = D/3. �26�

Using Eq. �25�, we have

Qxx
�D� = Q�2,− 1,− 1�, Qxx

�D� = Q�− 1,2,− 1�,

Qzz
�D� = Q�− 1,− 1,2� . �27�

D. Quadrupole moment of fractal parallelepiped

Let us consider the example of electric quadrupole mo-
ment for the homogeneous ���r�=�� fractal distribution of
electric charges in the parallelepiped region

W = ��x;y ;z�:0 � x � A,0 � y � B,0 � z � C	 . �28�

If we consider the region W in form �28�, then we get

Q��,�,�� =
��ABC�a

�a + 2�a2�3�a�
��A2 + �B2 + �C2� .

The electric charge of this region W is

Q�W� = ��
W

dVD =
��ABC�a

a3�3�a�
.

Therefore, we have the following equation:

Q��,�,�� =
a

a + 2
Q�W���A2 + �B2 + �C2� ,

where a=D /3. If D=3, then we have

Q��,�,�� =
1

3
Q�W���A2 + �B2 + �C2� .

As a result, we get electric quadrupole moments Qkk
�D� of

fractal distribution in the region W,

Qkk
�D� =

3D

D + 6
Qkk

�3�,

where Qkk
�3� are moments for the usual homogeneous distribu-

tion �D=3�. By analogy with these equations, we can derive
Qkl

�D� for the case k� l. These electric quadrupole moments
are

Qkl
�D� =

4D2

�D + 3�2Qkl
�3�, �k � l� .

If we use the following limits 2�D�3, then we get the
relations

0.75 �
3D

D + 6
� 1, 0.64 �

4D2

�D + 3�2 � 1.

E. Quadrupole moment of fractal ellipsoid

Let us consider the example of electric quadrupole mo-
ment for the homogeneous ���r�=�� fractal distribution in
the ellipsoid region W,

x2

A2 +
y2

B2 +
z2

C2 � 1. �29�

If we consider the region W in the form �29�, then we get
�25� in the form

Q��,�,�� =
��ABC�a

�3a + 2��3�a�
��A2K1�a� + �B2K2�a�

+ �C2K3�a�� ,

where a=D /3, and Ki�a� �i=1,2 ,3� are defined by
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K1�a� = L�a + 1,a − 1,2��L�a − 1,2a + 1,�� ,

K2�a� = L�a − 1,a + 1,2��L�a − 1,2a + 1,�� ,

K3�a� = L�a − 1,a − 1,2��L�a + 1,2a − 1,�� .

Here we use the following function:

L�n,m,l� =
2l

�
�

0

�/2

dx�cos�x��n�sin�x��m

=
l

�

��n/2+ 1/2���m/2 + 1/2�
��n/2 + m/2+ 1�

.

If D=3, we obtain

Q��,�,�� =
4�

3

�ABC

5
��A2 + �B2 + �C2� , �30�

where we use K1=K2=K3=4� /3. The total charge of this
region W is

Q�W� = ��
W

dVD =
��ABC�a

3a�3�a�
2�3�a/2�
��3a/2�

. �31�

If D=3, we have the total charge

Q�W� = ��
W

dV3 =
4�

3
�ABC . �32�

Using Eq. �31�, we get the electric quadrupole moments
�27� for fractal ellipsoid

Q��,�,�� =
a

3a + 2
Q�W���A2 + �B2 + �C2� , �33�

where a=D /3. If D=3, then we have the well-known rela-
tion

Q��,�,�� =
Q�W�

5
��A2 + �B2 + �C2� .

VII. CONCLUSION

In this paper, we have introduced and described the frac-
tional continuous model for the fractal distribution of
charged particles. Using the fractional calculus and the frac-
tional continuous model, we have shown that the fractional
integrals can be used for calculation of multipole moments of
the fractal distribution. The order of fractional integral is
equal to the fractal dimension of the distribution.

The fractional continuous models for fractal distribution
of particles may have applications in plasma physics. This is
due in part to the relatively small numbers of parameters that
define a fractal distribution of great complexity and rich
structure. The fractional generalization of integral Maxwell
equations may have applications in the analysis of electrody-
namical problems involving the fractal stuctures. Therefore,
it is interesting to numerically solve the fractional equations
for charged fractals. The fractional continuous model can be
used to describe dynamics and kinetics of the fractal distri-
bution in the plasma physics. Extension of this model to
describe the dynamical properties of fractal distribution by

fractional generalization of magnetohydrodynamics and
Vlasov equations is currently under study by the author.

APPENDIX A: FRACTIONAL GAUSS’S
THEOREM

In order to realize the representation, we derive the frac-
tional generalization of Gauss’s theorem

�
�W

�J�r,t�,dS2� = �
W

div�J�r,t��dV3,

where the vector J�r , t�=Jkek is a field, and div�J�=�J /�r
=�Jk /�xk. Here and later we mean the sum on the repeated
index k from 1 to 3. Using the relation

dSd = c2�d,r�dS2, c2�d,r� =
22−d

��d/2�
�r�d−2,

we get

FIG. 1. Charge of fractal distributiom in the interval �0; 30�.

FIG. 2. Difference between the charge of fractal distribution and fractional
continuous model.
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�
�W

�J�r,t�,dSd� = �
�W

c2�d,r��J�r,t�,dS2� .

Note that we have c2�2,r�=1 for the d=2. Using the usual
Gauss’s theorem, we get

�
�W

c2�d,r��J�r,t�,dS2� = �
W

div�c2�d,r�J�r,t��dV3.

The relation

dVD = c3�D,r�dV3, c3�D,r� =
23−D��3/2�

��D/2�
�r�D−3

in the form dV3=c3
−1�D ,r�dVD allows us to derive the frac-

tional generalization of Gauss’s theorem,

�
�W

�J�r,t�,dSd� = �
W

c3
−1�D,r�div�c2�d,r�J�r,t��dVD.

Analogously, we can get the fractional generalization of
Stokes’s theorem in the form



L

�E,dl�� = �
S

c2
−1�d,r��curl�c1��,r�E�,dSd� ,

where

c1��,r� =
21−���1/2�

���/2�
�r��−1.

APPENDIX B: CANTOR SET AND FRACTIONAL
CONTINUOUS MODEL

In the paper, we mention the difference between the real
fractal medium structures and replacing it by a fractional
continuous mathematical model. Some quantitative measure
of the difference would be helpful. Note that the difference
between the real fractal media and fractional continuous me-
dium model has an analog of the difference between the real
atomic structure of the media and the usual continuous me-
dium models of these media. In order to have some quanti-
tative measure of the applicability of fractional continuous
medium model, we can consider the power law for fractal
media. The fractal distribution of charged particles is charac-
terized by the law Q��0,R���RD.22

The Cantor set is given by taking the interval �0;x�,
removing the open middle third, removing the middle third
of each of the two remaining pieces, and continuing this
procedure ad infinitum. The Cantor set is sometimes also
called no middle third set.

In Fig. 1, we consider the charge y=Q��0,x�� of fractal
distribution. The fractal distribution is described by the Can-
tor set with fractal dimension D=ln�2� / ln�3�.22 The continu-
ous model for the charge distribution is described by the
continuous line y=xD in the interval x� �0,30�.

In Fig. 2, we consider the difference between the charge
y=Q��0,x�� of fractal distribution and the charge that is de-
scribed by fractional continuous distribution in the interval
x� �0,30�.
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