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The fractal distribution of charged particles is considered. An example of this distribution is the
charged particles that are distributed over the fractal. The fractional integrals are used to describe
fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical
turbulent media could be of a fractal structure and the corresponding equations should be changed
to include the fractal features of the media. The magnetohydrodynamics equations for fractal media
are derived from the fractional generalization of integral Maxwell equations and integral
hydrodynamics �balance� equations. Possible equilibrium states for these equations are
considered. © 2006 American Institute of Physics. �DOI: 10.1063/1.2197801�
I. INTRODUCTION

The theory of integrals and derivatives of noninteger or-
der goes back to Leibniz, Liouville, Riemann, Grunwald, and
Letnikov.1,2 Fractional analysis has found many applications
in recent studies in mechanics and physics. The interest in
fractional integrals and derivatives has been growing con-
tinually during the last few years because of numerous ap-
plications. In a fairly short period of time the list of such
applications becomes long, and include chaotic dynamics,3,4

material sciences,5–8 mechanics of fractal and complex
media,9–12 quantum mechanics,13,14 physical kinetics,3,15–17

plasma physics,18,21 electromagnetic theory,19–21

astrophysics,22 long-range dissipation,23,24 non-Hamiltonian
mechanics,25,26 long-range interaction,27,28 anomalous diffu-
sion, and transport theory.3,29–31

The new type of problem has increased rapidly in areas
in which the fractal features of a process or the medium
impose the necessity of using nontraditional tools in “regu-
lar” smooth physical equations. To use fractional derivatives
and fractional integrals for fractal distribution, we must use
some continuous model.10,11 We propose describing the frac-
tal medium by a fractional continuous model,10 where all
characteristics and fields are defined everywhere in the vol-
ume, but they follow some generalized equations that are
derived by using fractional integrals. In many problems the
real fractal structure of the medium can be disregarded and
the fractal medium can be replaced by some fractional con-
tinuous mathematical model. Smoothing of microscopic
characteristics over the physically infinitesimal volume
transforms the initial fractal medium into the fractional con-
tinuous model10,11 that uses the fractional integrals. The or-
der of the fractional integral is equal to the fractal dimension
of distribution. The fractional integrals allow us to take into
account the fractality of the distribution. Fractional integrals
can be considered as approximations of integrals on
fractals.38,39 In Refs. 38 and 39, authors proved that integrals
on fractals can be approximated by fractional integrals. In
Ref. 25, we proved that fractional integrals can be considered
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as integrals over the space with a fractional dimension up to
the numerical factor.

The distribution on the fractal can be described by a
fractional continuous medium model.10–12,21 In the general
case, the fractal medium cannot be considered as a continu-
ous medium. There are points and domains without particles.
In Refs. 10, 11, and 21, we suggest considering the fractal
distributions as special �fractional� continuous media. We use
the procedure of replacement of the distribution with fractal
mass dimension by some continuous model that uses frac-
tional integrals. This procedure is a fractional generalization
of the Christensen approach.41 The suggested procedure
leads to the fractional integration to describe the fractal me-
dium. In this paper, we consider the magnetohydrodynamics
equations for the fractal distribution of charged particles.
Note that typical turbulent media could be of a fractal struc-
ture and the corresponding equations should be changed to
include the fractal features of the media.

In Sec. II, a brief review of the Hausdorff measure,
Hausdorff dimension, and integration on fractals is suggested
to fix the notation and provide a convenient reference. The
connection integration on fractals and fractional integration
is discussed. In Sec. III, a brief review of electrodynamics of
the fractal distribution of charged particles is given. The den-
sities of electric charge and current for the fractal distribution
are described. A fractional generalization of the integral
Maxwell equation is suggested. In Sec. IV, a brief review of
the hydrodynamics of fractal media is considered to fix the
notation and provide a convenient reference. In Sec. V, the
magnetohydrodynamics equations for the fractal distribution
of charged particles are derived. The stationary states for
these equations are considered. Finally, a short conclusion is
given in Sec. VI.

II. INTEGRATION ON FRACTAL AND FRACTIONAL
INTEGRATION

Fractals are measurable metric sets with a noninteger
Hausdorff dimension. The main property of the fractal is a
noninteger Hausdorff dimension. Let us consider a brief re-

view of the Hausdorff measure and the Hausdorff
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dimension35,40 to fix the notation and provide a convenient
reference.

A. Hausdorff measure and Hausdorff dimension

Consider a measurable metric set �W ,�H�. The elements
of W are denoted by x ,y ,z , . . ., and represented by n-tuples
of real numbers, x= �x1 ,x2 , . . . ,xn�, such that W is embedded
in Rn. The set W is restricted by the following conditions: �1�
W is closed; �2� W is unbounded; �3� W is regular �homoge-
neous, uniform� with its points randomly distributed.

The metric d�x ,y� as a function of two points x and y
�W can be defined by

d�x,y� = �
i=1

n

�yi − xi� , �1�

or

d�x,y� = �x − y� = ��
i=1

n

�yi − xi�2�1/2

. �2�

The diameter of a subset E�W�Rn is

d�E� = diam�E� = sup	d�x,y�:x,y � E
 .

Let us consider a set 	Ei
 of nonempty subsets Ei, such
that dim�Ei���, "i, and W��i=1

� Ei. Then, we define

��Ei,D� = ��D��diam�Ei��D = ��D��d�Ei��D. �3�

The factor ��D� depends on the geometry of Ei, used for
covering W. If 	Ei
 is the set of all �closed or open� balls in
W, then

��D� =
�D/22−D

��D/2 + 1�
. �4�

The Hausdorff dimension D of a subset E�W is
defined32–35 by

D = dimH�E� = sup	d � R:�H�E,d� = � 
 , �5�

or

D = dimH�E� = inf	d � R:�H�E,d� = 0
 . �6�

From �5� and �6�, we obtain

�1� �H�E ,d�=0 for d	D=dimH�E�;
�2� �H�E ,d�=� for d�D=dimH�E�.

The Hausdorff measure �H of a subset E�W is
defined32–35 by

�H�E,D� = lim
�→0

inf
	Ei

��

i=1

�

��Ei,D�:E � �
i

Ei,

d�Ei� � �, " i� , �7�

or

�H�E,D� = ��D� lim
d�Ei�→0

inf
	Ei


�
i=1

�

�d�Ei��D. �8�
If E�W and 
	0, then
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�H�
E,D� = 
D�H�E,D� ,

where 
E= 	
x ,x�E
.

B. Function and integrals on fractal

Let us consider the functions on W:

f�x� = �
i=1

�

�i�Ei
�x� , �9�

where �E is the characteristic function of E: �E�x�=1 if x
�E, and �E�x�=0 if x�E. For continuous function f�x�:

lim
x→y

f�x� = f�y� �10�

whenever

lim
x→y

d�x,y� = 0. �11�

The Lebesgue-Stieltjes integral for �9� is defined by


W

f d� = �
i=1

�

�i�H�Ei� . �12�

Therefore


W

f�x�d�H�x� = lim
d�Ei�→0

�
Ei

f�xi���Ei,D�

=��D� lim
d�Ei�→0

�
Ei

f�xi��d�Ei��D. �13�

It is always possible to divide Rn into parallelepipeds:

Ei1. . .in
= 	�x1, . . . ,xn� � W: xj = �ij − 1�xj + � j,

0 � � j � xj, j = 1, . . . ,n
 . �14�

Then

d�H�x� = lim
d�Ei1. . .in

�→0
��Ei1. . .in

,D�

= lim
d�Ei1. . .in

�→0
�
j=1

n

�xj�D/n = �
j=1

n

dD/nxj . �15�

The range of integration W may also be parametrized by
polar coordinates with r=d�x ,0� and angle �. Then Er,� can
be thought of as spherically symmetric covering around a
center at the origin. In the limit, the function ��Er,� ,D� gives

d�H�r,�� = lim
d�Er,��→0

��Er,�,D� = d�D−1 rD−1 dr . �16�

Let us consider f�x� that is symmetric with respect to
some center, x0�W, i.e., f�x�=const for all x, such that
d�x ,x0�=r for arbitrary values of r. Then a transformation

W → W�:x → x� = x − x0 �17�

can be performed to shift the center of symmetry. Since W is
not a linear space, �17� need not be a map of W onto itself;
�17� is measure preserving. Then the integral over a

D-dimensional metric space is
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W

f d�H = 
�D�
0

�

f�r�rD−1 dr , �18�

where


�D� =
2�D/2

��D/2�
. �19�

This integral is known in the theory of the fractional
calculus.1 The right Riemann-Liouville fractional integral is

�I−
Df��z� =

1

��D�z

�

�x − z�D−1f�x�dx . �20�

For z=0, Eq. �20� gives

�I−
Df��0� =

1

��D�0

�

xD−1f�x�dx , �21�

and Eq. �18� is reproduced by


W

fd�H =
2�D/2��D�

��D/2�
�I−

Df��0� . �22�

Equation �22� connects the integral on fractal with an inte-
gral of fractional order. This result permits us to apply dif-
ferent tools of the fractional calculus1 for the fractal medium.
As a result, the fractional integral can be considered as an
integral on the fractal up to the numerical factor
��D /2� / �2�D/2��D��.

Note that the interpretation of fractional integration is
connected with a fractional dimension.25 This interpretation
follows from the well-known formulas for dimensional
regularizations.37 The fractional integral can be considered as
an integral in the fractional dimension space up to the nu-
merical factor ��D /2� / �2�D/2��D��. In Ref. 38 it was
proved that the fractal space-time approach is technically
identical to the dimensional regularization.

C. Properties of integrals

The integral defined in �13� satisfies the following prop-
erties.

�1� Linearity:


W

�af1 + bf2�d�H = a
W

f1 d�H + b
W

f2 d�H, �23�

where f1 and f2 are arbitrary functions; a and b are arbitrary
constants.

�2� Translational invariance:


W

f�x + x0�d�H�x� = 
W

f�x�d�H�x� , �24�

since d�H�x−x0�=d�H�x� as a consequence of homogeneity
�uniformity�.

�3� Scaling property:


W

f�
x�d�H�x� = 
−D
W

f�x�d�H�x� , �25�

−D
since d�H�x /
�=
 d�H�x�.
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By evaluating the integral of the function f�x�=exp�
−ax2+bx�, it has been shown36,37 that conditions �23�–�25�
define the integral up to normalization:


W

exp�− ax2 + bx�d�H�x� = �D/2a−D/2 exp�b2/4a� . �26�

Note that, for b=0, Eq. �26� is identical to the result from
�22�, which can be obtained directly without conditions
�23�–�25�.

D. Multivariable integration on fractal

The integral in �18� is defined for a single variable. It is
only useful for integrating spherically symmetric functions.
We consider multiple variables by using the product spaces
and product measures.

Let us consider a collection of n=3 measurable sets
�Wk ,�k ,D�, with k=1,2 ,3, and fromm a Cartesian product
of the sets Wk, producing W=W1�W2�W3. The definition
of product measures and the application of the Fubinis theo-
rem provides a measure for the product set W=W1�W2

�W3 as

��1 � �2 � �3��W� = �1�W1��2�W2��3�W3� . �27�

Then integration over a function f on W is


W

f�x1,x2,x3�d��1 � �2 � �3�

=
W1


W2


W3

f�x1,x2,x3�d�1�x1�d�2�x2�d�3�x3� . �28�

In this form, the single-variable measure from �18� may be
used for each coordinate xk, which has an associated dimen-
sion �k:

d�k�xk� = 
��k��xk��k−1 dxk, k = 1,2,3. �29�

Then the total dimension of W=W1�W2�W3 is

D = �1 + �2 + �3. �30�

Let us reproduce the result for the single-variable inte-
gration �18�, from W1�W2�W3. We take a spherically sym-
metric function f�x1 ,x2 ,x3�= f�r�, where r2= �x1�2+ �x2�2

+ �x3�2 and perform the integration in spherical coordinates
�r ,� ,��. Equation �28� becomes


W

d�1�x1�d�2�x2�d�3�x3�f�x1,x2,x3�

=
��1�
��2�
��3�
W1

dx1
W2

dx2
W3

�1−1 �2−1 �3−1
�dx3�x1� �x2� �x3� f�x1,x2,x3�
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=
��1�
��2�
��3�  dr d� d�

�J3r�1+�2+�3−3�cos ���1−1�sin ���2+�3−2�sin ���3−1f�r� ,

�31�

where J3=r2 sin � is the Jacobian of the coordinate change.
Since the function is only dependent on the radial variable
and not the angular variables, we can use


0

�/2

sin�−1 x cos�−1 x dx =
���/2����/2�
2���� + ��/2�

, �32�

where �	0, �	0. From �30�, we obtain


W

d�1�x1�d�2�x2�d�3�x3�f�r� = 
�D�  f�r�rD−1 dr ,

�33�

where


�D� =
2�D/2

��D/2�
. �34�

This equation describes the D-dimensional integration37 of a
spherically symmetric function, and reproduces the result
�18�.

E. Density function and mass on fractal

Let us consider the mass that is distributed on the mea-
surable metric set W with the fractional Hausdorff dimension
D. Suppose that the density of mass distribution is described
by the function ��r� that is defined by �9�. In this case, the
mass can be derived by

MD�W� = 
W

��r�dVD, �35�

where

dVD = d�1�x1�d�2�x2�d�3�x3� = c3�D,r�dx dy dz , �36�

c3�D,r� = 
��1�
��2�
��3�x�1−1y�2−1z�3−1, �37�

dimH�W� = D = �1 + �2 + �3. �38�

As a result, we have

MD�W� = 
W

��r�dVD, dVD = c3�D,r�dV3, �39�

where dV3=dx dy dz for Cartesian coordinates, and

c3�D,r� =
8�D/2�x��1−1�y��2−1�z��3−1

���1����2����3�
. �40�

As a result, we get the Riemann-Liouville fractional integral1

up to a numerical factor 8�D/2.

F. Mass of fractal distribution

The cornerstone of fractals is the noninteger dimension.
the fractal dimension can be best calculated by box counting

method, which means drawing a box of size R and counting
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the mass inside. This mass fractal dimension can be easy
measured for fractal media. The properties of the fractal me-
dium like mass obey a power law relation M �RD, where M
is the mass of the fractal medium, R is a box size �or a sphere
radius�, and D is a mass fractal dimension. The power law
relation M �RD can be naturally derived by using the frac-
tional integral.10 The mass fractal dimension is connected10

with the order of fractional integrals.
Consider the region W in three-dimensional Euclidean

space, R3. The volume of the region W is denoted by VD�W�.
The mass of the region W in the fractal medium is denoted
by MD�W�. The fractality of the medium means that the mass
of this medium in any region W of Euclidean space R3 in-
creases more slowly than the volume of this region. For the
ball region of the fractal medium, this property can be de-
scribed by the power law M �RD, where R is the radius of
the ball W.

The fractal medium is called a homogeneous one if the
power law M �RD does not depend on the translation of the
region. The homogeneity property of the medium can be
formulated in the form: For all regions W and W� of the
homogeneous fractal medium with the equal volumes
VD�W�=VD�W��, the masses of these regions are equal,
MD�W�=MD�W��. Note that the wide class of the fractal me-
dia satisfies the homogeneous property.

In Refs.10, the continuous medium model for the fractal
media was suggested. The fractality and homogeneity prop-
erties can be realized in the following forms: �1� Homogene-
ity: The local density of homogeneous fractal media is a
translation invariant value that has the form ��r�=�0=const.
�2� Fractality: The mass of the ball region W of a fractal
medium obeys a power law relation, M �RD, where 0�D
�3, and R is the radius of the ball. These requirements can
be realized by the fractional generalization �39� of the equa-
tion

M3�W� = 
W

��r�dV3. �41�

The form of function c3�D ,r� is defined by the properties of
the fractal medium. Note that the final equations that relate
the physical variables have a form that is independent of a
numerical factor in the function c3�D ,r�. However, the de-
pendence of r is important to these equations.

Equation �39� describes the mass that is distributed in
the volume and has the mass fractal dimension D by frac-
tional integrals. There are many different definitions of frac-
tional integrals.1 The fractional integrals can be used to de-
scribe fields that are defined on the set W with fractional
Hausdorff dimension dimH�W�=D.

For the Riemann-Liouville fractional integral,

c3�D,r� =
�x��1−1�y��2−1�z��3−1

���1����2����3�
, �42�

where x, y, z are Cartesian’s coordinates, and D=�1+�2

+�3, 0�D�3.
Note that for D=2, we have the fractal mass distribution

in the volume. In general, this case is not equivalent to the

distribution on the two-dimensional surface.
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For ��r�=���r � �, we can use the Riesz definition of the
fractional integrals,1 and

c3�D,r� = 
�D��r�D−3, �43�

where


�D� = �3
−1�D� =

��1/2�
2D�3/2��D/2�

. �44�

Note that

lim
D→3−

�3
−1�D� = �4�3/2�−1. �45�

Therefore, we suggest using


�D� = �4�3/2��3
−1�D� =

23−D��3/2�
��D/2�

. �46�

The factor �46� allows us to derive the usual integral in the
limit D→ �3−0�. Note that the final equations that relate
mass, moment of inertia, and radius are independent of the
numerical factor 
�D�.

For the homogeneous medium ���r�=�0=const� and the
ball region W= 	r : �r � �R
,

MD�W� = �0
23−D��3/2�

��D/2� 
W

�r�D−3 dV3.

Using the spherical coordinates, we get

MD�W� =
�25−D��3/2�

��D/2�
�0

W

�r�D−1d�r�

=
25−D���3/2�

D��D/2�
�0RD.

As a result, we have M�W��RD, i.e., we derive the equation
M �RD up to the numerical factor. Therefore the fractal me-
dium with noninteger mass dimension D can be described by
fractional integral of order D.

III. ELECTRODYNAMICS OF FRACTAL DISTRIBUTION
OF CHARGED PARTICLES

In this section, a brief review of electrodynamics of frac-
tal distribution of charged particles21 is considered to fix no-
tation and provide a convenient reference.

A. Electric charge for fractal distribution

Let us consider charged particles that are distributed
with a constant density over a fractal with Hausdorff dimen-
sion D. In this case, the electric charge Q satisfies the scaling
law Q�R��RD, whereas for a regular n-dimensional Euclid-
ean object we have Q�R��Rn.

The total charge of region W is

Q3�W� = 
W

��r,t�dV3, �47�

where ��r , t� is a charge density in the region W. The frac-

tional generalization of �47� is
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QD�W� = 
W

��r,t�dVD,

where D is a fractal dimension of the distribution, and

dVD = c3�D,r�dV3. �48�

The function c3�D ,r� is defined by the properties of the dis-
tribution.

If we consider the ball region W= 	r : �r � �R
, and the
spherically symmetric distribution of charged particles,
���r , t�=��r , t��, then

QD�R� = 4�
23−D��3/2�

��D/2� 
0

R

��r�rD−1 dr .

For the homogeneous case, ��r , t�=�0, and

QD�R� = 4��0
23−D��3/2�

��D/2�
RD

D
� RD.

The distribution of charged particles is called a homogeneous
one if all regions W and W� with the equal volumes VD�W�
=VD�W�� have the equal total charges on these regions,
QD�W�=QD�W��.

B. Electric current of fractal distribution

For charged particles with density ��r , t� flowing with
velocity u=u�r , t�, the current density J�r , t� is

J�r,t� = ��r,t�u .

The electric current I�S� is defined as the flux of electric
charge. Measuring the field J�r , t� passing through a surface
S=�W gives

I�S� = �J�S� = 
S

�J,dS2� , �49�

where dS2=dS2 n is a differential unit of area pointing per-
pendicular to the surface S, and the vector n=nkek is a vector
of normal. The fractional generalization of �49� is

I�S� = 
S

�J�r,t�,dSd� ,

where

dSd = c2�d,r�dS2, c2�d,r� =
22−d

��d/2�
�r�d−2. �50�

Note that c2�2,r�=1 for d=2. The boundary �W has the di-
mension d. In general, the dimension d is not equal to 2 and
is not equal to �D−1�.

C. Charge conservation for fractal distribution

The electric charge has a fundamental property estab-
lished by numerous experiments: the velocity of charge
change in region W bounded by the surface S=�W is equal to
the flux of charge through this surface. This is known as the

law of charge conservation:

IP license or copyright, see http://pop.aip.org/pop/copyright.jsp



052107-6 Vasily E. Tarasov Phys. Plasmas 13, 052107 �2006�
dQ�W�
dt

= − I�S� ,

or, in the form

d

dt


W

��r,t�dVD = − �
�W

�J�r,t�,dSd� . �51�

In particular, when the surface S=�W is fixed, we can write

d

dt


W

��r,t�dVD = 
W

���r,t�
�t

dVD. �52�

Using the fractional generalization of Gauss’ theorem �see
the Appendix�, we get

�
�W

�J�r,t�,dSd�

=
W

c3
−1�D,r�

�

�xk
�c2�d,r�Jk�r,t��dVD. �53�

The substitution of Eqs. �52� and �53� into Eq. �51� gives

c3�D,r�
���r,t�

�t
+

�

�xk
�c2�d,r�Jk�r,t�� = 0. �54�

As a result, we obtain the law of charge conservation in
differential form �54�. This equation can be considered as a
continuity equation for fractal distribution of particles.11

D. Electric field and Coulomb’s law

For a point charge Q at position r�, the electric field at a
point r is defined by

E =
Q

4��0

r − r�

�r − r��3
,

where �0 is a fundamental constant called the permittivity of
free space.

For a continuous stationary distribution ��r��,

E�r� =
1

4��0


W

r − r�

�r − r��3
��r��dV3�. �55�

For Cartesian coordinates dV3�=dx� dy� dz�. The fractional
generalization of �55� is

E�r� =
1

4��0


W

r − r�

�r − r��3
��r��dVD� , �56�

where dVD� =c3�D ,r��dV3�. Equation �56� can be considered
as Coulomb’s law for a fractal stationary distribution of elec-
tric charges.

The electric field passing through a surface S=�W gives
the electric flux

�E�S� = 
S

�E,dS2� ,

where E is the electric field vector, and dS2 is a differential

unit of area pointing perpendicular to the surface S.
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E. Gauss’ law for fractal distribution

Gauss’ law tells us that the total flux �E�S� of the elec-
tric field E through a closed surface S=�W is proportional to
the total electric charge Q�W� inside the surface:

�E��W� =
1

�0
Q�W� . �57�

For the fractal distribution, Gauss’ law �57� states


S

�E,dS2� =
1

�0


W

��r,t�dVD, �58�

where E=E�r , t� is the electric field, and ��r , t� is the charge
density, dVD=c3�D ,r�dV3, and �0 is the permittivity of free
space.

If ��r , t�=��r�, and W= 	r : �r � �R
, then

Q�W� = 4�
0

R

��r�c3�D,r�r2 dr ,

where

c3�D,r� =
23−D��3/2�

��D/2�
�r�D−3. �59�

Then

Q�W� = 4�
23−D��3/2�

��D/2� 
0

R

��r�rD−1 dr . �60�

For the sphere S=�W= 	r : �r � =R
,

�E��W� = 4�R2E�R� . �61�

Substituting �60� and �61� in �57�, we get

E�R� =
23−D��3/2�
�0R2��D/2�0

R

��r�rD−1 dr .

For homogeneous ���r�=�� distribution,

E�R� = �
23−D��3/2�
�0D��D/2�

RD−2 � RD−2.

F. Magnetic field and Biot-Savart law

The Biot-Savart law relates magnetic fields to the cur-
rents that are their sources. For a continuous distribution, the
law is

B�r� =
�0

4�


W

�J�r��,r − r��
�r − r��3

dV3�, �62�

where �,� is a vector product, J is the current density, and �0

is the permeability of free space. The fractional generaliza-
tion of Eq. �62� is

B�r� =
�0

4�


W

�J�r��,r − r��
�r − r��3

dVD� . �63�

This equation is the Biot-Savart law written for a steady
current with a fractal distribution of electric charges. The law
�63� can be used to find the magnetic field produced by any

fractal distribution of steady currents.
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G. Ampere’s law for fractal distribution

The magnetic field in space around an electric current is
proportional to the electric current that serves as its source.
In the case of a static electric field, the line integral of the
magnetic field around a closed loop is proportional to the
electric current flowing through the loop. Ampere’s law is
equivalent to the steady state of the integral Maxwell equa-
tion in free space, and relates the spatially varying magnetic
field B�r� to the current density J�r�.

Note that, as mentioned in Ref. 19, Liouville, who was
one of the pioneers in the development of fractional calculus,
was inspired by the problem of fundamental force law in
Ampere’s electrodynamics and used a fractional differential
equation in that problem. Ampere’s law states that the line
integral of the magnetic field B along the closed path L
around a current given in MKS by

�
L

�B,dl� = �0I�S� ,

where dl is the differential length element. For the distribu-
tion of particles on the fractal,

I�S� = 
S

�J,dSd� ,

where dSd=c2�d ,r�dS2. For the cylindrically symmetric dis-
tribution,

I�S� = 2�
0

R

J�r�c2�d,r�r dr ,

where c2�d ,r� is defined in Eq. �50�, i.e.,

I�S� = 4�
22−d

��d/2�0

R

J�r�rd−1 dr .

For the circle L=�W= 	r : �r � =R
, we get

�
L

�B,dl� = 2�RB�R� .

As a result,

B�R� =
�022−d

R��d/2�0

R

J�r�rd−1 dr .

For the homogeneous distribution, J�r�=J0, and

B�R� = J0
�022−d

d��d/2�
Rd−1 � Rd−1.

H. Fractional integral Maxwell equations

Let us consider the fractional integral Maxwell
equations.21 The Maxwell equations are the set of fundamen-
tal equations for electric and magnetic fields. The equations
that can be expressed in integral form are known as Gauss’
law, Faraday’s law, the absence of magnetic monopoles, and
Ampere’s law with displacement current. In MKS, these be-

come
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�
S

�E,dS2� =
1

�0


W

� dVD,

�
L

�E,dl1� = −
�

�t


S

�B,dS2� ,

�
S

�B,dS2� = 0,

�
L

�B,dl1� = �0
S

�J,dSd� + �0�0
�

�t


S

�E,dS2� .

Let us consider the fields that are defined on the fractal40

only. The hydrodynamic and thermodynamics fields can be
defined in the fractal media.11,12 Suppose that the electro-
magnetic field is defined on the fractal as an approximation
of some real case with a fractal medium. If the electric and
magnetic fields are defined on a fractal and do not exist out-
side of the fractal in Euclidian space E3, then we must use
the fractional generalization of the integral Maxwell equa-
tions in the form21

�
S

�E,dSd� =
1

�0


W

� dVD,

�
L

�E,dl�� = −
�

�t


S

�B,dSd� ,

�
S

�B,dSd� = 0,

�
L

�B,dl�� = �0
S

�J,dSd� + �0�0
�

�t


S

�E,dSd� . �64�

Note that fractional integrals are considered an approxima-
tion of integrals on fractals.38,39

Using the fractional generalization of Stokes’ and Gauss’
theorems �see the Appendix�, we can rewrite Eqs. �64� in the
form


W

c3
−1�D,r�div�c2�d,r�E�dVD =

1

�0


W

� dVD,


S

c2
−1�d,r��curl�c1��,r�E�,dSd� = −

�

�t


S

�B,dSd� ,


W

c3
−1�D,r�div�c2�d,r�B�dVd = 0,


S

c2
−1�d,r��curl�c1��,r�B�,dSd� = �0

S

�J,dSd�

+ �0�0
�

�t


S

�E,dSd� .
As a result, we obtain
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div�c2�d,r�E� =
1

�0
c3�D,r�� ,

curl�c1��,r�E� = − c2�d,r�
�

�t
B ,

div�c2�d,r�B� = 0,

curl�c1��,r�B� = �0c2�d,r�J + �0�0c2�d,r�
�E

�t
.

Note that the law of absence of magnetic monopoles for
the fractal leads us to the equation div�c2�d ,r�B�=0. It can
be rewritten as

div B = − �B,grad c2�d,r�� .

In general, �d�2�, the vector grad�c2�d ,r�� is not equal to
zero and the magnetic field satisfies div B�0. If d=2, we
have div�B��0 only for nonsolenoidal field B. Therefore the
magnetic field on the fractal is similar to the nonsolenoidal
field. As a result, the magnetic field on the fractal can be
considered as a field with some “fractional magnetic mono-
pole,” qm��B ,�c2�.

IV. HYDRODYNAMICS OF FRACTAL MEDIA

A. Euler equations for fractal media

In Ref. 11, we derive the fractional generalizations of
integral balance equations for fractal media. These equations
leads to the following differential equations.

�1� The equation of continuity

� d

dt
�

D
� = − � �k

Duk. �65�

�2� The equation of balance of the density of momentum,

�� d

dt
�

D
uk = �fk + �l

Dpkl. �66�

�3� The equation of the balance of density of energy,

�� d

dt
�

D
e = c�D,d,R�pkl

�uk

�xl
. �67�

Here, we mean the sum on the repeated index, k and l from
1 to 3, and use the notations

�k
DA = a�D,d�R3−D �

�xk
�Rd−2A� , �68�

� d

dt
�

D
=

�

�t
+ c�D,d,R�ul

�

�xl

=
�

�t
+ a�D,d�Rd+1−Dul

�

�xl
, �69�

where
d+1−D
c�D,d,R� = a�D,d�R , �70�
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a�D,d� =
2D−d−1��D/2�
��3/2���d/2�

. �71�

The equations of balance are a set of five equations, which
are not closed. These equations, in addition to the hydrody-
namic fields ��R , t�, u�R , t�, e�R , t�, include also the tensor
of viscous stress pkl�R , t�. Let us consider the special cases
of �65�–�67� with

pkl = − p�kl,

where p= p�R , t� is the pressure. Then the hydrodynamics
Eqs. �65�–�67� are

� d

dt
�

D
� = − � �k

Duk. �72�

� d

dt
�

D
uk = fk −

1

�
�k

Dp , �73�

� d

dt
�

D
e = − c�D,d,R�

p

�

�uk

�xk
. �74�

These equations are the Euler equations for the fractal me-
dium.

B. Equilibrium equation for fractal distribution

The equilibrium state of medium means that

�A

�t
= 0,

�A

�xk
= 0,

for A= 	� ,uk ,e
. In this case, Eqs. �72�–�74� give

fk =
1

�
�k

Dp . �75�

Equation �75� gives the fractional generalization of the equi-
librium equations. From �68�, �70� and �71�, Eq. �75� is

��c2�d,R�p�
�xk

= �c3�D,R�fk.

For the homogeneous medium ��x�=const, and

c3�D,R�fk =
��c2�d,R�p/�0�

�xk
.

If c3�D ,R�fk=−�U /�xk, then

c2�d,R�p + �0U = const. �76�

This equation is a fractional generalization of the equilibrium
equation.

C. Fractional Bernoulli integral

Let us consider Eq. �73�. Using Eq. �66� and

� d

dt
�

D

u2

2
= uk� d

dt
�

D
uk,
we get
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� d

dt
�

D

u2

2
= ukfk −

1

�
uk �k

Dp . �77�

If

�U/�t = 0, � p/�t = 0,

then

� d

dt
�

D
= c�D,d,R�

d

dt
. �78�

Suppose

fk = − c�D,d,R� � U/�xk. �79�

If D=3 and d=2, then this force is potential. Using Eqs. �78�
and �79�, we get Eq. �77� in the form

d

dt
�u2

2
+ U + P�d�� = 0,

where

P�d� = 
p

p0 d�c2�d,R�p�
c2�d,R��

.

As a result, we obtain

�
k=1

3
uk

2

2
+ U + P�d� = const. �80�

This integral of motion can be considered as a fractional
generalization of the Bernoulli integral for fractal media. If
the forces fk are potential, and D�3, then the fractional
analog of the Bernoulli integral does not exist.

For the density

� = �0c2
−1�d,R� = �0

��d/2�
22−d R2−d, �81�

the integral �80� gives

�0u2

2
+ �0U + c2�d,R�p = const. �82�

For uk=0, Eq. �82� leads to Eq. �76�.

D. Sound waves in fractal media

Let us consider the small perturbations of Eqs. �72� and
�73�:

� = �0 + ��, p = p0 + p�, uk = uk�, �83�

where ����0, and p�� p0, and p0 and �0 describe the steady
state:

��0

�t
= 0,

��0

�xk
= 0,

�p0

�t
= 0,

�p0

�xk
= 0.

Supposing fk=0, and substituting �83� into Eqs. �72� and
�73�, we get

���
= − �0 �k

Duk�, �84�

�t
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�uk�

�t
= −

1

�0
�k

Dp�. �85�

To derive the independent equations for ��, we consider the
partial derivative of Eq. �84� with respect to time:

�2��

�t2 = − ��k
D�uk�

�t
. �86�

The substitution of �85� into �86� obtains

�2��

�t2 = �k
D�k

Dp�. �87�

For adiabatic processes p= p�� ,s�, the first order of perturba-
tion is

p� = v2��,

where

v =�� �p

��
�

s

.

As a result, we obtain

�2��

�t2 − v2�k
D�k

D�� = 0, �88�

�2p�

�t2 − v2�k
D�k

Dp� = 0. �89�

These equations describe the waves in the fractal medium.

V. MAGNETOHYDRODYNAMICS

A. Magnetohydrodynamics „MHD… equations

The hydrodynamic and Maxwell equations for a fractal
medium11,21 are the following.

�1� The equation of continuity,

� d

dt
�

D
� = − � �k

Duk. �90�

�2� The equation of balance of density of momentum,

�� d

dt
�

D
uk = �fk − �k

Dp . �91�

�3� Faraday’s law,

curl�c1��,r�E� = − c2�d,r�
�

�t
B . �92�

�4� The absence of magnetic monopoles,

div�c2�d,r�B� = 0. �93�

�5� Ampere’s law,

curl�c1��,r�B� = �0c2�d,r�J , �94�

where the displacement current is neglected.

Using the Lorenz force density,
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�f = �J,B� , �95�

we get �91� in the form

�� d

dt
�

D
u + �Dp = �J,B� . �96�

We assume a linear relationship between J and E*:

J�r,t� = �E*�r,t� , �97�

where � is the electric conductivity, and E* is an electric
field in the moved coordinate system. For �u � �c,

E = E* −
1

c
�u,B� . �98�

From �97� and �94�, we get

E* = �−1J =
1

��0c2�d,r�
curl�c1��,r�B� . �99�

Substitution of �98� into �92� gives

curl�c1��,r�E* − c1��,r�
1

c
�u,B�� = − c2�d,r�

�

�t
B .

�100�

Substituting �99� into �100�, we have

curl� c1��,r�
��0c2�d,r�

curl�c1��,r�B�− c1��,r�
1

c
�u,B��

= − c2�d,r�
�

�t
B . �101�

Then,

c2�d,r�
�

�t
B = − curl� c1��,r�

��0c2�d,r�
curl�c1��,r�B��

+ curl�c1��,r�
1

c
�u,B�� . �102�

As a result, we obtain magnetohydrodynamics �MHD�
equations for a fractal distribution of charged particles.

�1� The equation of continuity,

� d

dt
�

D
� = − � �Du . �103�

�2� The equation of balance of density of momentum,

�� d

dt
�

D
u + �Dp = �J,B� . �104�

�3� The absence of magnetic monopoles,

div�c2�d,r�B� = 0. �105�

�4� Ampere’s law,

curl�c1��,r�B� = �0c2�d,r�J . �106�
�5� The diffusion equation for the magnetic field,
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c2�d,r�
�

�t
B = − curl� c1��,r�

��0c2�d,r�
curl�c1��,r�B��

+ curl�c1��,r�
1

c
�u,B�� . �107�

We have 11 equations for 11 variables, p, �, J, u, and B.

B. Equilibrium from MHD equations

Let us consider the stationary �equilibrium� states for
MHD equations. The total time derivatives in Eqs. �104� and
�106� are equal to zero, and

�Dp = �J,B� , �108�

J =
1

�0c2�d,r�
curl�c1��,r�B� . �109�

The substitution of �109� into �110� obtains

�Dp =
1

�0c2�d,r�
�curl�c1��,r�B�,B� . �110�

Suppose B= 	0,0 ,Bz
. Then

curl�c1��,r�B� = ex�y�c1��,r�Bz� − ey�x�c1��,r�Bz� ,

�111�

and

�curl���,r�B�,B� = − exBz�x�c1��,r�Bz�

− eyBz�y�c1��,r�Bz� . �112�

As a result, Eq. �108� gives

�x
Dp = −

1

�0c2�d,r�
Bz�x�c1��,r�Bz� ,

�y
Dp = −

1

�0c2�d,r�
Bz�y�c1��,r�Bz� . �113�

From the definition of �D, we have

�

�x
c2�d,r�p = −

c3�D,r�
�0c2�d,r�

Bz
�

�x
�c1��,r�Bz� ,

�

�y
c2�d,r�p = −

c3�D,r�
�0c2�d,r�

Bz
�

�y
�c1��,r�Bz� . �114�

Using A �B=��AB�−B �A, we get

�

�x
�c2�d,r�p +

c3�D,r�c1��,r�
�0c2�d,r�

Bz
2�

= c1��,r�Bz
�

�x
� c3�D,r�

�0c2�d,r�
Bz� ,

�

�y
�c2�d,r�p +

c3�D,r�c1��,r�
�0c2�d,r�

Bz
2�

= c1��,r�Bz
� � c3�D,r�

Bz� , �115�

�y �0c2�d,r�
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�

�y
�c2�d,r�p� = 0. �116�

As a result, we obtain

c2�d,r�p +
c3�D,r�c1��,r�

�0c2�d,r�
Bz

2 = const. �117�

This equilibrium equation exists only if

Bz �
�0c2�d,r�
c3�D,r�

. �118�

It is easy to see that we do not have the usual invariants
for the fractal distribution of charged particles. Therefore
equilibrium on the fractal exists for the magnetic field that
satisfies the power law relation

Bz � Rd−D+1. �119�

For the distribution with an integer Hausdorff dimension, we
have the usual relation.42 The typical turbulent media could
be of fractal structure, and the corresponding equations
should be changed to include the fractal features of the me-
dia. Therefore, the equilibrium of the fractal turbulent me-
dium exists for the magnetic field with the power law rela-
tion �119�.

VI. CONCLUSION

Typical turbulent media could be of a fractal structure,
and the corresponding equations should be changed to in-
clude the fractal features of the media. Magnetohydrodynam-
ics equations for the fractal distribution of charged particles
are suggested. The fractional integrals are used to describe
fractal distribution. These integrals are considered as ap-
proximations of integrals on fractals. Using the fractional
generalization of the integral Maxwell equation and the inte-
gral balance equations, we derive the magnetohydrodynam-
ics equations. Equilibrium states for these equations are dis-
cussed. The equilibrium for fractal turbulent media can exist
if the magnetic field satisfies the power law relation.

APPENDIX: FRACTIONAL GAUSS’S THEOREM

Let us derive the fractional generalization of Gauss’
theorem,


�W

�J�r,t�,dS2� = 
W

div�J�r,t��dV3, �A1�

where the vector J�r , t�=Jkek is a field, and div�J�=�J /�r
=�Jk /�xk. Here, we mean the sum on the repeated index k
from 1 to 3. Using

dSd = c2�d,r�dS2, c2�d,r� =
22−d

��d/2�
�r�d−2,

we get


�W

�J�r,t�,dSd� = 
�W

c2�d,r��J�r,t�,dS2� .
Note that c2�2,r�=1 for d=2. Using �A1�, we get
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�W

c2�d,r��J�r,t�,dS2� = 
W

div�c2�d,r�J�r,t��dV3.

The relation

dVD = c3�D,r�dV3, c3�D,r� =
23−D��3/2�

��D/2�
�r�D−3

in the form dV3=c3
−1�D ,r�dVD allows us to derive the frac-

tional generalization of Gauss’ theorem:


�W

�J�r,t�,dSd� = 
W

c3
−1�D,r�div�c2�d,r�J�r,t��dVD.

Analogously, we can get the fractional generalization of
Stokes’ theorem in the form

�
L

�E,dl�� = 
S

c2
−1�d,r��curl�c1��,r�E�,dSd� ,

where

c1��,r� =
21−���1/2�

���/2�
�r��−1.
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