
interaction along a chain; and ~=[a(~)]%=A.~= 0.3. which describes the interaction between 

the chains. Here, ~i is the species of the atom localized in the i-th chain for configura- 
tion ~. For comparison we give the histogram of the density of states of a one-dimensional 
chain of 4,000 atoms calculated using the method of negative eigenvalues. Figure 2 illus- 
trates the rapid convergence of the density of states with increasing number of chains and 
the vanishing of the singularities characteristic of the one-dimensional case. Thus, for 
t/T = 0.3 the density of states hardly changes already for M ~ 5, With decreasing value 
of the parameter t convergence occurs even more rapidly, as the calculations showed. 

As regards efficiency, the method proposed in this paper for analyzing the single- 
#article spectra of stochastic quasione-dimensional systems is not inferior to the method 
of negative eigenvalues, but at the same time it enables one to solve a much larger group 
of problems by virtue of the information contained in the averaged Green's functions. 
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ULTRAVIOLET FINITENESS OF NONLINEAR TWO-DIMENSIONAL 

SIGMA MODELS ON AFFINE-METRIC MANIFOLDS 

V. V. Be!okurov and V. E. Tarasov 

The two-loop counterterms of a nonlinear two-dimensional boson sigma model 
whose target space is an arbitrary affine-metric manifold are calculated, 
Examples are given of nonflat manifolds that lead to ultraviolet-finite 
sigma models. 

Study of nonlinear two-dimensional sigma models has recently become particularly 
interesting in connection with the development of string theory. The target manifolds of 
ultraviolet-finite sigma models determine the spaces of the compactified additional dimen- 
sions [1,2]. The condition of ultraviolet finiteness determines the equations of motion 
of the string modes [3-5]. 

The action of the bosonic sigma model has the form 

I(~) = ~ d2x G~, (~) ~ ~"~J, (1) 

where  t h e  i n t e g r a t i o n  i s  o v e r  a t w o - d i m e n s i o n a l  Minkowski  s p a c e .  The f i e l d s  ~ ( x )  t a k e  
values on some manifold M. It is generally assumed that M is a Riemannian manifold with 
metric-consistent connection [6,7]. In this case the condition of ultraviolet finiteness 
of the sigma model leads to the requirement of vanishing of the Riemann tensor. In other 
words, finiteness holds only for flat manifolds M. 

In this paper we consider as space M an arbitrary affine-metria manifold for which 
consistency of the connection with the metric is not assumed. In this case the connection 
has the form 

r~,j = {L~} + D% ( 2 )  
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where {k i]} t ~p ------~-G (0~G~ ~- 0~G~p-- 0pG~) i s  t h e  C h r i s t o f f e l  s y m b o l ,  

D~i~=-~ /~G ~ ( K~v~+ K~vi-Ki~) + 2Q (o>~ +Q~ ( 3 ) 
h __ k is the connection defect, K~=V~G~ is the nonmetricity tensor, Q~--F [m is the torsion 

tensor. For the Riemannian manifolds usually considered [6,7], the relations K~=0, Q~=0 
hold. 

The counterterms in the Sigma model can be conveniently calculated by the background 
field method. In this method, the action is expanded in powers of the quantum field 

dt t=o 

where xi(t) is the geodesic determined by the equation 

d~% ~ d%' d~ ~ 
+ F% = O. 

dP . dt dt 

Note that the symmetric part of the connection (2) occurs in the equation for the geodesic 
in the considered case. The covariant expansion of the action (i) in powers of the quantum 
field differs from the corresponding expansion for Riemannian manifolds [7,8] by the 
presence of the additional terms 

----- G V ~V ~ I m d2x{ ~ ~ ~ + 2Go;~Wu~0" r  ' 4- ( ~  4-~/~Go:~;O~tO~O~cP:}, 

i(~) 

8 8 

[~/~ Gv~; ~o~ p ~,~4- ~/~ ~ ;  4- '/~ a~; ~; ~; ,~,] ~ " V  ~0. ,~ ~ -t- 

$ 8 

8 s . 

We have here introduced the notation 
$ 

~--20[~IF ~I~ +2F ~[~I r ~I~, ~ , = ~ , + 2 Q ~ a ~ .  ~ ~ ~ _ ~ , , ,  , ~ , + 2 Q  ~ I Q  ,,I,,, 
8 

A~; :=V ~A,=V ~A~+Q~A~, V ~A~=O~A~-F~A~, 

In each order, the obtained counterterms have the structure of Eq. (i) and reduce to 
a renormalization of the metric tensor Gij [6]. 

The divergentsingle-loop counterterm is 

T(1,1).__ t ( 8 I G ~3--~ ,~(ij) 4---~- ~j;a;a--2Gi[a;blGj[a;b]) 

where  2~=~=~==dbG ~ In  c a l c u l a t i n g  t h e  c o u n t e r t e r m s ,  we u s e  d i m e n s i o n a l  r e g u l a r i z a t i o n ,  
2 + n = 2 -- 2e and introduce an auxiliary mass term to eliminate the infrared diver- 
gences. 

The divergent two-loop counterterm (including the contribution obtained from the 
expansion of the expression (5) to terms quadratic in the quantum field) contains terms 
proportional to e -2 and e -I. The term proportional to e -2 can be obtained from (5) by 
means of pole equations 
of a simple pole: 

(5 )  

[7]. Therefore, we write down the answer only for the coefficient 

T(,, m~j = ~ 
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*/~ G~[c; hi; .,7~i(~[b)~] - -  2Cat; ~; b,~i(ab)i + a~/a G~[p; qlGp(b; a)j41(a[b)q] - -  a/.~ Gj[~,; b]6~; (r ca)~ @ 

$ 
1/2 ~i(a5)i (8Gp[q; ajGp[q; b] - -  Gpq, aGpq; b ~ 4Gaiv; qlGb[p; ql) "J- 

4/3 ~e(ab)dGi[a; e]Cj[b; d] -~ 8/9 Gild; a]Gj[d, ,5] (Ac(ab)c + 3/4 ,y~.(ab)) -'- 

~/~ G~[< ~ (3~(~1~; t~) + 4~(.~)., ~) - -  ~/~ G ~ ;  ~ ( ~ ) ~ ;  ~ + 

Gca; b; iGab; c; ~ - -  a/~ Gi(a; b); i (Gcc; (a; b) + 4G~; ~; ~) - -  G~; (o; ~)Gar o; ~ -k 8G~[v; q]Gp(~; a)G~[q; (a]; ~) + 

2G~[o; ~];~G~; qGq[p, a] -47 1/4 Gi~; (p; q) (SGa[b; p]Gaib; r - -  Gab; pGab; q 

~Gp[a; b]Gq[a., b]) @ 2God; (a; b)Gi[a; c]Gj[b; d] "Jr" 1/3 Gi[p; a]Gj[p; b] X 

8Gila; b]Gj[c; d]G~[c; d]; b + X~/3 G~ia; ~]Gii~;e]G(blp; pi; e) + 

G /3 i[a; b]Gj[a; c]Gb[p; q]Ge[p; a] - -  5/~ Gi[a; b]Gj[c; d] (Gae: pGbd; p --~ 

R e p e a t e d  s u b s c r i p t s  d e n o t e  s u m m a t i o n  w i t h  t h e  t e n s o r  �89 ab  , f o r  e x a m p l e ,  

It is readily shown that on the transition to a Riemannian manifold Eqs. (5) and (6) 
lead to the well-known expressions [6,7]. 

We give examples of nonflat manifolds for which the single-loop and two-loo p counter ~ 
terms (5) and (6) vanish. In particular, this occurs if we have fulfillment of the 
conditions 

0 

or 

In these cases the Riemann tensor R~mln=Ol{~mn}--3n{~ml)~y{kpl}{Pmn}--{~p~}{PmZ ~ is~ respec- 
tively, 

Just as finiteness of the sigma model with Wess-Zumino term on parallelizable 
manifolds was proved [9], we should be able to show that in each order of perturbation 
theory ultraviolet finiteness of the sigma model on the affine-metric manifold is ensured 
by the condition 

S i , , , 

s p e c i a l  c a s e s  o f  w h i c h  a r e  p r o v i d e d  by  t h e  c o n d i t i o n s  ( 7 )  a n d  ( 8 ) .  
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STRING OPERATOR FORMALISM AND FUNCTIONAL INTEGRAL 

IN THE HOLOMORPHIC REPRESENTATION 

A. S. Losev, A. Yu. Morozov, A. A. Roslyi, 
and S. L. Shatashvili 

The connection between a functional integral over open Riemann surfaces 
[i] and the operator formalism on closed Riemann surfaces [2] is 
discussed. The states in the operator formalism are a holomorphic repre- 
sentation of the functional integral. 

i. Several recent papers [1,2] have been devoted to the calculation of functional 
integrals I l over Riemann surfaces Z with boundary r. The integrals I E are important in 
string theory, since they satisfy the so-called sewing algebra: if the surface Z is 
obtained from the surfaces E l and 7. 2 by identifying some components of the boundary of the 
surface Y l with the same number of components of the boundary of the surface 72, then 

Iz = lz,yl~,, 

where y is the common part of the boundary of the surfaces E l and Y2, and ~ is some multi- 
plication, which will be described below. Using this "sewing," we can construct 17. for 
a surface of arbitrarily high genus from simple blocks, for example, from functional inte- 
grals over "trousers" (spheres with three deleted disks). 

In the coordinate approach [i] for scalars with action �9 f~ is a 

functional of the values of the field on the boundary and is equal to 

Iz (~)r )=  (det0 Az)-'l' exp ( - -S(@h(r  ( 1 ) 

where  Ch(~r) i s  a h a r m o n i c  f u n c t i o n  on E, e q u a l  t o  Cr on t h e  b o u n d a r y ,  and d e t  0 A~. i s  t h e  
d e t e r m i n a n t  on f u n c t i o n s  on E w i t h  z e r o - v a l u e  bounda ry  c o n d i t i o n s .  I n  t h i s  a p p r o a c h ,  
" s e w i n g "  a l o n g  t h e  common b o u n d a r y  y means i n t e g r a t i o n  o v e r  t h e  f i e l d s  on ~: 

The o p e r a t o r  a p p r o a c h  [2] c o n s i d e r s  q u a n t i z a t i o n  n e a r  b o u n d a r i e s ,  which  l e a d s  t o  a 
certain Heisenberg algebra. In this approach, 17. is regarded as a state in the representa- 
tion space of this algebra that can be obtained from the vacuum by a certain Bogolyubov 
transformation, the "sewing" being specified by the scalar product in the Hilbert space 
corresponding to the common boundary. 

In this paper we show that for scalars the operator formalism is the holomorphic repre- 
sentation for the functional integral. 

2. For simplicity �9 we consider the case of a connected boundary. The generalization 
to the case of a disconnected boundary is trivial. 

It follows from (i) that S(~ F) determines IZ(r F) up to a constant factor (det 0 AZ)-�89 
Therefore, we first calculate S(~F), and we then find det 0 A Z from the sewing algebra. 

Let z be a coordinate near F such that Izl = 1 on the boundary and Izl > 1 for other 
points of Z near the boundary. The field #r on the boundary can be specified by means of 
coefficients #n in the following Fourier series: 

C r = ~ 0 + Z  ~"  e+"% r  
�9 . + 0  Y l n l  
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