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Q U A N ~  DISSIPATIVE SYSTEMS. I. 
CANONICAL QUANTIZATION AND 
QUANTUM LIOUVILLE EQUATION 

V o Eo Ta r a sov  

Sedov's variational principle, which is a generalization of the principle of least action to dissipative processes, is used to 
generalize canonical quantization and the yon Neumann equations to dissipative systems. The example of a harmonic oscillator 
with friction is considered. 

1. I N T R O D U C T I O N  

Newtonian vector mechanics describes the motion of mechanical systems under the action of forces applied to them. The 
Newtonian approach does not restrict the nature of the acting forces, which are usually divided into potential and dissipative 
forces. The Lagrange--Hamilton variational mechanics describes the motion of mechanical systems under the influence of only 
potential forces [l, 2]. Dissipative forces are outside the field of applicability of the variational principles of analytical mechanics 
[1, 3--8]. It is on account of this restriction that statistical mechanics does not describe irreversible and dissipative processes. 
This 'is due to the fact that in the framework of Hamiltonian dynamics there does not exist a function of the coordinates, 
momenta, and time possessing the properties of a Lyapunov function (Poincar6--Misra theorem [9-- 12]). To describe dissipative 
and irreversible processes, it is aecessary to introduce into statistical mechanics additional postulates (for example, the principle 
of correlation weakening and the hypothesis of a hierarchy of relaxation times as proposed by Bogolyubov [13, 14]). Therefore, 
these processes are considered in the framework of physical kinetics [15, 16]. It is well known that for the construction of a 
quantum theory the point of departure is the Hamiltonian form of the classical mechanics [17, 18]. Therefore, quantum 
rnechanics describes only conservative physical systems. Irreversible and dissipative quantum dynamics is outside the framework 
of qt~nttun mechanics and quantum statistics. The quantum description of dissipative and irreversible processes is the aim of 
quantum kinetics, which is quantum statistics augmented with additional physical postulates [15]. 

The study of dissipative systems in quantum theory is of great theoretical interest and is important for practical 
applications. We note some directions that indicate the importance of the quantum description of dissipative systems. First, 
measurements made on a system or ensemble cannot be described by means of the linear laws of quantum mechanics. The laws 
of qua.ram mechanics make it possible to obtain only probabilistic correlations between the results of several successive 
measurements [19]. In the framework of quantum mechanics, it is not possible to obtain a complete description of measurement 
[19]. This necessitates truncation of the infinite sequence of measuring instruments and the introduction of two fundamentally 
different types of changes of the state of a system or an ensemble with the passage of time [20]. In connection with this 
asymmetry of the theory due to the duality of the description, it has often been argued that it is necessary to generalize the 
quantum-mechanical equations of motion to irreversible and dissipative processes in which entropy changes [19, 21, 12]. At 
the same time, it is important that the change of the entropy be objective and not depend on the rather subjective concept of 
coarse graining [21]. Second, the process of formation and evaporation of a black hole cannot be described by a S matrix, since 
the evolution takes place with a change of the entropy [22]. As a black hole evolves, a pure quantum state decays into a mixed 
state [23]. We note that the concept of entropy in the physics of black holes is an objective intrinsic property of the system and 
is not associated with a coarse-grained description [24, 25]. In addition, the interaction of microscopic systems (elementary 
particles) with a black hole leads to the need for a nonunitary generalization of von Neumann's equation [26]. Third, in the 
physics of elementary particles dissipative systems may play a more important role than has hitherto been accorded to them. 
The reasons for this are the following. Decay of a pure quantum state to a mixed state can occur at the level of elementary 
particles on account of quantum fluctuations of the metric that are virtual black holes [23]. Departure from an exponential law 
[27, 28] in quantum mechanics can lead to serious problems concerning the meaning of particle identity [12]. Although it has 
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proved possible to include the violation of T invariance in the decays of K ~ mesons in the standard model of electroweak 
interactions, the fundamental physical principles of this effect may be associated with dissipative models. In addition, dissipation 
effects may play a certain role in string theories [30]. Fourth, the phenomenological description of nuclear friction, which is 
manifested in the deep inelastic scattering of heavy ions and in fission processes, makes it necessary to consider quantum 
dissipative models [29]. It is well known that dissipative systems play an important role in the physics of continuous media [4, 
6,7,  8]. 

We mention some of the approaches to the solution of the problems of the quantum description of dissipative systems. One 
of the approaches is associated with canonical quantization of dissipative systems [31, 32]. It is well known that the equations 
of motion are Euler--Lagrange equations constructed from a Lagrangian or are equivalent to such equations if Helmholtz's 
conditions are satisfied [35, 36]. There has been proposed a theory of general multipliers that make it possible, using 
Helmholtz's conditions, to construct a Lagrangian formulation for a large class of equations of motion [37] that usually cannot 
be included in Lagrangian or Hamiltonian mechanics. The canonical quantization of systems defined by Lagrangians of the above 
types is either impossible or arbitrary [38, 37]. That is, among all admissible (s-equivalent) Lagrange functions for a given 
equation, we do not know which of them to choose for the quantization procedure. Although the existence of a classical 
Hamiltonian is necessary for canonical quantization [18, 17], this is not sufficient for the construction of a quantization in a 
satisfactory form [39]. The canonical quantization of systems whose Hamiltonians are not canonically related to the energy of 
the given system is arbitrary, and the results contradict the physical interpretation. It was shown [35] that although there exists 
a class of inequivalent (s-equivalent) Lagrangians, quantization of the systems described by them is impossible, since the 
Lagrangian must be not only related to the equation of motion but also generate a Hamiltonian that is canonically conjugate to 
the physical energy of the system. However, this condition can be satisfied only for conservative systems, ruling out the 
possibility of canonical quantization of dissipative systems. A similar conclusion -- incompatibility of dissipative systems with 
the canonical commutation relations -- was obtained in [33, 34]. We note that in the proof of incompatibility in [34], total 
derivatives with respect to the time of the commutation relations for the coordinates and the momenta were considered, and the 
Jacobi identity and dissipative equations of motion for a Heisenberg operator were used. The important connection between 
Helmholtz's conditions and the quantum commutation relations was revealed in [40] on the basis of classical equations of motion 
and the most general quantum conditions, namely, commutation of the coordinate operators. By considering the total derivative 
of these commutation relations, it was shown that the commutator of the coordinate and velocity operators forms a symmetric 
tensor operator. The classical analog of this tensor operator is a matrix whose inverse satisfies Helmholtz's conditions. Using 
the Jacobi identities for the coordinate and velocity operators, it was shown that the general quantum conditions presuppose 
equivalence of the equations of motion with the Euler--Lagrange equations. 

Other attempts to solve the problem of a quantum dynamical description of dissipative systems are associated with the 
generalization of quantum statistics and von Neumann's equations. An important property of dissipative and irreversible 
processes is the increase of entropy. However, the quantum-mechanical evolution equations for the statistical operator (the 
operator of the density matrix), which are called the yon Neumann equations, keep the entropy unchanged. Generalizations of 
the yon Neumann equation to dissipative and irreversible processes are usually obtained by adding a superoperator, which acts 
on the statistical operator and describes the dissipative, irreversible part of the evolution of the system. Linear generalizations 
of the von Neumann equation are associated with a master equation (Pauli equation) obtained in the framework of quantum 
kinetics [34] or with a quantmn dynamical semigroup [41, 42, 43]. It has been shown [44] that the generators of quantum 
dynamical semigroups violate the algebraic structure. It is also known that the total time derivative for the operators of 
dissipative systems does not satisfy Leibniz's rule, i.e., is not an operator of differentiation in the strict sense of the work and 
is called a dissipative operator [45]. There has also been consideration of nonlinear generalizations of yon Neumann's equations 
[46--50] corresponding to the nonlinear SchrSdinger equations proposed earlier in [51--53] for the description of dissipative 
systems. We note that the proposed generalizations of the yon Neumann equations are obtained heuristically or by introducing 
postulates additional to quantum statistics. The requirements that have been proposed in order to determine the superoperator 
uniquely are themselves not unique, and therefore one must come to terms with the problems that arise from this arbitrariness, 
or construct a description in the framework of quantum kinetics. In addition, the proposed generalizations of the yon Neumann 
equations are not associated with the classical Liouville equation for dissipative processes that was already proposed by Liouville 
[54] and considered in [55--57]. We note that Lie derivatives can be used to obtain these equations, and it is easy to obtain an 
expression for the classical rates of entropy production [57]. Thus, a quantum description of dissipative systems using 
generalizations of the yon Neumann equations and not associated with the classical dissipative Liouville equations is arbitrary 
or possible only in the framework of quantum kinetics. 

In connection with the difficulties of the canonical quantization of dissipative systems, noncanonical quantization schemes 
have been proposed [58], namely, operator extensions of the Hamilton-like and Birkhoff-like generalizations of classical 
Hamiltonian mechanics. It was shown [58, 59] that the equations of the evolution in time for dissipative systems not only destroy 
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the structure of the Lie algebra but also do not determine in general any algebra, since the distributive law is violated. To 
preserve the algebraic structure, it was proposed to construct the quantum dynamics of dissipative systems in the framework 
of nonassociative algebra. This construction was realized in terms of noncanonical quantization at the level of nonassociafive 
Lie-admissible and Lie-isotopic enveloping algebras [58--60] and in the framework ofa nonassociative flexible Lie algebra [62]. 
A generalization of the von Neumann equations was obtained in the framework of the nouassociative Lie-admissible approach 
[63]. We note that the gelaeralized variations used in the given noncanonical approach [58, 59, 61] to consider dissipative 
processes in the sphere of holonomic variational principles are associated with generalized multipliers [38, 37] and, therefore, 
with the problems of the arbitrariness in the choice of the holonomic function that generates the equations of motion. In addition, 
all operators, including the coordinate and momentum operators, which satisfy noncanonical commutation relations become 
nonassociative, and this complicates the description. 

Sedov [3--7] proposed a variational principle that is a generalization of the principle of least action to dissipative and 
irreversible processes. To include dissipative processes in the sphere of applicability of variational principles, he proposed that 
one should consider not only holonomic but also nonholonomic objects. The proposed variational principle was used in [8, 
64--68] to construct phenomenological models of continuous media with irresversibility and dissipation. A special case of 
Sedov's variational principle is the Helmholtz--Planck variational principle [35, 69], which is mentioned in [2, 61, 70, 36]. 

Classical mechanics in phase space was considered on the basis of Sedov's variational principle [71]. The proposed form 
of dissipative Hamiltonian mechanics was used in [71] to generalize canonical quantization and the von Neumarm equations to 
dissipative processes. The obtained operator algebra is a natural extension of the canonical commutation relations through the 
introduction of operators o f  nonholonomic quantities in addition to the usual associative operators of holonomic functions of 
the coordinates, momenta, and time. These commutation relations are obtained by applying the standard procedure to the 
classical Poisson brackets. If all the proposed commutation relations are to hold, the operators of a nonholonomic quantity must 
be a nonassociafive non-Lie (not satisfying the Jacobi identity) operator. At the same time, it is sufficient to require left--right 
nonassociativity but retain left and right associativity. As a result, the action of a total time derivative on a product of operators 
does not satisfy Leibniz's rule, which is deformed by the appearance of the associator of the operator of the nonholonomic 
quantity. A generalization was proposed for the yon Neumann equation, which is the quantum analog of the dissipative Liouville 
equation. Dissipative analogs of the Heisenberg and Schr6dinger equations were obtained [71], and the Feynman representation 
of the Green's function for the generalized Schr6dinger equation was considered. The proposed dissipative quantum scheme 
makes it possible to formulate an approach to the construction of quantum dissipative field theory and the quantization of 
phenomen01ogical models of continuous media [8, 64,68].  As an example of dissipative quantum field theory, the sigma-model 
approach [72--75] to quantum string theory [76] was considered [71, 77]. 

In this paper, we discuss in detail the construction of the Hamiltonian and the quanturn description of dissipative systems 
proposed in [71~. 

2o $EDOV'S  V A R I A T I O N A L  PRLNCIPLE 

The equations of motion of mechanical systems in an n-dimensional configuration space are written in the form 

DiT(q, u, t) + Qi = 0, 

where T is the kinetic energy, which can be represented in the form 

(1) 

T(q,u, t)= t d (9 0 
-~aij (q, t)ulu j + ai(q, t)u i + ao(q, t), Di =- dt Ou i Oq i' (2) 

where i, j= l , . . . , n ;  ui-~dqi/dt; and Qi=Qi(q, tt, t) is the sum of the external forces. In the general case, Qi is the sum of 
potential, !~/, and dissipative Q~/, forces. A force is called a potential force is there exists for it a function V=V(q, u, t): 
DiV=-  Q~i. Forces Q/~ are said to be dissipative if they cannot be represented in such a form. Then the Euler--Lagrange 
equations take the form 

DiL + Q/d = O, (3) 

where L=L(q, u, t) ~- T-- V is the Lagrangian. In the dissipative case (Qa~ 0), Eq. (3) cannot be obtained from the principle of 
least action [1,2J: 

f 
8S(q) J di L(q, u, t) = 0. (4) 

As basic variational principle for the description of dissipative processes, we propose to consider Sedov's variational principle 
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[8], which is a generalization of the principle of least action and has the form 

~S(q) + ~r162 = 0, (5) 

where S(q) is a holonomic functional, called the action, and if(q) is a nonholonomic functional. The nonholonomic ftmctional 
is determined by a nonholonomic equation. We assume that the variation of the nonholonomic functional is linear in the 
variations tiq / and 6ui: 

f = /  w~ ~ w 2 617V=~ dt w(q,u) dt(  i(q,v) q + i(q,u)6ul), (6) 

where w/~ and w~t are vector functions in the configuration space. We now turn to consideration of the Hamiltonian. approach 
to the classical mechanics of dissipative systems. 

3. H A M I L T O N I A N  D I S S I P A T I V E  M E C H A N I C S  

From Sedov's variational principle (5) with nonholonomic functional (6) there follow dissipative equations of motion of 
the form 

d (OL(q, u) ) OL(q, u) wl - -  = u i (7) 
dt \ ~ +w~(q,u) - Oq i + i(q,u) dqi 

' d t  ' 

We define the canonical momentum by the equation 

OL(q,u) 
Pi =-- On ~ + w~(q, u), (8) 

and represent this relation in the form u/= oi(q. p), assuming for simplicity that Eq. (8) is solvable. The Hamiltonian can be 
determined in the standard form 

h(q, p) = piv i (q, p) - L(q, v(q, p)). (9) 

Considering the variation of the Hamiltonian, we readily obtain dissipative Hamilton equations 

dq i _ 6(h - w) dpi $(h - w) 
- ( l O )  

dt ~Pi ' dt ~qi , 

where 

~w(q,p) = ~w(q, v(q,p)) = wq6qi + w;~pi. (11) 

We assume that the coordinates z t and w, t, where k= 1 ,... ,2n, z/=q/, zn+i=pi (i=1 ..... n), of the (2n+2)-dimensional 
extended phase space are related by the equation 

6w - ak(z,t)6z k = 0, (12) 

where a t (k= 1 ..... 2n) is vector function in the phase space. We shall call the dependence of w on the coordinates q and the 
momenta p a holonomic--nonholonomic function and denote it by w=w(z) E,~. If the vector function satisfies the condition 

Oak(z) Oat(z) (13) 
Oz z - Oz k ' 

where k, l= 1 ..... 2n, then w is a holonomic function (wEF). If this vector function does not satisfy the condition (13), then we 
shall call the object w(z) a nonholonomic function, or a Sedovian (wE#). We def'me the variational Poisson brackets for "ca, 
b E q  in the form 

and give the main properties of these brackets: 

1) antisymmetry: 

2) Jacobi identity: 

~f ~9 ~f ~g [f, g] _----- (14) 
~qi ~Pi ~Pi ~qi 

Vf, g E C~ [f,g] = -[g,f]  E F; 
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where 

3) non-Lie property: 

4) Leibniz's rule: 

5) the distributive property: 

Vf, g, s C  F J[ f ,g , s]=O;  

Vf, g s E ~ :  f V g V s e F  J[f,g,s]~gO; 

gf ,  g E dp (O[f,g])/(Ot) = [Of/Ot,g] + [f, Og/Ot]; 

Vf, g, sE '~  [a f+f ig ,  s]=c~[f,s]+/3[9, s], 

J[f,  g, s) -= [f, [g, s]] + [g, [s. f]] + [s, [f, g]], 

and a and ,G are real numbers. It can be seen that these properties of the variational Poisson brackets for holonomic functions 
are identical to the properties of ordinary Poisson brackets [1, 2]. We consider the characteristic properties of the main physical 
quantmes: 

1) 
2) 
a) 
4) 
5) 

[pi,pj] = [qi qj] = 0  [q',pj] = ~ ,  
[w,pl] = w q , [w, q~] = -wip, 
[[~,pd,pj] ~ [[~,pj],pd or J[v~,~,pj] = a~j ~ o, 
[[w, qi], qj] ~ [[w, qJ], ql] or j[qi, w, qJ] = a ij ~ O, 
[[w,r : [[w,pj],q i] or j [ q i , w , p [  = ~} ~ o, 

�9 where, for example, the last omega-tensor can be determined from the equation 

Q} -~ Opi OqJ = 5piSqJ 5qJOpi 

The tensors 0 kt characterize the deviation from the integrability condition (13) for Eq. (12), and by Stokes's theorem 

Jl w = ~vl f2~z dz~ A dz 1 ~ O. 
M 

(16) 

We-mention that some of the properties (3)--(5) need not be satisfied, but at least one of them must hold if we consider 
dissipative processes. Taking into account the definition of the variational Poisson brackets, we can represent the dissipative 
analog of the Hamiltonian equations of motion (10) in the form 

--dq = [q ,  h - 9]  ~o,, h - 9 ]  dpi 
dt ' d---i = 

(17) 

"[he total time derivative of a physical variable A =A(q, p, t) E F  can be written in the form 

dA(q, p, t) _ OA(q, p, t) 
dt Ot 

+ [A, h - ~]. (18) 

The equations of motion (17) can be obtained from Eq. (18) as a special case. Note that any term that is simultaneously added 
to the Hamiltonian h and to the Sedovian w does not change the equations of motion (17)--(18). This arbitrariness in the 
definition of the Hamiltonian can be readily eliminated by requiring that the Hamiltonian be canonically conjugate to the physical 
energy of the system [39]. It is readily seen that the total time derivative of the classical Poisson brackets does not satisfy 
Leibrfiz's pales 

~7[f,v]= f,g + f dg  + J[f,w,g]. 

We consider a solution of Eq. (17) in the form 

(19) 

qi = q~(qo,po,t) , W =P~(qo,Po,t). (20) 

We assume thatpoints lying in the volume go= ~ ~qo~Po of the phase space are initial points at the time t= t  o. Then Eq. (20) 
transforms the volume V o into the volume V= S ~qaP= ~ l~qo~Po, where I=O(q, p)/a(qo, po)=[q/, Pi]o is the Jazobian. It is 
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readily verified that [54] 

where 

dV / ~q6p f2, (21) 
dt 

In accordance with the fundamental postulate of statistical mechanics [16], the state of a physical system at a certain time is 
determined by the probability density distribution function p(q, p, t) which satisfies the normalization condition 

f dqdp p(q, p, t) = 1, (22) 

and the mean value of some physical variable A(q, p, t) is determined in the form 

(A(t)) p( 0 = J dqdp p(q, p, t) A(q, p, t). (23) 

Using for Eq. (22) the expression (21), we obtain in the case of a flat phase space the dissipative Liouville equation [54, 56, 
57] 

-~- = -f~p or i = Lp, (24) 

where 

f ~(h - w) 0 ~(h - w) 0 @ (25) 
L = i \ -~-~ Op~ ,~pk Oq k 

is called the LiouviUe operator [12, 16], In addition to the Poincar6--Misra theorem [9--12], one can prove the existence in 
dissipative Hamiltonian mechanics of a function of the coordinates and momenta that is a Lyapunov function. To show this, we 
define the function ~(q, p, t ) -  -p(q, p, t) and set fl > 0. Equation (24) shows that d~/dt=II, and the function ~7 satisfies the 
relation d~?/clt > 0. It is convenient to define the entropy of the distribution density [12, 16] as follows: 

s = (rT) = - / ~qSp p(q, p, t)In p(q, p, t). (26) 

The relation ds/dt > 0 is readily verified. In the general case, any functionf(q, p, t) that is a composite functionf(q, p, t)=f(p(q, 
p, t)) and satisfies the condition fl(Og(o))/(Oo) <0 (Vt) is a Lyapunov function, i.e., (df)/(dt) > 0. It is important to note that the 
condition fl > 0 or ll(Og(p))/(Op)< 0 is not obligatory [57]. 

4. Q U A N T U M  DISSIPATIVE M E C H A N I C S  

We use the usual role for defining quantum physical variables that have classical analog [18]: If A, B, C are the operators 
of physical variables a, b, c that satisfy the classical Poisson bracket [a, b] =c, then the operators satisfy the commutation 
relation [A, B]-(AB)-(BA)=ihC. Taking into account the characteristic properties of physical variables, we readily obtain 
relations for the operators of these variables: 

[Qi, Qj] = [Pi, Py] : O, [Qi, pj] = ihS), (27) 

[w, Pd = i h w :  , [w, Q'] = - i h w ~ ,  (28) 

[[w, Pi], Pj] ~ [[w, Pj], Pi] i ~ j or J[P~, W, Pj] = ~ j  ~ o, (29) 

[[W, QI],QJ] 7~ [[W, QJ], Qi] i ~ j! or j[Qi W, QJ] = 12 ij ~ o, (30) 

, j i i [qi [W, P~]] • [Pi, [W, Q"]] or [Q, w, Pj] = flj r O, (31) 

where 
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j[A, B, C] = - t / (52  ) ( [A[BC]] + [B[CA]] + [C[AB]] ) and Q t = Q; pt  = p; w t = w ;  fit = f2. 

We require that the canonical quantum commutation relations be a part of these relations. If we are to have fulfillment of the 
commutation relations (27)--(31) and the canonical quantum commutation rules, the operator of a nonholonomic variable must 
be a nonassociative operator, At the same time, it is sufficient to require that the operator W satisfy the following conditions: 

t) left and right associativity: (Z k, Z t, W)=(W, Z k, z t )=o;  
2) left--right nonasssociativity: (Z k, W, Z l) ~ 0 i fk~  l, where (A, B, C) - (A (BC) ) - ((AB)C)is the associator, k, l= 1 ..... 2n, 

Z i=Q i, and Z n+i =Pi, i= 1 ..... n. 
The states in quantum dissipative mechanics can be represented by the operator of a density matrix (density operator) p(t) 

that satisfies the condition O ~ (t) =O(t). The total derivative of the operator of a physical variable A(t) =A(Q, P, t) and of the state 
operator p(t) can be written in the form 

dA OA 
dt - Ot t- [ H -  W,A], (32) 

d p  1 
dt -2[ p '  fl ]+, (33) 

where the anticommutator [,]+ has arisen on account of the Hermiticity of the density operator p and the operator 0. The 
solution of the first equation can be expressed in the form 

A(t) = S(t, to)A(to)S t(t, to), where S(t, to) = T exp -~ dr (H - W)(r ) .  (34) 

Here, the T exponential is defined in the usual manner [80], but the following rule is added for the expansion of the exponential 
of a non,associative operator: 

exp A = I + A + � 8 9  ~((AA)A)  + ~ ( ( ( A A ) A ) A )  + .... 

The solution of Eq. (33) can be represented in the form 

1/' 
p(t) = U(t , to)p(to)ut( t , to) ,  where U(t, t0) = Texp ~ dr fl(r). (35) 

o 

"[hus, the evolution in time of the operator of a physical variable A(t) is unitary, but the evolution of the state operator O(t) is 
nonunitary. Therefore, a pure state at the time t=t  o [p2(to)=p(to)] becomes a mixed state at a subsequent time t**to, and an 
entropy operator ~ for the state p(t) [81, 12] can be defined in the form ~?(t)=-In p(t). The entropy operator satisfies the 
equation d~(t) l dt= ft. 

It Can be seen that the commutator of a product of operators and a nonassociative operator Wand the total time derivatives 
of a commutator and a product of two operators do not satisfy Leibniz's rule: 

[AB, W] = A[B, W] + [A, W]B + (A, W, B), (36) 

d A =  I.l ;q + IA (37) 

d ( A B ) = ( ( ~ A ) B ) + ( A ( d B ) )  + (A ,W,B) ,  (38) 

where A and B are associative operators (operators of holonomic functions). We define a canonical (unitary) transformation [18] 
of the operator AH(t)=A(t) in the form As(t, to)=St(t, to)An(t)S(t , to). The operator As(t, to) satisfies the condition As(to, 
to) =A~to). In this case, Eqs. (33) and (34) take the form 

d / l f l  
~ p s ( t , t o )  = "~[ps, ( H -  W ) s ] -  7[ s, Ps]+ . (39) 

This equation is the dissipative analog of the Schr6dinger equation, and the operators AH(t) and As(t) are the Heisenberg and 
Sehrfdinger representations of the operator A(t). The solution of Eq. (35) can be represented in the form 

1106 



ps (t,  to)  = Uts(t, t')ps (t', to)Us ( t ,  t ' )  , (40)  

where 

t 

Uts(t, t ') Texp dr 
\ H  - 2 J s T j,, - 0-,t0) (41) W 

We consider some important properties of basis vectors [71]. In dissipative quantum mechanics, it must be borne in mind 
that even in the Heisenberg representation the state operators 

pH(t) = ~o po[r t)H(r t]r~ 

and the wave vectors [~b, t)H evolve in time, i.e., in contrast to ordinary quantum mechanics [q, t l )u~  [q, t2) H. Therefore, the 
basis vectors {[q, t}} are defined [18] at fixed time points t=tf: 

1) OH(t)[q,t)H=-[q,t)Hq: , 2) (q,t]H[q',t)H=6(q--q'), 

3) /dq [q,t).(q,tln=l , 4) Q.ft)= f aq [q,t)Hqy(q,t]H 

where 

5) [r = / d q  [ q , t y ) H k ~ H ( q , t , t f )  , 

qlH(q, t , t : )= (q,t/] H[r  

It is easy to prove the following propositions: 
1) a unitary transformation maps a basis vector to a basis vector; 
2) for any two vectors defined at two different time points there exists a unitary transformation that relates them. As a 

result, the SchrSdinger representation of the basis vector ]q, t, to)s--- 5r - to)[q, t)n can be regarded as a unitary transformation 
of the basis vector 

[q, to)~/= St(t - to) [q, t). -= [q, t, to)s. 

For the indicated reasons, the trace of an operator can be defined only for a fixed time instant. Note that the density 
operator o(t) satisfies the usual condition SPrY(t)) = 1 (Vt=ffixed) where we have taken into account the fixed-time definition of 
the basis vectors. The average for a physical variable A(t)=A(p, q, t) is defined in the form 

Aav (t) = (A(t)) t = Spt (A(t)p(t)) (Vt = ttlxed), 

and the time derivative of the average of a physical variable can be defined only as the average rate of change of the operator 
of the given physical variable: 

& at (A(t))r =- ~Spr(p(r)A(t))  (Vt = tnxed). 

We consider the Green's function of the Schrfidinger equation and its Feynman representation [82]. Taking into account 
Eq. (33), we can write the dissipative analog of the Schr0dinger equation for the wave vector in the form 

i t i d [ r  H - W -  2 ]s ( t , to )[r  (42) 

The simplest example of this equation for a one-dimensional harmonic oscillator with friction is considered in the Appendix. 
Taking into account a time dependence of the state vectors in the Heisenberg representation, we shall distinguish the following 
Green's functions: 

~ , I tl, r dq' G(q ,q ' , t - t ' )  s~q, ), (43) 

~ln(q, t) = / dq' GH(q, q', t - t') 9n(q ' ,  t'), (44) 

where 
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k~s(q,t) =- (q,t]s[~b,t)s =- (q,t]n[~b,t)H (45) 

~lH(q,t) =--- (q,t]n[r -= (q,t]s[r (46) 

- , o(, - t,) -- ( . , t l .  . , .<(t ,t , )  f , , , t , }  o ( t - t , )  (47) 

- [q',t'} o(t-t') 
and [q, t)h,~ [q, t=tnxed)H. It is readily seen that the Green's function satisfies the equation 

iff-TGs(q,q',t)= H - W -  f2 Gs(q,q',t) and Gs(q ,q ' ,O)- -5(q-q ' ) .  
27 

We use Faddeev's method [82] and the conditions 

ili 
- T i2 , t )  (q/, p[) (p, ty]s-t[q, ty) H , 

(48) 

(49) 

(50) 

, H - W -  j u ( t , ~ )  q ~ , t ~  . (51) 
H 

The Feynman representation for the Green's function takes the form 

i i j r  ih~ , Gs(q, q', t - t') = DqDvexp -~ , d'r(p~r - h(q,p, r) + w(q,v , "r) + -~ c,J. (52) 

Shrlflarly, we can define a functional integral and generating functional in quantum field theory [80, 83, 85, 86], which were 
considered in [71, 77]. As method of solving quantum dissipative problems it has been proposed to use normal geodesic 
coordinates and the covariant background field method [88--94], which generalize the method of expansion in Taylor series 
around the classical solutions and are considered for Riemannian [88, 89, 73], affme [90--94], and affme--metric [93, 91, 94, 
78, 79] manifolds. This method makes it possible to avoid some difficulties associated with the nonassociative and non-Lie 
properties of the operator of a nonholonomic variable (the Sedovian) whose variation is linear in the variations of the coordinates 
[71, 77]. The background field method is a method for obtaining approximations by conservative systems for a quantum 
dissipative system. 

As an example, we consider a multidimensional harmonic oscillator with friction. It is well known that the metric of the 
configuration space of the harmonic oscillator is determined by the kinetic energy [1]: 

d 2s  = 2 T ( d t )  2 = 5 i j d q i d q  j , (53) 

where T=~.~(1/2)(d~/dt) 2 is the kinetic energy of the harmonic oscillator. The existence of potential forces with potential 
U(q) =s i(ar~/2)(q/) 2, ~2=ki/m i, leads to a deformation of the metric of the configuration space in the form d2s=(E - U(q)) 
6/jdq~dqJ only for conservative systems [1], where E is the total energy. Dissipative forces make it impossible to obtain the 
mechanical orbit from Jacobi's variational principle [1]. Thus, the configuration space of the harmonic oscillator with friction 
is flat. The equation of motion for such an oscillator in the n-dimensional configuration space has the form 

dui,ldt + w~q i = wi(q, u), (54) 

where i, j = l  . . . . .  n; ttimdqi](lt, and wi( q, It) is the dissipative force. We consider a friction force w i of the form 

wi(q, u) = clj (q)us + Sj~k~(q)~kd (55) 

It is easy to obtain the background-field expansion of the Hamiltonian h(q, p), the nonholonomic function w, and fl(q, p) around 
the classical solution q~ of Eqs. (54) in the form of a series in ~i(t): ~(t)=~o(t)+~i(t). The functional integral (52) with respect 
to :the momenta pi is a Gaussian integral, and the Feynman path integral for the Green's function is obtained in the form 
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f i/, G s ( q , q ' , t - t ' ) =  N D~/exp~ , d r ( T ( q o ) +  Z1(qo,~,v)+ Z2(qo,( ,r)) ,  

where r(qo)='/25ij4~o, vio=dqio/dr, 

" " ~ i  i 2 1~. d~ i d~J 2Dikj(qo)vko~, 2 
Zl(qo,()  = -~ ,~ dv dr - Oi'~'~;J(qo)v'~ v ~ ' ~  - - 2  (~ ) 

(56) 

(57) 

and an;re(q) =-Oan(q)/Oqm. Here, Z2(qo, ~) is the sum of the terms of the series with respect to the fields ~ that do not contribute 
to the single-loop redefinition of the metric of the configuration space. In the calculation of the vacuum diagrams, qi(t) are 
regarded as external fields of one-dimensional field theory, and ~i(t) as quantum fields. The vacuum contribution to the Green's 
function, which has the form (1/2)Tij(qo)t~d o, leads to a redefinition of the metric: 

d2s = 2T(q)(dt) 2 = ((fi i + Tij (q))dqldq j . 

The single-loop vacuum contribution for the harmonic oscillator with friction (55) has the form 

k = l  1=1 ~ k  "1- ~ l  

It is readily seen that the background-field configuration space for the quantum harmonic oscillator with friction (55) is not fiat. 
If the friction is quadratic in the velocities with coefficients that depend on the coordinates, or these coefficients are not 
completely symmetric tensors, then the configuration space is curved by virtue of quantum fluctuations. The complete expression 
for the two-loop redef'mition of the metric is cumbersome, and therefore we give the condition under which the configuration 
space remains flat with allowance for the single- and two-loop contributions of the vacuum diagrams: 

Dikl;j = 0 and Dikl = D(ikl). (59) 

Finally I should like to thank A. P. Demichev and F. A. Lunev for helpful discussions and all my colleagues at the 
Department of Theoretical High Energy Physics at the Skobel'tsin Institute of Nuclear Physics at the Moscow State University 
for support during this work. 

A P P E N D I X  

We introduce the Hamiltonian and Sedovian in the form 

p2 mto2q2 ~w = 7rap gq. 
h = ~m + - - - T - -  ; 

They determine a one-dimensional harmonic oscillator with friction. We use the background-field method and expand the 
Hamiltonian and Sedovian in Taylor series in Q = q - q o ,  where qo is a solution of the classical .equation of motion in the 
configuration space. As solution, we take qo=0 and specify QP ordering of the operators that occur in the expansion of the 
Sedovian. In the given case, the dissipative analog of the Schr0dinger equation takes the form 

ih dl(t) = 2m OO 2 + ih7 Q + 02 i - j r  ~(~). 

The stationary state 

is determined by the equation 

where 

~"(~) - ~ ' ( ~ )  + (E - C ) ~ ( ~ )  = 0, 

a = - - ; ( =  ; e =  E - ~ 7 ) .  

We consider a function u(0  in the form 
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u(~)=  Ak~ ~= e x p - ~ s ~  ~ 
k : 0  " / 

where s is a solution of  the equation sZ+as - 1 = 0  and n < oo. As a result, we obtain the eigenvalues 

E,~ = h ' k / ~  - 72 (n + �89 - i7 

for 0 < ' y 2 / J <  V2 and a continuous spectrum for 3,z/r ~h. Note that the lifetime of a state is T=h/2"~< co. The results can 

be rewritten in the form 

AE,~(~) = (hV/~ ~ - 72 for ~2 > 272) A (  0 for ~2 < 272). 

We note that the discontinuity at the point r = x/2 T is a purely quantum dissipative effect. The obtained eigenvalues demonstrate 
the correctness of  Kanai's approach [32], but restrict the domain of  applicability to the background-field approximation and the 

corresponding ordering of  the operators Q and P. 
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