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QUANTUM DISSIPATIVE SYSTEMS. III. DEFINITION. AND
ALGEBRAIC STRUCTURE

V. E. Tarasov!

Starting from the requirement of a consistent quantum description of dissipative (non-Hamiltonian) sys-
tems, which is formulated as the absence of a contradiction between the evolution equations for quantum
dissipative systems and quantum commutation relations, we show that the Jacobi identity is not satisfied.
Thus, the requirement for a consistent quantum description forces one go beyond the Lie algebra. As a
result, anticommutative non-Lie algebras are necessary to describe dissipative (non-Hamiltonian) systems
in quantum theory.

1. Introduction

In Part I of the present paper [1], we suggested that an anticommutative non-Lie algebra with the
Lie algebra as its subalgebra be used in the quantum description of dissipative systems. Note that the
necessity of going beyond the Lie algevras in describing quantum dissipative systems is due to problems in
constructing their self-consistent descriptions. One of the problems stems from an inconsistency between
the quantum commutation relations and the motion equations for a quantum dissipative system. A simple
example of this inconsistency is as follows.

The quantum commutation relations

[a,al] =1, [a,a] = [af,af] =0
are inconsistent with the Langevin equations (2]

a=(—wx—Pla+f(t), & =(Ga-PFa +f(t)!,

where the dot indicates the time derivative and 3 is the coefficient describing the dissipation (damping) in
the system. Taking the commutators from the Langevin equations, we obtain

[a,a'] + [a,a'] = —28.
On the other hand. differentiating the first of the quantum commutation relations with respect to time and
using the Leibnitz rule, we arrive at the identity

[a.a'] + [a,a'] = 0.

Thus. quantum commutation relations and the evolution equations for the system are consistent only if the
systen is not dissipative (8 = 0).

One of the methods for solving problems in the quantum description of dissipative systems. proposed
in {1. 3}. consists in adding a nonassociative operator W to the Heisenberg-Weyl algebra. In 1 . we obtained
the main properties and commutation relations that the operator W must obey. It turned out that W must
be a nonassociative and non-Lie (not obeying the Jacobi identity) operator for all of the commutation
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relations to be valid. As the operator W, which describes the evolution of the quantum dissipative system,
is nonassociative and non-Lie, the action of the total time derivative on the product and the commutator of
the associative operators do not obey the term-by-term differentiation rule (Leibnitz rule), as the Leibnitz
rule is deformed by the appearance of the associator and the algebraic Jacobian operator W. respectively.
This removes the contradiction between the quantum equations of motion for dissipative systems and the
canonical commutation relations of the Heisenberg-Weyl algebra.

In addition, in {1, 3], we proposed a generalization of the evolution equation for the system state
(von Neumann equation) which, unlike others, is a quantum analog of the classical Liouville equation for
dissipative systems and, thus, satisfies the correspondence principle.

2. Definition of a dissipative system and the necessity of going
beyond Lie algebras

Let us examine, in more detail, the reasons why one must go beyond Lie algebras when constructing
the dynamic description of quantum dissipative systems. To this end, we first define a quantum dissipative
system.

2.1. Classical dissipative system. The evolution equation for a dynamic system with a finite
number of degrees of freedom has the form

dX,
5 = Fi(X). (1)

The system is called dissipative if at least one of the expressions

_OF. _OF (2
= 8X, T 9x, )

differs from zero, and conservative if all Qi = 0.
Let the evolution of a mechanical system in time, in the phase space of generalized coordinates g and
momenta p, be given by a system of 2n ordinary first-order differential equations of the form

dgx

d
L = —Gult.q,p), Pk _ Felt,q,p). (3)

dt

A mechanical system is called Hamiltonian if the right-hand sides of Eqgs. (3) satisfy the following conditions:
Q°ri(t.q.p) =0, (4)
where s = 1.2.3. k.l=1....,n, and

Oy = @—d—% szt=a,—05—?ﬁ- Dy = ?—ﬂ-% (5)
dpr  Op Oq  Ipy Oq  Oq
In this case. the motion equations for system (3) can be represented as canonical Hamilton equations:
hence. they are fully characterized by the system Hamiltonian h. Equations (4) and (5) are analogs of the
Helmbholtz conditions (4) in the phase space for differential equations (3).

Note that Egs. (3) can be derived from the stationary principle for the action if and only if condi-
tions (4), (5) are fulfilled. In this case, Eqgs. (3) admit various formulations in the class of holonomic
functionals called Hamiltonian actions, which are sets of its critical points coinciding with the set of solu-
tions of canonical Hamilton equations. Thus, Egs. (3) admit the variational principle of the Hamiltonian
action stationarity under quite severe limitations (4) on the right-hand side structure.

38




If evolution equations (3) are such that their right-hand sides do not meet at least one of conditions (4)
(and, thus, the equations cannot be derived from the stationary principle of the holono nic functional). the
dynamic system is called dissipative or non-Hamiltonian.

To extend the definition of a dissipative system to quantum theory, one must write the motion equations
and the conditions for the non-Hamiltonian (dissipative) property using the Poisson brackets below:

0A 0B 0B 90A

AB})= —— — — . 6
B = e Ope ™ a2 ome ©
Let us consider a dynamic system, where the evolution equations have the form

d d,

% = {ag, h} - Gi(t, q,p), —d’% = {px, h} + Fi(t.q, p). ™
Using Poisson bracket (6), one can write (5) as

Oy ={g, G} — {q, G}, Qi = {Gr,;i} - {a, i}, (8)

Qi = {p1, Fc} - {px. F1}. (9)

Thus, we can formulate the following definition.

Definition 2.1. The dynamic system whose evolution is given by Eqgs. (7) or (3) is called dissipative
(non-Hamiltonian) if at least one of the expressions (8), (9) differs from zero.

It is convenient to consider dissipative systems for which Gx = 0. This constraint not only appreciably
simplifies many relations, but it is also necessary, from physical considerations, for “relating the Hamiltonian
h(t,q,p) to the system energy” [5]. Note that the quantities Fi(t,q,p) physically describe a dissipative
system that acts on a mechanical system. In the simplest case, corresponding to the linear dependence of
the dissipative forces (resistance forces) on the velocity, they have the form Fi(t,q,p) = Kkpx, where & is the
coefficient describing the dissipation in the system.

For a dissipative system, the evolution equation for the observable A, which is the function of the
generalized coordinates ¢x and momenta pg, has the form

dA OA -
o= 5 + {4+ Do(a), (10)
where 4 A
Do(A)y = | Fr— — —G, }.
o(4) ( “Opx  Oqk k)

Note that in the case of a dissipative system, the operator Dg(A) cannot be represented as {4.h'}, where
h' is a function of the generalized coordinates and momenta.

2.2. Quantum dissipative system. Evolution of a quantum system in time is defined by the relation

dA 04 1
=22, ! 11
-t ﬁ[H, Al, (

where H is a self-adjoint associative operator called a Hamiltonian and [A. B} = AB— BA is the commutator
of the operators A and B. Quantum systems, whose motion equations have form (11). are normally called
Hamiltonian systems.

Let the evolution of the observable A, which is a function of the operators of coordinates @ and
momenta Py, be described for a dissipative system by the equation

dA 0A 1
bl 12
il Ta h[H‘ Al + D(A), (12)
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where the operator D(A) cannot be represented as %[A, W] and W is the associative Hermitian operator.
The operator D(A) is normall - called the dissipation operator of A. If there are quantities for which the
dissipation operator is different from zero among the dynamic variables of the system, these systems are

called non-Hamiltonian or dissipative systems.
Consider a quantum system where the evolution equations for the operators of coordinates Q; and

momentums P; have the form

T - LHQI-GUQP),  TE=HAI+R(QP), 3
where
Ge(t,Q,P)= -D(Q:) and  Fi(t,Q,P) = D(Py). (14)

Generalizing Definition 2.1 of the classical dissipative system, we have the following definition.

Definition 2.2. The quantum system whose evolution is given by Eqs. (13) is called a quantum
dissipative system if the right-hand sides of (13) do not satisfy at least one of the conditions below:

stl(t’ Qv P) = 0, (15)

where s =1.2.3. k. l=1...., n, or
Qly = ‘%([Qk,Gl] - [Q:1, Gk]), Q% = —%([Gkspl] - [Qx, F1]), (16)
P = — (1P, F] - [Pe, F). (17)

If evolution equations (13) of the quantum system are such that their right-hand sides satisfy aIl of condi-
tions (15)-(17), this system is called a Hamiltonian system. -

2.3. Non-Lie nonassociative operator. A quantum description is often a difficult task because the
dissipation operator D(A) cannot be represented as i[A, W], where W is the associative operator. In 1.,
we proposed giving up the requirement that the operator W be associative and, thus, the assumption that
the Leibnitz rule and the Jacobi identity are valid for quantum dissipative systems.

Assume that the dissipation operator D(A) for A can be represented as D(A) = h[A W]. Then, the
operators Gi(t,Q, P) and Fi(t,Q, P), specifying the evolution (13) of the quantum dissipative system and
defined in (14), can be written as

Fk(t~Q’P) = —%[W$ Pk]ﬂ Gk(tv QP) = %[W~Qk] (18)

In this case. (16) and {17) can be represented as

Q= J[Qk. Qi W] = %([[W Qi) Qi] = [[W.Qu).Qk]) (k £1), (19)
0, = J1Qu P W] = 5 ([W.Qu. R - 9. AL Q). 2
03, = J[Pe. P W] = hi([{w B.B] - [W.RLR]) (k21 1)

where

1 r
J[A.B.C] = h—z([[A. Bl.C] + [[B.C]. A = {[C. A]. B)
is the Jacobian of the operators A, B, C.
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Thus, the definition of the quantum dissipative system as a system where at least one of the condi-
tions (15)-(17) is not fulfilled can be reformulated in terms of Jacobians (19)-(21). The quantum sy item
in which the evolution of observables A = A(t.Q. P) is described by the equation :

d4 9JA

—=—+-[H-W. A 22
&~ TR ] (22)
is called a quantum dissipative (non-Hamiltonian) system if at least one of the expressions for (23, describing
Jacobians (19)-(21) of the operators Qx, Py and W, differs from zero. Thus, we arrive at the following
definition.

Definition 2.3. Let the dynamic variables (observables) of a quantum system be described by the
associative self-adjoint operators A = A(t, X), whose evolution is given by the equation

dA O0A i

— = — + —[H, A], 23

&~ o A (23)
where H is an operator that characterizes the given system (X = H — W). and X are the operators of
coordinates Qi and momenta P;. This dynamic system is called a quantum dissipative system if at least
one of the Jacobians J[ X, X;, H] of the operators Qk, P and H differs from zero.

Thus, we have progressed from the requirement that a self-consistent quantum description of dissipa-
tive systems be formulated as the absence of contradiction between the evolution equations for quantum
dissipative systems and the quantum commutation relations. As a result, the operator that describes
the evolution of the quantum dissipative system (the generalized Hamiltonian H) must violate the Jacobi
identity. Consequently, one has to use anticommutative non-Lie algebras to describe quantum dissipative
systems.

Note hat, generally speaking, the rule of term-by-term differentiation with respect to time (the Leibnitz
rule) does not apply to quantum dissipative systems (see the Appendix). This is one of the essential
differences between dissipative and Hamiltonian systems.

The use of non-Lie algebras results in deformation of the term-by-term differentiation rule for quantum
dissipative systems. For example, the action of the total time derivative on the product of the operators
deforms the Leibnitz rule because of the appearance of the following associators:

D(AB) = D(A)B + AD(B) + Z(A. B), (24)

where

Z(A.B)=(A.B.W) - (A.W.B) + (W.A.B).

(T.y.2) = (zy)z - z(y=) is the associator of the operators z, y. z.and D = —~ih(d/dt) = [H..l. The actions
of the total time derivative on the commutator of the operators also results in deformation of the Leibnitz
rule because an algebraic Jacobian of the operators 4, B, and W . below. arises:

D([A.B)) = [D(A). B] + [A,D(B)] + J(A.B). (25)

where

J(A.B) = h*J[A. H.B] = h®J[A,B.W] = Z(A. B) — Z(B. 4).

Relations (24) and (25). generalizing the Leibnitz rules, remove the contradiction between the evolution
equations for quantum dissipative systems (13) and the quantum commutation relations (see Statement
A.1 in the Appendix). :
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2.4. State evolution equation for a quantum dissipative system. An important property of
dissipative processes is the entropy variation Nevertheless, the quantum equation for the evolution of the
density operator p(t.Q. P) (the von Neumann equation)

d i
= —— 26

retains the entropy
(S) = Sp(plogp)

unchanged. Therefore, to describe quantum dissipative systems, one normally uses a generalization of (26),

which has the form
ad

a =
The operator K (p) describes the dissipative part of the density operator evolution in time.

Different authors [6, 7] have examined different forms of the operator K(p). However, the generaliza-
tions proposed for (26) are not related to the classical Liouville equation for dissipative systems [8. 1],

~X[H, ]+ K(p). (27)

a
52 = —{p1 h’} - DO(p) + Qpa (28)
where
a a &
Do(p) = (Fk - —"Gk), o (29)
P Ogx
= > "\ (3G, OF;
Q=Y Py = Gk, px} — {gk, Fx}) = <—————) 30
:é:l kk :L;:l({ k Pk} — {qk, Fi}) I; 32~ O (30)
The quantum analog of the Liouville equation (28) has the form
d i 1
5Pt Q@ P)= 'E[H’ pl+ D(p) + 5 Q0+ p02), (31)

where Q(Q. P) =3"7_ 2, and Q2, are defined by (16). On the assumption that the dissipation operator
can be represented as D(p) = ,'—l[p W], we obtain the quantum equation of the density operator evolution
for a dissipative system (generalization of the von Neumann equation) in the form [1, 3]

E ' 1 N
5P1Q.P) = —%[H—W,p]+ 5(20+ o). (32)
where
QUQ.P) =) 0% =) JQw. P W) (33)
k=1 k=1

Unlike other proposed equations. this generalization of the von Neumann equation is directly derived from
the Liouville equation for dissipative systems (28)-(30) and is its quantum analog.

As a result, we can introduce the definition of a quantum dissipative system based on the evolution
equations of the dynamic state system rather than on the evolution equations of the observables.
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Definition 2.4. Let the state of the quantum system be described by a self-adjoint density operator
p = p(t,Q. P). whose evolution in time is given by the equation | '

a i 1 ‘

—p(t,Q.P) = ——[H, = Q), 34
5Pt Q- P) =~ 0]+ 5(Q0 + Q) (34)
where H is an operator characterizing the given system. Then the dynamic system is called a quantum
dissipative system if at least one of the Jacobians JQk, H,Qi], J[Qk, M, P). or J[P,H, P} differs from
zero and the operator Q2 can be represented as

AQ,P) =) J[Qx, H, Pil. (35)

k=1

Thus, one can proceed from the requirement that self-consistent quantum descriptions of dissipative
systems be formulated as the inter-relation of the state evolution equation for the quantum dissipative
system and the Liouville equation for the classical dissipative system. However, this still results in a violation
of the Jacobi identity by the evolution operator, i.e., anticommutative non-Lie algebras are necessary for
describing quantum dissipative systems.

3. Generalized Heisenberg—Weyl algebra

3.1. Heisenberg-Weyl algebra. Below we use a system of units where the Planck constant is equal
to unity (h = 1) and Gk(t, Q, P) = i[W, Qx| is assumed to be equal to zero.

Recall that the Heisenberg-Weyl algebra Wy is a real (2N + 1)-parametric Lie algebra given by the
permutation relations

s

[e(”,ef)] = [e(l),e,(cs)] = [eiz),el(z)] = [ef),e,(s)] =0, [e,(cz),el(s)] = eV, (36)
where k,l=1,2,..., N. In quantum theory, one often uses the basic elements
I=ie,  Qi=ie?, Po=ie?, (37)

which are interpreted as the unit, coordinate, and momentum operators, respectively. The basic elements
{I.Qx. P} obey the permutation relations

[1,Qk] = [I,P) = [Qk, Q) = [Px, P) = 0, @k, P) = il (38)

which are called canonical commutation relations. Expressions (38) mean that the operators {I,Q;. P;}
generate a Lie algebra called the Heisenberg-Weyl algebra. The generic element of the Heisenberg- Weyl
algebra has the form

(1) (1) (2) ,(2)

=1, e +1.7e” +23e® = oI + 1,Qx + yr Ps.

3.2. Generalized Heisenberg-Weyl algebra. We introduce the following definition.

Definition 3.1. The generalized Heisenberg-Weyl algebra W}, is a real 2(N + 1)-parametric algebra
given by permutation relations (36) and the relations

eV e = [l ] =, [eg),e(‘”] = Fe(el? ™). (39)

where Fi(.) is a function of the basic elements efcz) and ef). In the simplest case of the linear generalized

Heisenberg-Wey! algebra LW, the second relation of (39) has the form
{6553)‘6(4)] = ef‘), (40)
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With the basic elements {I, Qx, Px, W}, deﬁned by (37), and W = iel?, permutation relations (36) take
the form
[I.W]=[Q«,W]=0. [W. P¢] = 1F(Q, P) (41)

In (41). the element Fi(Q. P) is not basic, but there is a function of the basic elements Q. Px. The element
F(Q. P) can be considered to mean a polynomial of the basic elements Q, P. In the simplest case. which
is of interest in terms of practical applications, the second relation of (41) has the form

[W Pk] ZPk (42)

The generalized Heisenberg-Weyl algebra Wy, corresponds to a dissipative system with N degrees of
freedom. The physical meaning of the element F;(Q, P) is that it describes the dissipative force (friction)
acting on the system in question. Case (42) corresponds to the linear dependence of the dissipative forces
on velocity. Note that the relation [W, Q;] = 0 stems from the physical requirement of the “relation between
the Hamiltonian and the system energy” [5, 1].

3.3. Jacobian identities.. The consequences of the generalized commutation relations (38) and (41)
are the following identities for the Jacobians:

J(Qk, Q1, Q] = J[Qk, Qu, Pj] = J(Qk, P, P} = J[P¢, P, P;] = 0, (43)
JW, W, W] = J[Qr, W, W\ = J[P, W W] = J[Qk, Q1 W] =0, (44)
J[Pe, P, W] =([Fe, P] - [Fi, P]),  J[Qk, P,W] = —1[F, Q4] (45)

where J(z.y,z] = [[z,y), 2] + [[v, 2], z] + [[2, 2], y] is the Jacobian of the elements z, y, z.

Some Jacobians of the basic elements (45) are seen to differ from zero by virtue of permutation rela-
tions (41), which is the main feature distinguishing dissipative and nondissipative systems. The difference
of Jacobians (45) from zero indicates that the generalized Heisenberg-Weyl algebra W}, is not a Lie algebra.

3.4. Generic element of the generalized Heisenberg-Weyl algebra. Consider the generic
element z of the generalized Heisenberg-Weyl algebra W, in a field of real or complex numbers

z2 =8I+ zxQk + yu P + tW, (46)
where s, T4, yx.t are numbers. The commutator of two elements z; and z, has the form

(21, 22] = 1531 + 1, Fx(Q, P), (47)
where

$3 = TyYp — TRk, te = tlyi — t2y;.
We represent the Jacobian of three arbitrary elements z;, 22, and 23 as
Jlz1, 22. 23] = iska[Qk, Fi] + itri ([Fic, P) — [Fy, P)), (48)

where

sk = (zeyd — opyl ) + (zhy — ToyDE® + (22yf - 23yt
t = 2(yiyit' + yylt? + ylyitd).

In the simplest case. where Fi(Q, P) = Py, the commutator of two elements z; and 2z, can be written

[z1.22] = 123, (49)
where
3= Lebk — Tidke TR =t0=0. gl =tlyg - Py, (50)
and the Jacobian of three arbitrary elements zy, 25, and z3 has the form
J(z1. 22, 23) = 24. (51)

where
4 4 _ 4
S4 = -—sklék,, L = Yy = t* =0.
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4. Conclusion

[t is known that one can describe a dissipative system starting from a closed system if the dissipative
system in question is a part of the closed system. However. situations can arise where it is difficult or
impossible to find a closed system comprising the given dissipative system. For instance. this is the case
for the quantization of an electromagnetic field in a resonator with losses (2, 9].

Note that models of quantum dissipative systems can play a more important part in fundamental
theories than they have been assumed to up to now. For instance, the importance of quantum dissipative
systems in the theory of strings and superstrings stems, among other things, from the following.

1. In spaces of noncritical dimension (e-g., in four-dimensional space), strings are dissipative systems
in the phase space of the “coupling constants.” Here the dissipative force is determined by the nonzero
beta-functions of the coupling constants [10].

2. Decay of the pure quantum state to a mixed state may occur on the string level due to quantum
fluctuations of the metrics, which are virtual black holes on a two-dimensional surface covered by a string
in the course of its motion. The result is the necessary nonunitary generalization of the von Neumann
equation [7].

3. The energy and momentum conservation laws normally stem from an a priori limitation on the
properties of space-time geometry. However, it would be more desirable and consistent to obtain the
limitations on the geometry within the framework of a more general theory than to merely postulate
the geometry. For example, deriving limitations on the properties and structures of space-time from the
requirement of the self-consistency of quantum theory is analogous to deducing the gauge group and space-
time dimension in theories of strings and superstrings.

4. In a wide range of non-Riemannian geometries, e.g., in the curved affine-metric space-time, the
closed bosonic string is a dissipative system [11-13].

In the present paper, we have shown that the requirement for a dynamic description of dissipative (non-
Hamiltonian) systems to be self-consistent forces one to reject Jacobi identities for the system evolution
generators and to use anticommutative non-Lie algebras instead. The properties of these algebras will be
described in Part IV of this paper.

This investigation was supported by the Russian Foundation for Basic Research (Project No. 96-02-
16413-a).

Appendix
Leibnitz rule and dissipative systems

The inconsistency of the quantum equations for the evolution of a dissipative system and the quantum
commutation relations is evident when one examines the time derivatives of the commutators of the coor-
dinates and momenta using the Leibnitz rule and the Jacobi identity. This inconsistency stems from the
assumption that the Leibnitz rules and Jacobi identities hold for dissipative systems and is due to the fact
that the equations of evolution in time for dissipative systems violate the structure of the Lie algebra.

Note that for a quantum Hamiltonian system, the rule of term-by-term differentiation with respect to
time (Leibnitz rule) D(AB) = D(A)B + AD(B) is valid for the product of any operators. The Leibnitz
rule does not. however. apply to quantum dissipative systems.

Statement A.1. Application of the rule of term-by-term differentiation with respect to time ( Leibnitz
rule) to the quantum commutation relations of coordinate and momentum operators describing the quantum
dissipative system (13) necessarily entails the fulfillment of conditions (15)(17) for the right-hand sides of
Eqgs. (13) and. thus. equivalence of the motion equations (12) to the evolution equations for Hamiltonian
system (11).

Proof. The quantum commutation relations for the coordinate and momentum operators have the
form

[Qk(t), Pi(t)] = thol. [Qk(t). Qu(t)] = [Pe(t). P(t)] = 0. (52)
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Considering the time derivative from the first relation in (52), we obtain

p .
Z1Qu(t). At = 0. | (53)
In this case. the Leibnitz rule has the form
d d
7 [Qx(t) ()] = [(EQk(t),PI(t)} + [Qk(t), %P[(t)} : (54)
Consequently, we have the relation
d d
|759:0.20] + [@0. $70)] =0 (55

Using motion equation (13), we obtain

£ ([(H,Qu, P] + [Qu [H. P)]) + ([Qu Fil - (G, R) = 0. 56

The Jacobi identity for the associative operators Qg, P;, H has the form

TiQu PrH] = 35([1Qe, P ) + ([P H). Q4] + [[H, Q4 B]) =0,

le.,

[[H,Q«), P) + [Qx, [H, P]] =0.

As a result, we obtain the identity
i .
Q% = -E([Gk, P] - [Qx, Fi]) =0. (57)

Similarly, considering other quantum commutation relations (52), one can obtain all of the identities (15)-
(17).

Thus, the statement that the Leibnitz rule is valid for quantum dissipative systems (13) is equivalent to
the requirement that conditions (15)-(17) be fulfilled, i.e., fulfillment of the conditions for the Hamiltonian
(nondissipative) character of system [14].

Thus, the rule of term-by-term differentiation with respect to time (Leibnitz rule) does not apply
to quantum dissipative systems. This is the essential feature distinguishing dissipative and Hamiltonian
systems. That the time derivative operator and the evolution operator do not obey the Leibnitz rule means.
mathematically, that these operators are not differentiation operators. They are usually called dissipative
operators and we give their definitions below.

Definition A.1. The operator D is called a dissipative operator if it obeys the generalized Leibnitz
rule

D(AB) = D(A)B + AD(B) + Z(A, B)

and meets the conditions

D(A + B) = D(A) + D(B)

and
D(AA) = AD(A), AER:
Z{A. B) is a nonzero operator depending on the form of operators A and B.
Thus. the dissipation operator that describes evolution (12) of a quantum dissipative system and.
~—onsequently, the time derivative operator, are dissipative operators.

Note that violation of the Leibnitz rule and the appearance of dissipative operators as evolution oper-
ators are well known in the theory of quantum dynamic semigroups [15] used to describe open systems.
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