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FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS FOR

ELECTROMAGNETIC WAVES IN DIELECTRIC MEDIA

V. E. Tarasov∗

We prove that the electromagnetic fields in dielectric media whose susceptibility follows a fractional power-

law dependence in a wide frequency range can be described by differential equations with time derivatives

of noninteger order. We obtain fractional integro-differential equations for electromagnetic waves in a

dielectric. The electromagnetic fields in dielectrics demonstrate a fractional power-law relaxation. The

fractional integro-differential equations for electromagnetic waves are common to a wide class of dielectric

media regardless of the type of physical structure, the chemical composition, or the nature of the polarizing

species (dipoles, electrons, or ions).
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1. Introduction

Debye formulated his theory of dipole relaxation in dielectrics in 1912 [1]. A large number of dielectric
relaxation measurements show that the classical Debye behavior is very rarely observed experimentally [2]–
[4]. Dielectric measurements by Jonscher for a wide class of various substances confirm that different
dielectric spectra are described by power laws [2], [3].

For the majority of materials, the dielectric susceptibility in a wide frequency range follows a fractional
power law, called the universal response [2], [3]. This law is found both in dipolar media beyond their loss
peak frequency and in media where the polarization arises from movements of either ionic or electronic
hopping charge carriers. It was shown in [5] that the frequency dependence of the dielectric susceptibility
χ̃(ω) = χ′(ω) − iχ′′(ω) follows a common universal pattern for virtually all kinds of media over many
decades of frequency,

χ′(ω) ∼ ωn−1, χ′′(ω) ∼ ωn−1, ω � ωp, (1)

χ′(0) − χ′(ω) ∼ ωm, χ′′(ω) ∼ ωm, ω � ωp, (2)

where χ′(0) is the static polarization, 0 < n, m < 1, and ωp is the loss peak frequency. We note that the ratio
of the imaginary to the real components of the susceptibility is independent of frequency. The frequency
dependence given by (1) implies that the imaginary and real components of the complex susceptibility at
high frequencies satisfy the relation

χ′′(ω)
χ′(ω)

= coth
πn

2
, ω � ωp. (3)
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Experimental behavior (2) leads to a similar frequency-independent rule for the low-frequency polarization
decrement,

χ′′(ω)
χ′(0) − χ′(ω)

= tanh
πm

2
, ω � ωp. (4)

The laws of universal response for dielectric media [2], [3] can be described using fractional calculus [6].
The theory of integrals and derivatives of noninteger order goes back to Leibniz, Liouville, Riemann, Grun-
wald, and Letnikov [6]. Fractional analysis has found many applications in recent studies in mechanics and
physics. The interest in fractional equations has been growing continuously during the last few years be-
cause of numerous applications. In a short time, the list of applications has become long (see, e.g., [7]–[9]).
In [10]–[13], fractional calculus was used to explain the nature of nonexponential relaxation, and equations
were obtained containing operators of fractional integration and differentiation.

Here, we prove that a fractional power-law frequency dependence in a time domain gives integro-
differential equations with time derivatives and integrals of noninteger order. We obtain fractional equations
that describe electromagnetic waves for a wide class of dielectric media. The power laws of Jonscher are
represented by fractional integro-differential equations. The electromagnetic fields in the dielectric media
demonstrate universal fractional damping. The suggested fractional equations are common (universal) to a
wide class of materials regardless of the type of physical structure, the chemical composition, or the nature
of the polarizing species.

2. Fractional equations for universal laws

We consider Eqs. (1) and (3). For the region ω � ωp, universal fractional power law (1) can be
represented in the form

χ̃(ω) = χα(iω)−α, 0 < α < 1, (5)

with some positive constants χα and α = 1 − n. Here,

(iω)α = |ω|αeiαπ sgn(ω)/2.

It is easy to see that relation (3) is satisfied for (5).
The polarization density P(t, r) can be written as

P(t, r) = F−1
(
P̃(ω, r)

)
= ε0F−1

(
χ̃(ω)Ẽ(ω, r)

)
, (6)

where P̃(ω, r) is the Fourier transform F of P(t, r). Substituting (5) in (6) gives

P(t, r) = ε0χαF−1
(
(iω)−αẼ(ω, r)

)
.

We note that the Fourier transform of the fractional Liouville integral [6], [14]

(Iα
+f)(t) =

1
Γ(α)

∫ t

−∞

f(t′) dt′

(t − t′)1−α

is given by the relation (see Theorem 7.1 in [6] and Theorem 2.15 in [14])

(FIα
+f)(ω) =

1
(iω)α

(Ff)(ω),

where 0 < Re α < 1 and f(t) ∈ L1(R) or 1 ≤ p < 1/ Reα and f(t) ∈ Lp(R).
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Using the fractional Liouville integral and fractional power law (5) for χ̃(ω) in the frequency domain,
we obtain

P(t, r) = ε0χα(Iα
+E)(t, r), 0 < α < 1. (7)

This equation shows that the polarization density P(t, r) in the high-frequency region is proportional to
the fractional Liouville integral of the electric field E(t, r).

We consider Eqs. (2) and (4). For the region ω � ωp, universal fractional power law (2) can be
represented as

χ̃(ω) = χ̃(0) − χβ(iω)β, 0 < β < 1, (8)

with some positive constants χβ , χ̃(0), and β = m. It is easy to prove that (8) is satisfied for (4).
We note that the Fourier transforms of the fractional Liouville derivative

(Dβ
+f)(t) =

∂k

∂tk
(Ik−β

+ f)(t) =
1

Γ(k − β)
∂k

∂tk

∫ t

−∞

f(t′) dt′

(t − t′)β−k+1
,

where k − 1 < β < k, are given by the formula (see Theorem 7.1 in [6] and Theorem 2.15 in [14])

(FDβ
+f)(ω) = (iω)β(Ff)(ω),

where 0 < Re β < 1 and f(t) ∈ L1(R) or 1 ≤ p < 1/ Reβ and f(t) ∈ Lp(R).
Using the definition of the fractional Liouville derivative and fractional power law (8), we can represent

polarization density (6) in the form

P(t, r) = ε0χ̃(0)E(t, r) − ε0χβ(Dβ
+E)(t, r), 0 < β < 1. (9)

This equation shows that the polarization density P(t, r) in the low-frequency region is determined by the
fractional Liouville derivative of the electric field E(t, r).

Relations (7) and (9) can be considered universal laws. These equations with integro-differentiation of
noninteger orders allow obtaining fractional wave equations for the electric and magnetic fields.

3. Universal electromagnetic wave equation

Here, we obtain fractional equations for electromagnetic fields in dielectric media. Using the Maxwell
equations, we obtain

ε0
∂2E(t, r)

∂t2
+

∂2P(t, r)
∂t2

+
1
µ

(graddiv E−∇2E) +
∂j(t, r)

∂t
= 0. (10)

For ω � ωp, the polarization density P(t, r) is related to E(t, r) by Eq. (7). Substituting (7) in (10), we
obtain the fractional differential equation for the electric field strength

1
v2

∂2E(t, r)
∂t2

+
χα

v2
(D2−α

+ E)(t, r) + (graddiv E−∇2E) = −µ
∂j(t, r)

∂t
, (11)

where 0 < α < 1 and v2 = 1/(ε0µ). We note that div E �= 0 for ρ(t, r) = 0.
In the region ω � ωp, the fields P(t, r) and E(t, r) are related by Eq. (9). In this case, Eq. (10) becomes

1
v2

β

∂2E
∂t2

− aβ

v2
β

(D2+β
+ E) + (graddiv E−∇2E) = −µ

∂j
∂t

, 0 < β < 1, (12)
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where
v2

β =
1

ε0µ[1 + χ̃(0)]
, aβ =

χβ

1 + χ̃(0)
.

Equations (11) and (12) describe the time evolution of the electric field strength in dielectric media. These
equations are fractional differential equations [14] with derivatives of the orders 2 − α and 2 + β.

Using the Maxwell equations, we obtain the equation for the magnetic field induction

∂2B(t, r)
∂t2

=
1

ε0µ
∇2B(t, r) +

1
ε0

∂

∂t
curlP(t, r) +

1
ε0

curl j(t, r). (13)

In experiments, the field B(t, r) can be represented as B(t, r) = 0 for t ≤ 0 and B(t, r) �= 0 for t > 0.
For ω � ωp, the polarization density P(t, r) is related to E(t, r) by Eq. (7), which leads to the fractional
differential equation for magnetic field induction in the form

1
v2

∂2B(t, r)
∂t2

+
χα

v2
(0D2−α

t B)(t, r) −∇2B(t, r) = µ curl j(t, r), (14)

where 0 < α < 1, v2 = 1/(ε0µ), and 0D
2−α
t is the fractional Riemann–Liouville derivative [14] on [0,∞)

such that

(0D2−α
t f)(t) =

1
Γ(α)

∂2

∂t2

∫ t

0

f(t′) dt′

(t − t′)1−α
, 0 < α < 1.

For ω � ωp, we obtain

1
v2

β

∂2B(t, r)
∂t2

− aβ

v2
β

(0D
2+β
t B)(t, r) −∇2B(t, r) = µ curl j(t, r), (15)

where 0 < β < 1 and

v2
β =

1
ε0µ[1 + χ̃(0)]

, aβ =
χβ

1 + χ̃(0)
.

Equations (14) and (15) are fractional differential equations that describe the magnetic field in dielectric
media and demonstrate a power-law relaxation. They can be written in a general form. Such a general
fractional differential equation for the magnetic field induction has the form

(0Dα
t B)(t, r) − λ1(0D

β
t B)(t, r) − λ2∇2B(t, r) = f(t, r), (16)

where 1 ≤ β < α < 3. The curl of the current density of free charges is regarded as an external source:
f(t, r) = µλ2 curl j(t, r). Equation (16) yields Eq. (14) for α = 2, 1 < β < 2, λ1 = −χα, and λ2 = v2 =
1/(ε0µ). Equation (15) can be written in form (16) for 2 < α < 3, β = 2, and

λ1 =
1
aβ

=
1 + χ̃(0)

χβ
, λ2 = −

v2
β

aβ
=

−1
ε0µχβ

.

An exact solution of (16) can be written in terms of Wright functions using Theorem 5.5 in [14]. We note
that Wright functions can be represented as derivatives of the Mittag–Leffler function Eα,β [z] (see [14]).
Solutions of (16) describe the fractional power-law damping of the magnetic field in dielectric media. An
important property of the evolution described by fractional differential equations is that the solutions have
fractional power-law tails.
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4. Conclusion

We have proved that the electromagnetic fields and waves in a wide class of dielectric media must be
described by fractional differential equations with time derivatives of the orders 2 − α and 2 + β, where
0 < α < 1 and 0 < β < 1. The parameters α = 1 − n and β = m are defined by the exponents
n and m in the experimentally measured frequency dependences of the dielectric susceptibility, called
the universal response laws. An important property of the dynamics described by fractional differential
equations for electromagnetic fields is that the solutions have fractional power-law tails. The suggested
fractional differential equations for the universal electromagnetic waves in dielectrics are common (universal)
to a wide class of media regardless of the type of physical structure, the chemical composition, or the nature
of the polarizing species (dipoles, electrons, or ions).

We note that the differential equations with derivatives of noninteger order proposed for describing the
electromagnetic field in dielectric media can be solved numerically. For example, the Grunwald–Letnikov
discretization scheme [6] is used to numerically model the electromagnetic field in dielectrics described by
fractional differential equations. For small fractionality of α (or β), an ε-expansion [15] in the small param-
eter ε = α (or ε = 1−β) can be used. We note that a possible physical interpretation of fractional integrals
and derivatives can be connected with memory effects or fractal properties of media (see, e.g., [16], [17]).
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