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QUANTIZATION OF NON-HAMILTONIAN SYSTEMS

V.E. Tarasov !

In this talk a generalization of quantization which maps a dynamical operator
in a function space to a dynamical superoperator in an operator space is suggested.
Quantization of dynamical operator, which cannot be represented as Poisson bracket
with some function, is considered. Quantization of classical systems which evolution
is defined by Hamilton function is equivalent to canonical quantization. Generalized
quantization of non-Hamiltonian dynamical operators is not defined by canonical
quantization. Moreover the canonical quantization is a specific case of suggested
quantization if dynamical operator is a operator of multiplication on a function. This
approach allows to define consistent quantization procedure for non-Hamiltonian
and dissipative systems. Examples of the harmonic oscillator with friction and a
system which evolves by Fokker-Planck-type equation are considered.

Introduction

The quantization of non-Hamiltonian classical systems is of strong theoretical interest.
As arule, any microscopic system is always embedded in some (macroscopic) environment
and therefore it is never really isolated. Frequently, the relevant environment is in principle
unobservable or it is unknown [1]-[4]. This would render theory of non-Hamiltonian
systems a fundamental generalization of quantum mechanics rather than an artifact of
interacting with an environment [5].

We can divide the most frequent methods of quantization of non-Hamiltonian systems
into two groups. The first method uses a procedure of doubling of phase-space dimension
[6]-[7]. To apply the usual canonical quantization scheme to non- Hamiltonian systems,
one can double the numbers of degrees of freedom, so as to deal with an effective isolated
system. The new degrees of freedom may be assumed to represent by collective degrees
of freedom the bath, with absorb the energy dissipated by the dissipative system [7].

The second method consists in using an explicitly time-dependent Hamiltonian [8]-
[15]. It was shown that it may be possible to put the equation of motion for some non-
Hamiltonian systems into time-dependent Hamiltonian form and then quantize them
in the usual way [8]-[15]. However, the corresponding canonical commutation relations
violate the uncertainty principle [13]. The reason for this violation would appear from
the explicit dependence of Hamiltonian and momentum on the time.

To construct the canonical quantization of non-Hamiltonian systems consistently, it is
possible to exceed the limits of Lie algebras and groups. The condition of self-consistency
for the canonical quantization of non-Hamiltonian systems requires the application of
commutant-Lie (Valya) algebra [16, 17]. Unfortunately, this algebra and its representation
have not been thoroughly studied.

Note [18, 15] that Feynman wanted to develop a procedure to quantize classical
equation of motion without resort to a Hamiltonian. It is interesting to quantize a
classical systermn without direct reference to a Hamiltonian. A general classical system
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is most easily defined in terms of its equations of motion. It is difficult to determine
whether a Hamiltonian exists, whether it is unique if it does exist {19, ?, 20]. Therefore,
quantization that bypasses direct reference to a Poisson bracket with some Hamiltonian
have practical advantages.

Canonical quantization defines a map of real functions into self-adjoint operators [21].
A classical observable is described by some real function A(g, p) from a function space M.
Quantization of this function leads to self-adjoint operator A(d,p) from some operator
space M. Quantization conserves mathematical structures (such as Lie algebra, Jordan
algebra, C*-algebra) defined on the set of observables. Note that canonical quantization
of the Poisson bracket { ., . } leads to commutator (—i/h)[ ., . ]. Classical state can be
described by non-negative-normed function p(q,p) called density distribution function.
Quantization of a function p(q,p) leads to non-negative self-adjoint operator p of trace
class called matrix density operator. This description allows to consider a state as a
special observable.

Time evolution of an observable A;(q,p) and a state p;(q,p) in classical mechanics
are described by differential equations on a function space M:

d

d
aAt( p) = LA:(q,p) , apt(q,p)=Apt(q,p)-

The operators £ and A, which act on the elements of function space M, define dynamics.
These operators are infinitesimal generators of dynamical semigroups and are called
dynamical operators. The first equation describes evolution of an observable in the
Hamilton picture, and the second equation describes evolution of a state in the Liouville
picture. Dynamics of an observable and a state in quantum mechanics are described by
differential equations on a operator space M:

d ; i

_At( ) 'CAt(d,p) 3

dt = A .

dt
Here £ and A are superoperators (operators act on operators). These superoperators are
infinitesimal generators of quantum dynamical semigroups [22, 23, 24]. The first equation
describes dynamics in the Heisenberg picture, and the second - in the Schroedinger
picture. It is easy to see that quantization of the dynamical operators £ and A leads to
dynamical superoperators £ and A. Therefore, generalization of canonical quantization
must map operators into superoperators.

The usual method of quantization is applied to classical systems, where the dynamical
operators have the forms LA(q,p) = {A(q, p), H(g,p)} and Ap(q, p) = —{p(q,p), H(g,p)}-
Here the function H (g, p) is an observable which characterizes dynamics and is called the
Hamilton function. Quantization of a dynamical operator which can be represented as
Poisson bracket with an function is defined by the usual canonical quantization. Canonical
quantization of real functions A(q,p) and H(q,p) leads to self-adjoint operators A(q P)
and H(q p). Quantization of the Poisson bracket {A(q,p), H(g, p)} leads to commutator
(¢/R)[H(4, D), A(§,p)). Therefore quantization of these dynamical operators is uniquly
defined by the usual canonical quantization.

Quantization of a non-Hamiltonian classical systems meets ambiguities which follow
from the problems of variational description of these systems [19]-[17]. Quantization of
non-Hamiltonian systems is not defined by the usual canonical quantization. Therefore, it
is necessary to consider some generalization of canonical quantization. These generalized
procedure must define a map of operator into superoperator [25]. The usual canonical
quantization must be a specific case of generalized quantization, for quantization of
operator of multiplication on a function.
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In this paper quantization of non-Hamiltonian classical systems is considered. Generalization
of canonical quantization, which maps an evolution equation on a function space into an
evolution equation on an operator space, is suggested. An analysis of quantization is
performed for operator, which cannot be represented as the Poisson bracket with some
Hamilton function.

1 Canonical Quantization

Let us consider main points of the usual method of canonical quantization [21, 26, 27].
Let g* are canonical coordinates and p* are canonical momentums, where k = 1, ..., n.
The basis of the space M of functions A(q, p) is defined by functions

n
W(a,b,q,p) = e#(@t%) | qq =% "arg* . (1)
k=1

Quantization transforms coordinates ¢* and momentums p* to operators ¢* and p*. Weyl
quantization of the basis functions (1) leads to the Weyl operators

Wi(a,b,4,p) = er @) | ag=3"ayg* . (2)
k=1

The Weyl operators form a basis of the operator space M. Classical observable, characterized
by the function A(q, p), can be represented in the form

Ag,p) = (_%—1?0)—" / A(a, b)W (a, b, ¢, p)d"ad™ , (3)

where A(a,b) is the Fourier image of the function A(g,p). Quantum observable fi((j,;ﬁ)
which corresponds to A(g,p) is defined by formula

e 1 ~ .

A(q,p) — W / A(a, b)W(a, b, q, p)d"adnb . (4)
This formula can be considered as an operator expansion for /i((j , D) in the operator basis
(2). The direct and inverse Fourier transformations allow to write the formula (4) for the
operator A(4g,p) as

~

A0.0) = Grger [AwpW(ebi—al s s adblads. (9
The function A(g, p) is called the Weyl symbol of the operator fi((j , ). Canonical quantization
defined by (5) is the Weyl quantization.
Quantization must preserve some algebraic structures defined on the set M. Lie
algebra, Jordan algebra and C*-algebra are usually considered on the spaces M and M.
Lie algebra L(M) on the set M is defined by Poisson bracket

{A(¢,p), B(¢,p)} = Z(agjép) 05"?(;1,:;9) - agzép) aBa(:l:p)) ' (6)

k=1

Quantization of the Poisson bracket leads to self-adjoint commutator

L1A(,9), B0,9)] = o (A@HB@.H) - B@.HAGH) 7
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The commutator defines Lie algebra L(M) on the set M. Leibnitz rule is satisfied for the
Poisson brackets. As a result, the Poisson brackets are defined by basis Poisson brackets
for canonical coordinates and momentums

{¢*,q"}=0, {P*.p"} =0, {¢",p™} =Gkm .
Quantization of these relations leads to the canonical commutation relations
[ljkv »m] = 0) [ﬁkvﬁm] - 07 [ékvﬁm] = zhdka . (8)

These relations define (2n + 1)-parametric Lie algebra L(M), called Heisenberg algebra.

Jordan algebra J(M) for the set M is defined by the multiplication A o B which
coincides with the usual associative multiplication of functions. Quantization of the
Jordan algebra J(M) leads to the operator Jordan algebra J(M) with multiplication

PN A A 1. 4 A~ - N
[A,Bly =AcB= Z[( +B)? - (A-B).

Jordan algebra for classical observables is associative algebra, that is all associators

are equal to zero

(AoB)oC—Ao(BoC)=0.
In general case Jordan algebra associator for quantum observables is not equal to zero

~ ~

(AoB)ol —Ao(BoC)=

This nonassociativity of the operator Jordan algebra J (,/\;i) leads to an ambiguity of
canonical quantization. The arbitrariness is connected with ordering of noncommutative
opetators.

The Weyl operator (2) in the formula (6) leads to Weyl quantization. Another basis
operator leads to different quantization scheme.

C*-algebra can be defined on the set of quantum observables described by the bounded
linear operators. In general the operator which is a result of associative multiplication of
the self-adjoint operators is not self-adjoint operator. Therefore quantization of multiplication
of classical observables does not leads to multiplication of the correspondent quantum
observables. Universal enveloping algebra U (f/) for the Lie algebra f}(/\;t) which is generated
by commutation relations (8) is considered as associative algebra [26, 27].

Let us consider a classical dynamical system defined by Hamilton function H/(g,p).
Usually the quantization procedure is applied to classical systems with dynamical o
perator

_ _ ~~(0H(q,p) @ 0H(q,p) 9
L =—{H(q,p), -}——;(qu‘—w——apr—w) . (9)

Here H (g, p) is an observable which defines dynamics of a classical system. The observable
H(q,p) is called the Hamilton function. The time evolution of a classical observable is
described by

%A(q,p) = {A(g,p), H(a,p)} - (10)

If the dynamical operator has the form (9), then system is Hamiltonian system. Cagonical
quantization of the functions A(g, p) and H (g, p) leads to operators A(g, p) and H(d, p).
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Canonical quantization of Poisson bracket {A(q,p), H(q,p)} leads to the commutator
(¢/R)[H(§, D), A(d, D)]. Quantization of the equation (10) leads to the Heisenberg equation
d - i

S A:d,9) = E[H(q,p),A(q,p)] .

Therefore quantization of dynamical operator (9) leads to superoperator

E=1{AGH), 1= 1 (B'@,5) - B (,5) (1)

Here left and right superoperators H'(4, ) and ar (g, p) correspond to Hamilton operator

~

H(§,p). These superoperators are defined by formulas
A'A=HA, A A=AH.
Quantization of dynamical operator, which can be represented as Poisson bracket with

a function, is defined by canonical quantization. Therefore quantization of Hamiltonian
systems is completely defined by the usual method of quantization.

2 General Dynamical System

Let us consider the time evolution of classical observable A;(g, p), described by the general
differential equation

9 Aula,p) = £a,p, 04 0) 4e(a,9)

Here L(g,p, 04, 0p) is an operator on the function space M. This operator cannot be
expressed by Poisson bracket with a function H(gq,p). We would like to generalize the
quantization procedure from the dynamical operators (9) to general operators £(g, p, 0, ).
In order to describe quantization of non-Hamiltonian systems we must define a general
operator £(g, p, 8y, 3p) using some basis operators. For simplicity, we assume that operator
L(q,p, 9, 0p) is a bounded operator on the space of observables.

Let us define the basis operators which generate the dynamical operator £ = £(q, p, 0g, 05).
Operators @% and Q% are operators of multiplication on coordinates ¢* and p*. Operator
P} and P} are self-adjoint differential operator with respect to ¢* and p*, that is
P} = —i0/0¢* and P} = —i8/0p*. These basis operators obey the conditions:

1. Q¥1=¢% Qi1=p* and Pkl =0, PF1=0.

2. ( If,z)* = Q’f,z’ (P1k,2)* = P1k,z'

3. Pfy(Ao B) = (Pf,A) o B+ Ao (Pf,B).

4. [Qlf,m Pf’z] = km, [Qlf,m Pzr:ll] =0, [ If,z’ 117:2] =0, [P1k,2vP1'72] =0.

Conjugation operation * is defined with respect to the usual scalar product of function
space. Commutation relations for the operators Plk’  and Qlf,z define (4n + 1)-parametric
Lie algebra. These relations are analogous to canonical commutation relations (8) for q*
and p* with double numbers of degrees of freedom.

Operators Q'{,z and P1k,2 allow to introduce operator basis

V(a1,az,b1,b2,Q1, Q2, P1, P2) = exp{i(a1Q1 + a2Q2 + b1 Py + b2 P2)} (12)

for the space A(M) of dynamical operators. These basis operators are analogous to the
Weyl operators (2). Note that basis functions (1) can be derived from the operators (12)
by the formula

W(aa b, Qap) = V(a/(2h), b/2h)’ 0,0,Q1,Q2, P, PZ)]- .
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The algebra A(M) of bounded dynamical operators can be defined as C*-algebra,
generated by Q’f’z and Pf 5. It contains all operators (12) and is closed for linear combinations
of (12) in operator norm topology. A dynamical operator £ can be defined as an operator
function of basis operators Q’{’z and P1k,23

1

£(Q1,Q2, P, P2) = e

/ L(al, ag, bl, bz)ei(GIQI+a2Q2+b1P1+62P2)dnaldnazdnb1dnb2 s
(13)

where L(ai,az, by, b;) is integrable function of real variables a;2 and by,2. The function
L(ay, as, by, b2) is Fourier image of the symbol of operator £ = L(q,p, 9y, 3,). The set of
bounded operators £(Q1, @z, P1, P2) and their uniformly limits form the algebra .A(M)
of dynamical operators.

3 Quantization of Basis Operators

To define the superoperator £ which corresponds to operator £ we need to describe
quantization of the basis operators Q* and P*. Let us require that the superoperators
Q* and P* satisfy the relations which are the quantum analogs to the relations for the
operators Q¥ and P*:
1. Q5T = gF, Q5I=p*, and Pf,I=0.
2. ( ’16,2)* = Q’f,z’ (P1k,2)* = P1k,2'
3. ﬁl’“z(fi o B) = (P},A) o B+ Ao (Pf,B).
4. [ 12aP12] Wkm 1, [le’Pzﬂ—O [Qiz: 2]*0 [P12»P12] = 0.
Superoperator £ is called self-adjoint, if the relation < EA|B >=< AIEB > is satisfied.
The scalar product < A[B > on the operator space M is defined by < A]B >= Sp[A* ]
An operator space with this scalar product is called Liouville space [26, 27].

To define the superoperator 131’”, , we use the relations

. 0 . i, ,
PfA(q’p) = _Z—a—q',?A(qvp) - Z{pkv A(q,P)} ] szA(qap) = —‘lWA(q’p) = _z{qka A(Q7p)} .

Canonical quantization leads to the expressions

~

Skars ooy Lrak aia a . Lok 2/aa
PtA@G5) = ;[ A@. D), PrA(G.P)=—3[¢" AW D) -
As a result, we obtain

PE= 10, )= RN - (), BE =gl =5 (@ - @), (9)

Here we use superoperators (¢*)', (¢¥)" and (p*)', (%)™ which satisfy the non-zero
commutation relations

(@), ™)] = ihdemI, ()", ™)) = —ihdkm]I.

These relations follow from canonical commutation relations (8).
Let us define the self-adjoint superoperator Q’f,z- Superoperators Q’{,z can be defined
in the form

O = [ Je= (@) + @), = Je=3@ 6, ()
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where Q’l‘/i =¥ oA and Q’;A = p* o A. There exists an arbitrariness in the definition of

Q’f,za which is caused by arbitrariness of the canonical quantization. This arbitrarine is

connected with map of an associative Jordan algebra to a nonassociative Jordan algebra.
Quantization of the operators (12) leads to the superoperators

f/(al,a'Za bla b21 Ql; QZv ﬁl, }32) = emp{i(alé + a’2Q2 + blpl + bzﬁz)} . (16)

4 Quantization of Operator Function

Let us consider the dynamical operator £ as a function of the basis operators Q% , and
Pf 2. Generalized quantization can defined as a map from dynamical operator space
A(M) to dynamical superoperator space A(M) This quantization of the operator

1

[,(Ql, Qz, P, PZ) = W/L(a‘l,a% bl,bz)ei(alQl+a2Q2+b1P1+b2Pz)dna1dna2dnb1dnb2 ,

leads to the corresponding supéroperator

.. A a 1
[:(Ql, QZ, Py, PZ) = W / L(al, as, bl, bz) i a1Q1+02Q2+b1P1+b2Pz)dna1dna2dnb1dnb2
(17)
If the function L(ay, az, by, b2) is connected with Fourier image A(a1, a3) of the function
A(g,p) by the relation

L(a1/(2h), az/(2h), b1, b2) = (2m)"6(b1)d(b2) A(a1, a2) ,

then the formula (17) defines the canonical quantization of the function A(q,p) = £(Q1, @2, P1, P2)1
by the relation A R
A(‘j7 ﬁ) = L(Qla QZ, Pla PZ)I .
Here we use QkI = ¢* and QkI = p*. Therefore the usual canonical quantization is a
spesific case of suggested quantization procedure.
Superoperators Q1 , and P1 , can be represented by (¢¥), (%) and (p*)!, (5*)". The
formula (17) is written in the form

a

1
)= G

AC(qla AT,ﬁl’ﬁr / -Z’(ala az, bl, bZ)Wl(ah az, 67 ﬁ)Wr (bl, b27 (jaﬁ)dnaldnaZdnbldan .
Here W'(a, b, §,p) and W'(a,b,§,p) are left and right superoperators corresponding to

the Weyl operator (2). These superoperators can be defined by
Wl(a, b, q’ﬁ) = W(a‘ b,g g AI) Wr(aabv 4, ﬁ) = W(a b,q", AT) .

We can derive {25] a relation which represents the superoperator £ by operator £. We
would like to write the analog of the relation (5) between an operator A and a function
A. To simplify formulas, we introduce new notations. Let X°*, where s = 1, ..., 4n, denote
the operators Q’{,z and P1k,27 where k = 1,...,n, that is

0

.0 .
sz—l — qk , X2k — pk , sz—1+2n = —3 2k+2n __ —3

gk’ ok -
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Let us denote the parameters a'f,z and b’fyz, where k = 1,...,n, by 2°, where s =1, ..., 4n.
Then the formula (13) can be rewritten by

_ 1 izX j4n
L= PO /L(z)e "z .

The formula (17) for the superoperator L is written in the form

. 1 N
E = W/L(Z)e'z d "z .
The result relation which represents the superoperator £ by operator £ can be written
in the form

L=

(27r)4n /e—ia(z+z')eizf(Sp[ﬁeiz'}?]d4nzd4nad4nzl . (18)

5 Harmonic oscillator with friction

Let us consider n-dimensional linear oscillator with friction Ffric = —(y/m)p*. The time
evolution equation for this oscillator has the form

d , 14 d

k 2k, Y &
— 2 . 1
dtq = —p", dtp = —(mw’q¢" + —p") (19)

The dynamical equation for the observable A¢(g,p) is written

d
;i—tAt(q,p) = ‘C(q’pa 6(1, ap)At(q’p) .

Differentiation of the function A;(g, p) and the formulas (19) give

dAt(Q1p) - aAt(q’p) ﬂ aAt(q7p) @ — l kaAt(‘bP) _ (W2qk + lpk) aAt(qap)
dt 08¢k dt op dt m dgk m op*

The dynamical operator L(g,p, 0q,0p) is

1 40 2k, Yok 9
L(g,p: 0, 0p) = —p pr (mw’q” + —p )W -
Q P-quantization of this operator leads to superoperator

A g ~2 2, 2.0\ _ (a2 2, 2A2\r y aanl  (asve | alar  slar
L=5—l(° +m*e’() (0" + m*w* @) + 5= (B0) — (P9)" + 4P 4.

This superoperator can be written as L= Lharm + [:fr,-c. Hence

1o A S 1 . R 4 n N
[A,4, H=_—@"+m*?¢®), LipA= —[p*, (4", All+ -

ﬁharmfi - om

=t

Q P-quantization of the dynamical operator Ly.;. leads to superoperator £ fFrict

Y & 0 5 WY (ak ra
‘Cfric = _Epk—{ipj - ['.frt'c = “T'rﬁ[pk7[qk» . ]]+ .
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6 Fokker-Plahck-Type System

Let us consider Liouville operator A, which acts on the normed distribution density
function p(g,p,t) and has the form of second order differential operator

heg O gy 08 9 d ?
= dugg + 2w gepy *hwgy ¥ Touipy tewigy ¥ enbay ¥ by +h (0

Liouville equation
dp(g, p, t)
dt
is Fokker-Planck-type equation. Q P-quantization of the Liouville operator (20) leads to
completely dissipative superoperator A, which acts on the matrix density operator

= Ap(q,p,1t)

A i, 3 1 7 rTNYr* r* CrET\Tr*
A:—E(H'—Hr)-i-ﬁ ((V]I_V]T)V;T_(V;I—V]T)V;I>)
j=1,2

As the result we have the Markovian master equation [24, 26, 28]:

ds ioa 1
& = REA o 3 Wik V14195 477D (21)
1=1,2

Here H is Hamilton operator, which has the form

, A A A 1, mw - PR
H=H+H, H=—p+22¢, H=Epi+d),
2m 2 2

where
m=——, W =—Cuptpy, A=CpptcCe, H=Cpp—Cqq-

Operators V; in (21) can be written in the form Vi = a;jp + b;¢, where j = 1,2, and
complex numbers a;, b; satisfy the relations

h 2 h 2
dqq:§Z|aj| ) dpp:§Z|bj| )

j=1,2 j=1,2
h . .
dep = —5 Re( ) | ajbj), A=—Im(}_ ajb;).
j=1,2 j=1,2

If h = 2¢pp + 2¢4q, then quantum Markovian equation (21) becomes [28]:

(At p)
h

dp 1. . (A — PP
%z—ﬁ[Hl,m]+—(~%—-ﬂ—)[p,qom]

(¢, Do pe]—
dop v cn dogrn v o 2dpg 0 rn A
_%[Qa [q’ Pt]] - ﬁ[p’ [p’ pt]] + _h_zz)g' 7[qv pt]] .

Here dyp, dgg, dpg are quantum diffusion coefficients and A is a friction constant.
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Conclusions

A generalization of canonical quantization procedure allows to derive dynamical superoperator
from dynamical operator. Quantization of a dynamical operator which can be represented

by Poisson bracket with the Hamilton function, is defined by the usual canonical quantization.
Quantization of a general dynamical operator for non-Hamiltonian system cannot be
described by usual canonical quantization procedure. We suggest the quantization scheme
which allows to derive quantum analog for the classical non-Hamiltonian systems. The
relations (17) and (18) map the operator £(g, p, 8g, 8p) which acts on the functions A(q, p)

to the superoperator £, which acts on the elements of operator space. If the operator £

is an operator of multiplication by the function A(g, p) = L1, then formula (18) defines
the canonical quantization of the function A(g,p) by the relation A = LI. Therefore the
usual canonical quantization procedure is a specific case of suggested quantization. The
suggested approach allows to derive quantum analogs of chaotic dissipative sytems with
strange attractors. .

Canonical quantization of non-Hamiltonian systems is ambiguous which arises from
problems in variational description of these systems [19]-[17}. The suggested quantization
has the same arbitrariness as in the canonical quantization procedure. This arbitrariness
is connected with ordering of noncommutative operators.

I would like to thank Demichev A.P. for helpful discussions and I wish to thank
Krutov A.F. and Organizers for their kind invitation to the Conference in Samara State
University.
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KBAHTOBAHWE HETTAMUWJIbTOHOBBIX CUCTEM

B.E. Tapacos 2

B nannoit paboTe npensnoxeno o6obmenne cxeMsI KBAHTOBAHNA, 0ToGpaxaloned
IUHAMUYECKH OnepaTop B (QYHKIMOHAIBHOM IIPOCTPAHCTBE B AVHAMMWYECKWI CY-
1EPONEPATOP B HEKOTOPOM IIPOCTPAHCTBE ONepaTopoB. PaccMoTpeHo xBaHTOBaHMe
AVHAMUYECKOTO OIlepaTopa, KOTOPHIE He MOXeT GHTBH NMPENCTABJIEH B BUOE CKOGKK
Ilyaccona ¢ nexoropoit dyuxumeit. KnanToBanme KIaccudecKnX CHCTEM, 3BOIOLMA
KOTOPEHIX ompefiesieHa GyHKIMelt ['aMMILTOHA, SKBUBANEHTHO KAHOHKIECKOMY KBaH-
Topamuio. O606IIEHHOe KBAHTOBAHUE HEraMWIbLTOHOBEIX AMHAMWYECKHAX OePATODOB
He ABNAeTCA KaHOHWJIecknM. ONHAKO KAHOHMYECKOe KBAHTOBAHME SBJIZETCH UACT-
HEIM CJIyYaeM BBEHNECHHON CXeMBbl KBAHTOBAHNA, eC/IM OUHAMUYECKWIi OIEPATOP €CTh
OIepaTop yMHOXeHUS Ha GyHKIWIO.

IIpeanoxeHHblt MeTON NO3BOJAET OMPELEUTH IOCTEROBATELHYIO IIPOLELYPY
KBaHTOBAHUA MJIf HETAMWIbTOHOBEIX M NUCCHUNATUBHBIX cucTeM. B xavecTse mpu-
MEPOB PACCMOTPEHE! M'aPMOHUYECKHM OCIM/IILTOP C TPEHMEM M CICTEMA, 3BOJIIOIMS
KOTOpOH onpenenserca ypasuenueM tuna Pokkepa - [Inanka.

2Tapacon Bacunuit Esrensesuu - oTnen Teoperuueckoit ¢pusmku prcokux suepruit HUM saeproit
dusuxu MI'Y, r. Mocksa
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