Предложен новый фреймворк, основанный на обучении, для кодирования изображений с переменным коэффициентом сжатия. Предыдущие методы сжатия изображений на основе обучения в основном требовали обучения отдельных сетей при разном коэффициенте сжатия, чтобы они могли давать сжатые изображения различного качества. В этой работе предложен метод развертывания только одной сети сжатия изображений с переменным коэффициентом, основанный на использовании условного автоэнкодера. Экспериментальные результаты показывают, что предложенная схема обеспечивает лучший компромисс между коэффициентом сжатия и искажениями, чем традиционные кодеки сжатия изображений с переменным коэффициентом, такие как JPEG2000 и BPG. Эта модель также демонстрирует сравнимую, а иногда и лучшую производительность, чем современные модели сжатия изображений, которые используют несколько сетей, обученных для различных коэффициентов.