dlcp2023:proceedings
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
dlcp2023:proceedings [05/03/2025 17:31] – removed - external edit (Unknown date) 127.0.0.1 | dlcp2023:proceedings [05/03/2025 17:31] (current) – ↷ Links adapted because of a move operation admin | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ====== Proceedings ====== | ||
+ | |||
+ | **//Jan. 18, 2024//** | ||
+ | |||
+ | {{dlcp2023: | ||
+ | Вышел номер Вестника МГУ с трудами конференции: | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | The proceedings of the DLCP2023 conference will be published as a special issue of the journal [[http:// | ||
+ | |||
+ | **Paper submission deadline is** < | ||
+ | |||
+ | After blind peer review, all accepted papers will be published in the conference proceedings. | ||
+ | |||
+ | |||
+ | Notification of paper acceptance — < | ||
+ | |||
+ | **The language of publications is English** \\ | ||
+ | All articles must additionally contain an abstract in Russian in PDF format. | ||
+ | |||
+ | //We invite three types of submissions:// | ||
+ | * INVITED PAPERS are of a review nature, which may contain significant original results (13-18 pages). | ||
+ | * REGULAR PAPERS describe research not published or submitted elsewhere (10-12 pages). | ||
+ | * SHORT PAPERS may be position papers, descriptions of research prospects, challenges, projects, ongoing works, or applications (5-9 pages). | ||
+ | |||
+ | **// | ||
+ | |||
+ | **Prepared articles should be sent to the program committee by e-mail: [[dlcp2023@spbu.ru]]**. By submitting an article, you agree to the rules of [[http:// | ||
+ | |||
+ | More details can be found at [[http:// | ||
+ | |||
+ | ===== Current status ===== | ||
+ | {{: | ||
+ | * Авторам разосланы гранки. Окончательная версия должна поступить в редакцию не позднее **4 декабря 2023г.** | ||
+ | * В конце ноября будут разосланы верстки для окончательной правки. | ||
+ | * DOI статей должны быть известны в начале декабря. | ||
+ | * Желающие могут получить письмо из издательства о принятии статьи в печать. Для этого надо написать мне запрос по электроной почте [[kryukov@theory.sinp.msu.ru]]. | ||
+ | * Тексты статей на сайте издательства будут доступны в январе 2024г. | ||
+ | |||
+ | |||
+ | ===== TeX template ===== | ||
+ | **//Jul 29, 2023//** | ||
+ | |||
+ | **All papers** must be prepared in **LaTeX** by using the {{ dlcp2023: | ||
+ | Before the title, the authors should indicate the name of the section in accordance with the [[abstracts|Book of Abstracts]]. | ||
+ | |||
+ | At the link [[https:// | ||
+ | |||
+ | Please send to [[dlcp2023@spbu.ru]] a single zip-archive (dlcp2023-< | ||
+ | * the article in PDF format (dlcp2023-< | ||
+ | * all the necessary files (tex, bibliography, | ||
+ | * the signed scan of [[http:// | ||
+ | * abstract in Russian in PDF format (dlcp2023-< | ||
+ | |||
+ | The article must have a name in the same format: dlcp2023-< | ||
+ | |||
+ | ===== Typical article formatting errors ===== | ||
+ | |||
+ | * По возможности используйте UFT-8 кодировку. | ||
+ | * Не используйте **русский алфавит** в названиях файлов. | ||
+ | * Аннотация на русском языке должна быть отдельным файлом. Она должна включать название, | ||
+ | * В статье необходимо указать [[https:// | ||
+ | * Ссылки на литературу должны нумероваться в порядке их появления в тексте. В списке литературы инициалы авторов должны идти перед фамилией. Год издания следует после страниц: | ||
+ | * Заголовки таблиц должны предшествовать самой таблице. | ||
+ | * Нумероваться должны только те формулы, | ||
+ | * На все таблицы или рисунки должны быть ссылки из текста. Если ссылка отсутствует, | ||
+ | * Обязательно наличие скана подписанного [[http:// | ||
+ | |||
+ | **Внимание!** При повторной отсылке документов архив должен содержать полный список документов! | ||
+ | | ||
+ | Более подробно правила изложены в {{ dlcp2023: | ||
+ | |||
+ | /** | ||
+ | ===== Status of submitted articles ===== | ||
+ | |||
+ | Legend: | ||
+ | * _blank_ - Articles not yet received | ||
+ | * Received - The article has been received and is being checked. | ||
+ | * Check OK - Article was checked and ready for review | ||
+ | * Waiting - Waiting for resubmission if necessary | ||
+ | * Review - Under review | ||
+ | * Revision - Article under revision | ||
+ | * Consideration - Under consideration. | ||
+ | * Accept - Article was accepted | ||
+ | * Reject - The article was rejected | ||
+ | * Withdrawn - Withdrawn from publication or not received on time | ||
+ | **/ | ||
+ | |||
+ | ====== Final version of the Proceedings ====== | ||
+ | //**List of accepted papers**// | ||
+ | |||
+ | <color red>// | ||
+ | |||
+ | ===== Plenary Reports ===== | ||
+ | |||
+ | | **M.I.Petrovskiy**. DEEP LEARNING METHODS FOR THE TASKS OF CREATING " | ||
+ | |||
+ | |||
+ | ===== Track 1. Machine Learning in Fundamental Physics ===== | ||
+ | |||
+ | | **Ju.Dubenskaya**. Generating Synthetic Images of Gamma-Ray Events for Imaging Atmospheric Cherenkov Telescopes Using Conditional Generative Adversarial Networks || | ||
+ | | **R.R.Fitagdinov**. Generation of the ground detector readings of the Telescope Array experiment and the search for anomalies using neural networks || | ||
+ | | **K.A.Galaktionov** / Neural network approach to impact parameter estimation in high-energy collisions using the microchannel plate detector data || | ||
+ | | **E.O.Gres**. The selection of gamma events from IACT images with deep learning methods | ||
+ | | **A.Kryukov**. Preliminary results of convolutional neural network models in HiSCORE experiment | ||
+ | | **A.Kryukov**. The use of conditional variational autoencoders for simulation of EASs images from IACTs || | ||
+ | | **V.S.Latypova** / Method for separating extensive air showers by primary mass using machine learning for a SPHERE-type Cherenkov telescope | ||
+ | | **A.Y.Leonov**. Deep Learning for Angle of Arrival Prediction in the Baikal Neutrino Telescope | ||
+ | | **A.V. Matseiko**. Application of machine learning methods in Baikal-GVD: | ||
+ | | **A.D.Zaborenko**. Novelty Detection Neural Networks for Model-Independent New Physics Search | ||
+ | |||
+ | ===== Track 2. Machine Learning in Natural Sciences ===== | ||
+ | |||
+ | | **M.Borisov**. Estimating cloud base height from all-sky imagery using artificial neural networks | ||
+ | | **S.Dolenko**(А.Guskov) Transfer Learning for Neural Network Solution of an Inverse Problem in Optical Spectroscopy | ||
+ | | **I.M.Gadzhiev**. Classification Approach to Prediction of Geomagnetic Disturbances | ||
+ | | **V.Golikov**. Client-server application for automated estimation of the material composition of bottom sediments in the >0.1 mm fraction from microphotography using modern deep learning methods | ||
+ | | **A.Kasatkin**. Machine learning techniques for anomaly detection in high-frequency time series of wind speed and greenhouse gas concentration measurements | ||
+ | | **I.Khabutdinov**. Identifying cetacean mammals in high-resolution optical imagery using anomaly detection approach employing Machine Learning models | ||
+ | | **M.Krinitsky**. Estimating significant wave height from X-band navigation radar using convolutional neural networks | ||
+ | | **M.A.Ledovskikh**. Recognition of skin lesions from image || | ||
+ | | **A.V.Orekhov**. Unsupervised Machine Learning Methods for Determining Special Points of the Polymerase Chain Reaction Fluorescence Accumulation Curve || | ||
+ | | **S.A.Pavlov**. Application of Machine Learning Methods to Numerical Simulation of Hypersonic Flow || | ||
+ | | **V.Y.Rezvov**. Improvement of the AI-based estimation of signifi cant wave height based on preliminary training on synthetic X-band radar sea clutter images | ||
+ | | **O.E.Sarmanova**. Decoding fluorescence excitation-emission matrices of carbon dots aqueous solutions with convolutional neural networks to create multimodal nanosensor of metal ions || | ||
+ | | **A.Savin**. SMAP sea surface salinity improvement in the Arctic region using machine learning approaches | ||
+ | | **A.Tyshko**. Automatic detection of acoustic signals from white whales and bottle-nosed dolphins | ||
+ | | **A.V. Vorobev**. Machine learning for diagnostics of space weather effects in the Arctic region | ||
+ | |||
+ | ===== Track 3. Modern Machine Learning Methods ===== | ||
+ | |||
+ | | **N.Y.Bykov** / Methods for a Partial Differential Equation Discovery: Application to Physical and Engineering Problems | ||
+ | | **S.Dolenko**. Decomposition of Spectral Contour into Gaussian Bands using Improved Modification of Gender Genetic Algorithm | ||
+ | | **I.Isaev**. The study of the integration of physical methods in the neural network solution of the inverse problem of exploration geophysics with variable physical properties of the medium | ||
+ | | **D.N.Polyakov** / Hyper-parameter tuning of neural network for high-dimensional problems in the case of Helmholtz equation | ||
+ | |||
+ | /** | ||
+ | ==== Withdrawn from publication or not received on time ==== | ||
+ | |||
+ | ^ Corresponding Author and Article Title ^ Date ^ Status | ||
+ | | A.Boukhanovsky. Generative AI for large models and digital twins | | ||
+ | | L.Dudko. Methodology for the use of neural networks in the data analysis of the collider experiments | | || | ||
+ | | A.Kryukov. Machine Learning in Gamma Astronomy | | ||
+ | | A.Hvatov. Robust equation discovery as a machine learning method | ||
+ | | V.Kalnitsky. Modification of soft connectives in machine learning models | | || | ||
+ | | A.Polyakov. A technique for the total ozone columns retrieval using spectral measurements of the IKFS-2 instrument | | || | ||
+ | | A.Shevchenko. Determination of the charge of molecular fragments by machine learning methods | | || | ||
+ | | A.Vasiliev. The role of artificial intelligence in the preparation of modern scientific and pedagogical staff. The experience of the course “Neural networks and their application in scientific research” of Moscow State University named after M. V. Lomonosov | ||
+ | | M.Zotov.Search for Meteors in the Mini-EUSO Orbital Telescope Data with Neural Networks | | || | ||
+ | |||
+ | **/ | ||
+ | |||
+ | |||