User Tools

Site Tools


pegasus:overview

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
pegasus:overview [16/06/2020 14:06] lipatovpegasus:overview [15/04/2024 10:14] (current) lipatov
Line 1: Line 1:
 ====== Overview ====== ====== Overview ======
  
-Here we give some information and explanations about the important features of PEGASUS.+Here we give some information and explanations about the important features of PEGASUS.
  
 ===== Physical problem and solution ===== ===== Physical problem and solution =====
Line 17: Line 17:
 However, theoretical description of a number of high energy processes proceeding with large momentum  However, theoretical description of a number of high energy processes proceeding with large momentum 
 transfer and containing multiple hard scales needs for transverse momentum dependent (TMD) parton (quark transfer and containing multiple hard scales needs for transverse momentum dependent (TMD) parton (quark
-or gluon) distributions in a proton. These quantities encode the nonperturbative information on proton structure, including transverse momentum and polarization degrees of freedom and satisfy the +or gluon) distributions in a proton and nuclei. These quantities encode the nonperturbative information on hardon structure, including transverse momentum and polarization degrees of freedom and satisfy the 
 Balitsky-Fadin-Kuraev-Lipatov (BFKL) or Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equations. Balitsky-Fadin-Kuraev-Lipatov (BFKL) or Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equations.
 The hadron-level Monte-Carlo event generator [[https://cascade.hepforge.org|CASCADE]] and The hadron-level Monte-Carlo event generator [[https://cascade.hepforge.org|CASCADE]] and
Line 26: Line 26:
 PEGASUS is a newly developed parton-level Monte-Carlo event generator PEGASUS is a newly developed parton-level Monte-Carlo event generator
 designed to calculate cross sections for a wide range of hard QCD processes,  designed to calculate cross sections for a wide range of hard QCD processes, 
-which incorporates the TMD gluon dynamics in a proton.+which incorporates the TMD gluon dynamics in a proton and nuclei.
 It provides all necessary components, including  It provides all necessary components, including 
 off-shell (dependent on the transverse momenta) production off-shell (dependent on the transverse momenta) production
Line 50: Line 50:
  
 The calculations using PEGASUS include a few general steps common for all of the processes. The calculations using PEGASUS include a few general steps common for all of the processes.
-When PEGASUS is running, one can select the colliding particles, proton-proton or proton-antiproton,  +When PEGASUS is running, one can select the colliding particles, proton-protonproton-antiproton, proton-nucleus or electron-proton,  
-and set their center-of-mass energy. The default setting corresponds to the LHC Run II setup.+and set beam energies. The default setting corresponds to the LHC Run II setup.
 Then one can select factorization scheme (TMD or collinear one) for each of the colliding particles, choose corresponding parton density function and set the parameters, important  Then one can select factorization scheme (TMD or collinear one) for each of the colliding particles, choose corresponding parton density function and set the parameters, important 
 for further Monte-Carlo simulation, namely, number of iterations and number of simulated events per iteration. for further Monte-Carlo simulation, namely, number of iterations and number of simulated events per iteration.
Line 65: Line 65:
   * If there are several contributing subprocesses, there is a possibility to immediately jump to the next one (via //Calculation -> Next// option in main menu or appropriate button on button panel or popup menu) during the calculations.   * If there are several contributing subprocesses, there is a possibility to immediately jump to the next one (via //Calculation -> Next// option in main menu or appropriate button on button panel or popup menu) during the calculations.
  
-The generated events can be accumulated in Les Houches Event (''*.lhe'') file and/or presented in [[pegasus:plotter|PEGASUS Plotter]]. Using the latter, one can save the results in a some internal format (''*.pplot'') or as a simple plain data (compatible, for example, with [[http://www.gnuplot.info|Gnuplot]] package) or export them to an image (''*.pdf'', ''*.png'', ''*.jpg'' or ''*.bmp'').+The generated events can be accumulated in Les Houches Event (''*.lhe'') file and/or presented in [[pegasus:plotter|PEGASUS Plotter]]. Using the latter, one can save the results in a some internal format (''*.pplot'') or as a simple plain data (compatible, for example, with [[http://www.gnuplot.info|Gnuplot]] package) or export them to an image (''*.pdf'', ''*.png'', ''*.jpg'' or ''*.bmp'').
  
 ===== Implemented TMD gluon densities in a proton ===== ===== Implemented TMD gluon densities in a proton =====
  
 ^ Set      ^  Order of a<sub>s</sub>      ^  N<sub>f</sub>  ^  QCD scale [MeV]  ^  Reference  ^ ^ Set      ^  Order of a<sub>s</sub>      ^  N<sub>f</sub>  ^  QCD scale [MeV]  ^  Reference  ^
 +| LLM (CCFM)  |  2  |  4  |  200  |  [[https://arxiv.org/abs/2211.03727|A.V. Lipatov, G.I. Lykasov, M.A. Malyshev]]  |
 | A0 (CCFM)  |  1  |  4  |  250  |  [[https://arxiv.org/abs/hep-ph/0411287|H. Jung]]  | | A0 (CCFM)  |  1  |  4  |  250  |  [[https://arxiv.org/abs/hep-ph/0411287|H. Jung]]  |
 | B0 (CCFM)  |  1  |  4  |  250  |  [[https://arxiv.org/abs/hep-ph/0411287|H. Jung]]  | | B0 (CCFM)  |  1  |  4  |  250  |  [[https://arxiv.org/abs/hep-ph/0411287|H. Jung]]  |
 | JH'2013 set 1 (CCFM)  |  2  |  4  |  200  |  [[https://arxiv.org/abs/1312.7875|F. Hautmann, H. Jung]]  | | JH'2013 set 1 (CCFM)  |  2  |  4  |  200  |  [[https://arxiv.org/abs/1312.7875|F. Hautmann, H. Jung]]  |
 | JH'2013 set 2 (CCFM)  |  2  |  4  |  200  |  [[https://arxiv.org/abs/1312.7875|F. Hautmann, H. Jung]]  | | JH'2013 set 2 (CCFM)  |  2  |  4  |  200  |  [[https://arxiv.org/abs/1312.7875|F. Hautmann, H. Jung]]  |
-KMR (MMHT'2014)  |  1  |  5  |  211  |  [[https://arxiv.org/abs/hep-ph/9911379|M.A. Kimber, A.D. Martin, M.G. Ryskin]] \\ [[https://arxiv.org/abs/hep-ph/0306169|G. Watt, A.D. Martin, M.G. Ryskin]]   | +KLSZ'2020 (KMR)  |  1  |  4  |  143  |  [[https://arxiv.org/abs/1911.01445|A.V. Kotikov, A.V. Lipatov, B.G. Shaikhatdenov, P. Zhang]]   | 
-| KMR (NNPDF3.1)  |  1  |  5  |  167  |  [[https://arxiv.org/abs/hep-ph/9911379|M.A. Kimber, A.D. Martin, M.G. Ryskin]] \\ [[https://arxiv.org/abs/hep-ph/0306169|G. Watt, A.D. Martin, M.G. Ryskin]]   | +| PB NLO set 1  |  2  |  4  |  118  |  [[https://arxiv.org/abs/1804.11152|F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik]]   | 
-KMR (DAS set 1)  |  1  |  4  |  143  |  [[https://arxiv.org/abs/1911.01445|A.V. Kotikov, A.V. Lipatov, B.G. Shaikhatdenov, P. Zhang]]   | +| PB NLO set 2  |  2  |  4  |  118  |  [[https://arxiv.org/abs/1804.11152|F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik]]   |
-| KMR (DAS set 2)  |  1  |  4  |  143  |  [[https://arxiv.org/abs/1911.01445|A.V. Kotikov, A.V. Lipatov, B.G. Shaikhatdenov, P. Zhang]]   | +
-| PB NLO set 1  |  2  |  4  |  118  |  [[https://arxiv.org/abs/1704.01757|F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik]]   | +
-| PB NLO set 2  |  2  |  4  |  118  |  [[https://arxiv.org/abs/1704.01757|F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik]]   |+
  
 The A0+, A0-, B0+, B0-, JH'2013 set 1(2)+ and JH'2013 set 1(2)- distributions, needed The A0+, A0-, B0+, B0-, JH'2013 set 1(2)+ and JH'2013 set 1(2)- distributions, needed
 to estimate the scale uncertainties of the CCFM-based calculations, are not shown in the Table. to estimate the scale uncertainties of the CCFM-based calculations, are not shown in the Table.
 +In principle, any other TMD gluon density in a proton could be used: 
 +one just have to upload it from the separate data file prepared in the standard [[https://arxiv.org/abs/1407.5935|uPDFevolv]] routine format.
  
 ===== Strong coupling and masses of particles ===== ===== Strong coupling and masses of particles =====
Line 89: Line 89:
 with respect to the number of active flavors and QCD scale. with respect to the number of active flavors and QCD scale.
 This choice is done automatically with the choice of the TMD and/or conventional This choice is done automatically with the choice of the TMD and/or conventional
-parton densities in a proton. There is no possibility to change it manually since this setup is essential for determination of corresponding parton distributions.+parton densities. There is no possibility to change it manually since this setup is essential for determination of corresponding parton distributions.
  
 The masses of all particles (quarks, gauge bosons, heavy quarkonia etc), The masses of all particles (quarks, gauge bosons, heavy quarkonia etc),
Line 108: Line 108:
   * Polarization information is not preserved.   * Polarization information is not preserved.
   * A parton carries a tag according to the standard [[http://pdg.lbl.gov/|Particle Data Group]] numbering scheme.   * A parton carries a tag according to the standard [[http://pdg.lbl.gov/|Particle Data Group]] numbering scheme.
-  * Conventional (collinear) parton densities in a proton are numbered according to the [[https://lhapdf.hepforge.org|LHAPDF]] scheme, while TMD parton distributions are numbered according to the [[https://tmdlib.hepforge.org|TMDLib]] package.+  * Conventional (collinear) parton densities in a proton and nuclei are numbered according to the [[https://lhapdf.hepforge.org|LHAPDF]] scheme, while TMD parton distributions are numbered according to the [[https://tmdlib.hepforge.org|TMDLib]] package.
  
 The produced ''*.lhe'' file can then be processed with an external program to introduce some peculiar event selection, [[pegasus:showering| to include parton showers, to hadronize the final particles]], etc. It is found The produced ''*.lhe'' file can then be processed with an external program to introduce some peculiar event selection, [[pegasus:showering| to include parton showers, to hadronize the final particles]], etc. It is found
Line 129: Line 129:
 We are also grateful to Maria Mikova, Natalia Ovechkina and Anastasia Zotova for their support and help for the design of the program. We are also grateful to Maria Mikova, Natalia Ovechkina and Anastasia Zotova for their support and help for the design of the program.
  
-Contributions to the physics in PEGASUS were provided by Anatoly Kotikov (JINR, Dubna) and  +Contributions to the physics in PEGASUS were provided by Anatoly Kotikov (JINR, Dubna),   
-Nizami Abdulov (MSUMoscow). We thank Vladimir Lyubushkin (JINR, Dubna),  +Gennady Lykasov (JINRDubnaand Nizami Abdulov. We thank Vladimir Lyubushkin (JINR, Dubna) and Alsu Bagdatova (LPI, Moscow), who contributed significantly to the functionality and stability of PEGASUS.
-who contributed significantly to the functionality and stability of PEGASUS.+
  
 We are especially grateful to Nikolai Zotov, who guided and supervised our first steps in High Energy Physics,  We are especially grateful to Nikolai Zotov, who guided and supervised our first steps in High Energy Physics, 
 who encouraged our progress in k<sub>t</sub>-factorization and whose enthusiasm consolidated our group. Nikolai Zotov passed away on January 2016. Our work is dedicated to his memory. who encouraged our progress in k<sub>t</sub>-factorization and whose enthusiasm consolidated our group. Nikolai Zotov passed away on January 2016. Our work is dedicated to his memory.
  
pegasus/overview.1592305582.txt.gz · Last modified: 16/06/2020 14:06 by lipatov