Эквивариантность конволютивных нейросетей относительно групп преобразований входных данных

A.Demichev

March 2021

Mainly based on:

- R. Kondor, et al. "On the generalization of equivariance and convolution in neural networks to the action of compact groups." 2018. ArXiv: 1802.03690
- R. Kondor, et al. "Clebsch-Gordan nets:a fully Fourier space spherical convolutional neural network." 2018,ArXiv: 1806.09231
- there are tens of other work on this topic
- indicated above seems to be most appropriate for the general introduction

Other works:

- T.S. Cohen, M.Geiger, J.Köhler, M.Welling
- S.Ravanbakhsh
- A couple of reviews:
- C.Esteves "Theoretical aspects of group equivariant neural networks", arXiv:2004.05154
- L.D.Libera "Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods", arXiv:1910.14594

Classical CNN

Image

- n_{H} - height; n_{W} - width; $n_{C}-$ width
- f - filter size

Classical CNN (2)

- Input : $a^{[l-1]}$ with size $\left(n_{H}^{[l-1]}, n_{W}^{[l-1]}, n_{C}^{[l-1]}\right), a^{[0]}$ being the image in the input
- Padding : $p^{[l]}$, stride: $s^{[l]}$
- Number of filters : $n_{C}^{[l]}$ where each $K^{(n)}$ has the dimension: $\left(f^{[l]}, f^{[l]}, n_{C}^{[l-1]}\right)$
- Bias of the $n^{\text {th }}$ convolution: $b_{n}^{[l]}$
- Activation function: $\psi^{[l]}$
- Output : $a^{[l]}$ with size $\left(n_{H}^{[l]}, n_{W}^{[l]}, n_{C}^{[l]}\right)$
- мы все эти гиперпараметры рассматривать не будем только саму конволюцию
$\operatorname{conv}\left(a^{[l-1]}, K^{(n)}\right)_{x, y}=\psi^{[l]}\left(\sum_{i=1}^{n_{H}^{[l-1]}} \sum_{j=1}^{n_{W}^{[l-1]}} \sum_{k=1}^{n_{C}^{[l-1]}} K_{i, j, k}^{(n)} a_{x+i-1, y+j-1, k}^{[l-1]}+b_{n}^{[l]}\right)$
- но еще (для простоты) опустим смещение
- я не видел работ, где такие гиперпараметры "восстановлены" для произвольных групп

CNN in Overall

$$
\begin{gathered}
a^{[l]}= \\
{\left[\psi^{[l]}\left(\operatorname{conv}\left(a^{[l-1]}, K^{(1)}\right)\right), \psi^{[l]}\left(\operatorname{conv}\left(a^{[l-1]}, K^{(2)}\right)\right), \ldots, \psi^{[l]}\left(\operatorname{conv}\left(a^{[l-1]}, K^{\left(n_{C}^{[l]}\right)}\right)\right)\right]} \\
\operatorname{dim}\left(a^{[l]}\right)=\left(n_{H}^{[l]}, n_{W}^{[l]}, n_{C}^{[l]}\right)
\end{gathered}
$$

Main peculiarities/features of CNNs

- thanks to the convolution they are equivariant (covariant), including the case of invariance;
- if the input image is translated by any vector $\left(t_{1}, t_{2}\right)$ (i.e., $f^{0^{\prime}}\left(x_{1}, x_{2}\right)=f^{0}\left(x_{1}-t_{1}, x_{2}-t_{2}\right)$, then all higher layers will translate in exactly the same way. This property is called equivariance (sometimes covariance) to translations.
- thanks to the restricted support of the convolution kernel, they are able to generalize details of images
- the same filter is applied to every part of the image
$-\Rightarrow$ if the networks learns to recognize a certain feature, e.g., eyes, in one part of the image, then it will be able to do so in any other part as well
- The number of parameters in CNNs is much smaller than in fully connected feed-forward networks, since we only have to learn the w^{2} numbers defining the χ_{ℓ} filters rather than $O\left(\left(m^{2}\right)^{2}\right)$ weights

Multilayer feed-forward neural network (MFF-NN)

Let $\mathcal{X}_{0}, \ldots, \mathcal{X}_{L}$ be a sequence of index sets, V_{0}, \ldots, V_{L} vector spaces, $\phi_{1}, \ldots, \phi_{L}$ linear maps

$$
\phi_{\ell}: L_{V_{\ell-1}}\left(\mathcal{X}_{\ell-1}\right) \longrightarrow L_{V_{\ell}}\left(\mathcal{X}_{\ell}\right)
$$

- $L_{V}(\mathcal{X}) \stackrel{\text { def }}{\equiv}$ the space of functions $\{f: \mathcal{X} \rightarrow V\}$
- $\sigma_{\ell}: V_{\ell} \rightarrow V_{\ell} \stackrel{\text { def }}{\equiv}$ appropriate pointwise nonlinearities, such as the ReLU operator.
The corresponding multilayer feed-forward NN is then a sequence of maps

$$
f_{0} \mapsto f_{1} \mapsto f_{2} \mapsto \ldots \mapsto f_{L},
$$

where

$$
f_{\ell}(x)=\sigma_{\ell}\left(\phi_{\ell}\left(f_{\ell-1}\right)(x)\right) . \quad x \in \mathcal{X}_{\ell}
$$

- "Flat" neuron indexing is not convenient for consideration of transformations.

Equivariance

Let G be a group and $\mathcal{X}_{1}, \mathcal{X}_{2}$ be two sets with corresponding G-actions

$$
T_{g}: \mathcal{X}_{1} \rightarrow \mathcal{X}_{1}, \quad \quad T_{g}^{\prime}: \mathcal{X}_{2} \rightarrow \mathcal{X}_{2}
$$

Let V_{1} and V_{2} be vector spaces, and \mathbb{T} and \mathbb{T}^{\prime} be the induced actions of G on $L_{V_{1}}\left(\mathcal{X}_{1}\right)$ and $L_{V_{2}}\left(\mathcal{X}_{2}\right)$:

$$
\mathbb{T}_{g}: f \mapsto f^{\prime} \quad f^{\prime}(x)=f\left(T_{g^{-1}}(x)\right)
$$

A (linear or non-linear) map $\phi: L_{V_{1}}\left(\mathcal{X}_{1}\right) \rightarrow L_{V_{2}}\left(\mathcal{X}_{2}\right)$ is G-equivariant if $\forall g \in G$

$$
\phi\left(\mathbb{T}_{g}(f)\right)=\mathbb{T}_{g}^{\prime}(\phi(f)) \quad \forall f \in L_{V_{1}}\left(\mathcal{X}_{1}\right)
$$

Equivariance (2)

- Equivariance is represented graphically by a so-called commutative diagram, in this case

$$
\begin{aligned}
& L_{V_{1}}\left(\mathcal{X}_{1}\right) \xrightarrow{\mathbb{T}_{g}} L_{V_{1}}\left(\mathcal{X}_{1}\right) \\
& \begin{array}{cc}
\stackrel{ }{\downarrow} \\
L_{V_{2}}\left(\mathcal{X}_{2}\right) \xrightarrow{\mathbb{T}_{g}^{\prime}} \xrightarrow{\downarrow} L_{V_{2}}\left(\mathcal{X}_{2}\right)
\end{array}
\end{aligned}
$$

- Any pointwise functions (non-linearity) are trivially equivariant
- Movements in \mathcal{X} commute with pointwise transformation of a function

Equivariant feed-forward network

- Let \mathcal{N} be a feed-forward neural network (MFF-NN) and G be a group that acts on each index space $\mathcal{X}_{0}, \ldots, \mathcal{X}_{L}$.
- Let $\mathbb{T}^{0}, \mathbb{T}^{1}, \ldots, \mathbb{T}^{L}$ be the corresponding actions on $L_{V_{0}}\left(\mathcal{X}_{0}\right), \ldots, L_{V_{L}}\left(\mathcal{X}_{L}\right)$.
- We say that \mathcal{N} is a G-equivariant feed-forward network if,
- when the inputs are transformed $f_{0} \mapsto \mathbb{T}_{g}^{0}\left(f_{0}\right)$ (for any $g \in G$),
- the activations of the other layers correspondingly transform as $f_{\ell} \mapsto \mathbb{T}_{g}^{\ell}\left(f_{\ell}\right)$.
- we have not said whether G and $\mathcal{X}_{0}, \ldots, \mathcal{X}_{L}$ are discrete or continuous.
- in certain cases, - when $\mathcal{X}_{0} \sim$ sphere or other manifolds which does not have a discretization that fully takes into account its symmetries, it is easier to describe the situation in terms of abstract "continuous" neural networks than seemingly simpler discrete
- in any actual implementation of a neural network, the index sets would of course be finite.
- Note also that invariance is a special case of equivariance, where $T_{g}=$ id for all g.

Discretization of a sphere vs. flat spaces

- + Very limited number of discrete subgroups of $S O(3)$

Convolution on groups and quotient spaces

- convolution of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{equation*}
(f * g)(x)=\int f(x-y) g(y) d y \tag{1}
\end{equation*}
$$

- convolution when f and g are functions on a compact group G

$$
\begin{equation*}
(f * g)(u)=\int_{G} f\left(u v^{-1}\right) g(v) d \mu(v) . \quad u, v \in G \tag{2}
\end{equation*}
$$

- For discrete groups the integrals are substituted by sums.

Cosets and quotient spaces

- The set of $g \in G$ that map $x_{0} \mapsto x$ is a so-called left coset $g H:=\{g h \mid h \in H\}$.
- The set of all such cosets forms the (left) quotient space G/H.
$-\Rightarrow \mathcal{X}$ can be identified with G / H.
- $\forall g H$ coset we may pick a coset representative $g^{\prime} \in g H$, and let \bar{x} denote the representative of the coset of group elements that map x_{0} to x.

Convolution on quotient spaces

- The major complication in neural networks is that $\mathcal{X}_{0}, \ldots, \mathcal{X}_{L}$ (spaces that the f_{0}, \ldots, f_{L} activations are defined on) are homogeneous spaces of G, rather than being G itself.
- Let G be a finite or countable group, \mathcal{X} and \mathcal{Y} be (left or right) quotient spaces of $G, f: \mathcal{X} \rightarrow \mathbb{C}$, and $g: \mathcal{Y} \rightarrow \mathbb{C}$.
- We then define the convolution of f with g as

$$
\begin{equation*}
(f * g)(u)=\sum_{v \in G} f \uparrow^{G}\left(u v^{-1}\right) g \uparrow^{G}(v), \quad u, v \in G, \tag{3}
\end{equation*}
$$

- given $f: \mathcal{X} \rightarrow \mathbb{C}$, we define the lifting $f \uparrow{ }^{G}(g)=f\left(g\left(x_{0}\right)\right), \quad x=g\left(x_{0}\right)$ for some "origin" x_{0}.
- roughly: $f \uparrow^{G}(g)$ is const on $g H$
- Thus in this case: $f * g: G \rightarrow \mathbb{C}$. In general, this is not what we are looking for.

Convolution on quotient spaces (2)

- We need that the convolution on quotient space maps functions on one homogeneous (transitive, quotient) space G / H to another also some homogeneous space G / K, i.e. $f \mapsto f * g$ is a map from functions on $\mathcal{X}=G / H$ to functions on $\mathcal{Y}=H / K$. The solution:
- If $f: G / H \rightarrow \mathbb{C}$, and $g: H \backslash G / K \rightarrow \mathbb{C}$ then we define the convolution of f with g as $f * g: G / K \rightarrow \mathbb{C}$ with

$$
\begin{equation*}
(f * g)(x)=|H| \sum_{y \in H \backslash G} f\left(\left[\overline{x y}^{-1}\right]_{G / H}\right) g\left([\bar{y}]_{H \backslash G / K}\right) . \tag{4}
\end{equation*}
$$

- $x=\bar{x} x_{0}, \quad y=\bar{y} y_{0}$
- $[x]_{G / H}$ - projection from G to G / H
- All this looks very complicated. Fortunately, for specific implementations, there are methods that simplify calculations.

Convolution on quotient spaces (3)

Most important:
$\mathbf{f} \quad \mathbf{g} \quad\left(\mathbf{f}^{*} \mathbf{g}\right)$
G/H H\G/K

- Dimensionality: e.g. $S^{2}=S O(3) / S O(2) \rightarrow S^{2}=S O(3) / S O(2) \Rightarrow 1$ D-filter $S O(2) \backslash S O(3) / S O(2)$

Main theorem (Risi Kondor \& Shubhendu Trivedi)

- Let G be a compact group and \mathcal{N} be an $L+1$ layer feed-forward neural network
- in which the ℓ 'th index set is of the form $\mathcal{X}_{\ell}=G / H_{\ell}$,
- where H_{ℓ} is some subgroup of G.
- Then \mathcal{N} is equivariant to the action of G if and only if it is a G-CNN.
- G-CNN: each of the linear maps $\phi_{1}, \ldots, \phi_{L}$ in \mathcal{N} is a generalized convolution of the form

$$
\phi_{\ell}\left(f_{\ell-1}\right)=f_{\ell-1} * \chi_{\ell}
$$

with some filter $\chi_{\ell} \in L_{V_{\ell-1} \times V_{\ell}}\left(H_{\ell-1} \backslash G / H_{\ell}\right)$.

Convolution and Fourier analysis

- the Fourier transform of a function f on a (countable) group is defined

$$
\begin{equation*}
\widehat{f}\left(\rho_{i}\right)=\sum_{u \in G} f(u) \rho_{i}(u), \quad i=0,1,2, \ldots, \tag{5}
\end{equation*}
$$

- where $\rho_{0}, \rho_{1}, \ldots$ are matrix valued functions called irreducible representations (irreps) of G.
- As expected, the generalization of this to the case when f is a function on $G / H, H \backslash G$ or $H \backslash G / K$ is

$$
\widehat{f}\left(\rho_{i}\right)=\sum_{u \in G} \rho_{i}(u) f \uparrow^{G}(u), \quad i=1,2, \ldots
$$

- For details see, e.g. Н.Я. Виленкин "Специальные функции и теория представлений групп"

Convolution theorem on groups

- Let G be a compact group, H and K subgroups of G, and f, g be complex valued functions on $G, G / H, H \backslash G$ or $H \backslash G / K$.
- In any combination of these cases,

$$
\begin{equation*}
\widehat{f * g}\left(\rho_{i}\right)=\widehat{f}\left(\rho_{i}\right) \widehat{g}\left(\rho_{i}\right) \tag{6}
\end{equation*}
$$

for any given system of irreps $\mathcal{R}_{G}=\left\{\rho_{0}, \rho_{1}, \ldots\right\}$.

- Thus for the Fourier transform the convolution becomes the usual (matrix) multiplication.
- Now we can guess how to implement G-CNN if one starts from continuous groups: just cut off the Fourier transform series at L-th term.

Fourier transformed G-CNN on the example of S^{2}

- The simplest example of possible practical applications images from cameras on quadcopters
- but also it is possible that it can be applied in astrophysics (?)

- Based on the cited paper by Kondor et al.
- differs from the pioneering papers by Cohen et al. in a number peculiarities, the main being non-linearities right in Fourier transformed space
- Cohen et al. perform point-wise nonlinear mapping in real space moving back and forth between real space and the Fourier domain that comes at a significant cost and leads to a range of complications including numerical errors.

Convolutions on the sphere (1)

- On $f^{s}: \mathbb{Z}^{2} \rightarrow \mathbb{R}$, (with f^{0} being the input image), the neurons compute f^{s} by taking the cross-correlation of the previous layer's output with a small (learnable) filter h^{s},

$$
\begin{equation*}
\left(h^{s} \star f^{s-1}\right)(x)=\sum_{y} h^{s}(y-x) f^{s-1}(y) \tag{7}
\end{equation*}
$$

and then applying a nonlinearity σ, such as the Re-LU operator:

$$
\begin{equation*}
f^{s}(x)=\sigma\left(\left(h^{s} \star f^{s-1}\right)(x)\right) . \tag{8}
\end{equation*}
$$

- cross-correlation differs from the convolution by the order of arguments and despite their name, that is what CNNs actually compute.

Convolutions on the sphere (2)

- On S^{2} cross-correlations $h \star f$ is defined as a function on the rotation group itself, i.e.,
$(h \star f)(R)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-\pi}^{\pi}\left[h_{R}(\theta, \phi)\right]^{*} f(\theta, \phi) \cos \theta d \theta d \phi \quad R \in \mathrm{SO}(3)$,
where h_{R} is h rotated by R, expressible as

$$
\begin{equation*}
h_{R}(x)=h\left(R^{-1} x\right) \tag{10}
\end{equation*}
$$

with x being the point on the sphere at position (θ, ϕ)

- General result by Kondor-Trivedi: if $h, g: G / H \rightarrow \mathbb{R}$, $(h \star f): G \rightarrow \mathbb{R}$

Fourier space filters and cross-correlation

- spherical harmonic expansions

$$
\begin{equation*}
f(\theta, \phi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \widehat{f}_{\ell}^{m} Y_{\ell}^{m}(\theta, \phi) ; \quad h(\theta, \phi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \widehat{h}_{\ell}^{m} Y_{\ell}^{m}(\theta, \phi) \tag{11}
\end{equation*}
$$

- Fourier series on the sphere:

$$
\widehat{f}_{\ell}^{m}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-\pi}^{\pi} f(\theta, \phi) Y_{\ell}^{m}(\theta, \phi) \cos \theta d \theta d \phi
$$

and similarly for h.

- for $g: \mathrm{SO}(3) \rightarrow \mathbb{C}$ the Fourier transform is the collection of matrices

$$
\begin{equation*}
G_{\ell}=\frac{1}{4 \pi} \int_{\mathrm{SO}(3)} g(R) \rho_{\ell}(R) d \mu(R) \quad \ell=0,1,2, \ldots \tag{12}
\end{equation*}
$$

where ρ_{ℓ} are fixed matrix valued functions $=$ irreducible representations of $\mathrm{SO}(3)$ (Wigner D-matrices).

Fourier space filters and cross-correlation (2)

- Important: Fourier transform of the convolution can be expressed as the outer product of the corresponding \widehat{f}_{ℓ} and $\widehat{h}_{\ell}^{\dagger}$ vectors:

$$
\begin{equation*}
[\widehat{h \star f}]_{\ell}=\widehat{f}_{\ell} \cdot \hat{h}_{\ell}^{\dagger} \quad \ell=0,1,2, \ldots, L \tag{13}
\end{equation*}
$$

- Here we used a convenient notation: h_{ℓ} as $2 \ell+1$-dimensional vector (similarly for any analogous quantities, e.g., f_{ℓ})
- Analogously, for functions on $S O$ (3) the resulting cross-correlation formula is almost exactly the same:

$$
\begin{equation*}
[\widehat{h \star f}]_{\ell}=F_{\ell} \cdot H_{\ell}^{\dagger} \quad \ell=0,1,2, \ldots, L \tag{14}
\end{equation*}
$$

apart from the fact that now F_{ℓ} and H_{ℓ} are matrices

Generalized spherical CNNs

- The central observation: under rotation of input data for a layer

$$
\begin{align*}
\widehat{f_{\ell}} & \mapsto \rho_{\ell}(R) \cdot \widehat{f_{\ell}} \tag{15}\\
{[\widehat{h \star f}]_{\ell} } & \mapsto \rho_{\ell}(R) \cdot[\widehat{h \star f}]_{\ell} . \tag{16}
\end{align*}
$$

$\rho_{\ell}(R)=$ Wigner D-matrix

- Similarly, if $f^{\prime}, h^{\prime}: \mathrm{SO}(3) \rightarrow \mathbb{C}$, then $\widehat{h^{\prime} \star f^{\prime}}$ (as defined in (14)) transforms the same way.
- Let \mathcal{N} be an $S+1$ layer feed-forward neural network whose input is a spherical function $f^{0}: S^{2} \rightarrow \mathbb{C}^{d}$.
- We say that \mathcal{N} is a generalized $\mathrm{SO}(3)$-covariant spherical CNN if the output of each layer s can be expressed as a collection of vectors

Generalized spherical CNNs (2)

- here each $\widehat{f}_{\ell, j}^{s} \in \mathbb{C}^{2 \ell+1}$ is a ρ_{ℓ}-covariant vector in the sense that if the input image is rotated by some rotation R, then $\widehat{f}_{\ell, j}^{s}$ transforms as

$$
\begin{equation*}
\widehat{f}_{\ell, j}^{s} \mapsto \rho(R) \cdot \widehat{f}_{\ell, j}^{s} . \tag{18}
\end{equation*}
$$

- We call the individual $\widehat{f}_{\ell, j}^{s}$ vectors the irreducible fragments of \widehat{f}^{s}, and the integer vector $\tau^{s}=\left(\tau_{0}^{s}, \tau_{1}^{s}, \ldots, \tau_{L}^{s}\right)$ counting the number of fragments for each ℓ the type (multiplicity (?)) of \hat{f}^{s}.
- each individual \widehat{f}_{ℓ}^{s} fragment is effecively a separate channel.
- any $\mathrm{SO}(3)$-covariant spherical CNN is equivariant to rotations
- the terms "equivariant" and "covariant" map to the same concept.
- In this work the term "equivariant" is used when one has the same group acting on two objects in a way that is qualitively similar (functions \leftrightarrow cross-correlation). The term "covariant" is used if the actions are qualitively different (functions \leftrightarrow irreducible fragments).

Generalized spherical CNNs (3)

- To fully define our neural network, one need to describe three things:

1. The form of the linear transformations in each layer involving learnable weights,
2. The form of the nonlinearity in each layer,
3. The way that the final output of the network can be reduced to a vector that is rotation invariant \rightarrow ultimate goal.

Covariant linear transformations

- Let \widehat{f}^{s} be an $\mathrm{SO}(3)$-covariant activation function of the form (17), and $\widehat{g}^{s}=\mathcal{L}\left(\widehat{f}^{s}\right)$ be a linear function of \widehat{f}^{s} written in a similar form.
- Then \widehat{g}^{s} is $\mathrm{SO}(3)$-covariant iff each $\widehat{g}_{\ell, j}^{s}$ fragment is a linear combination of fragments from \hat{f}^{s} with the same ℓ.
- In other words, it should not entangle irreps with different ℓ.
- With the account of possible multiplicity:

$$
G_{\ell}^{s}=F_{\ell}^{s} W_{\ell}^{s} \quad \ell=0,1,2, \ldots, L
$$

- the Fourier space cross-correlation formulae (13) and (14) are special cases of (19) corresponding to taking $W_{\ell}=\hat{h}_{\ell}^{\dagger}$ or $W_{\ell}=H_{\ell}^{\dagger}$.
- The case of general W_{ℓ} does not have such an intuitive interpretation in terms of cross-correlation.

Covariant nonlinearities: the Clebsch-Gordan transform

- The non-linearity in a real space does not destruct equivariance because of its (non-linearity) point-wise nature
- If one performs the non-linear (namely, quadratic) transformation in the Fourier space, the covariance is provided by the decomposition of the resulting quantity into irreps:
- Let $\widehat{f}_{\ell_{1}}$ and $\widehat{f}_{\ell_{2}}$ be two $\rho_{\ell_{1}}$ resp. $\rho_{\ell_{2}}$ covariant vectors, and ℓ be any integer between $\left|\ell_{1}-\ell_{2}\right|$ and $\ell_{1}+\ell_{2}$. Then

$$
\begin{equation*}
\widehat{g}_{\ell}=C_{\ell_{1}, \ell_{2}, \ell}^{\top}\left[\widehat{f}_{\ell_{1}} \otimes \widehat{f}_{\ell_{2}}\right] \tag{20}
\end{equation*}
$$

is a ρ_{ℓ}-covariant vector. Here $C_{\ell_{1}, \ell_{2}, \ell}$ are the Clebsch-Gordan coefficients

- With the account of possible multiplicities the expression becomes a bit more complicated

$$
\begin{equation*}
G_{\ell}^{s}=\bigsqcup_{\left|\ell_{1}-\ell_{2}\right| \leq \ell \leq \ell_{1}+\ell_{2}} C_{\ell_{1}, \ell_{2}, \ell}^{\top}\left[F_{\ell_{1}}^{s} \otimes F_{\ell_{2}}^{s}\right], \tag{21}
\end{equation*}
$$

where \sqcup denotes merging matrices horizontally.

- This is not important for us for now.

Covariant nonlinearities: justification

- One potential drawback of Cohen's et al. "Spherical CNNs" is that the nonlinear transform in each layer still needs to be computed in "real space".
- \Rightarrow each layer of the network involves a forward and a backward SO(3) Fourier transform,
- relatively costly
- is a source of numerical errors, especially since S^{2} and $S O(3)$ do not admit any regular discretization
- here everything in the Fourier domain
- can it meaningful from the "real space" point of view?

Covariant nonlinearities: justification (2)

- can it meaningful from the "real space" point of view? \rightarrow it seems YES
- S.O.Ayat et al. "Spectral-based convolutional neural network without multiple spatial-frequency domain switchings" Neurocomputing 364 (2019) 152-167
- main idea: $c_{1}(\widehat{f} \star \widehat{f})+c_{2} \widehat{f}+c_{3} \quad \rightarrow \quad c_{1}(f \cdot f)+c_{2} f+c_{3}$

Final invariant layer

- After the $S-1$ 'th layer, the activations of the network will be a series of matrices $F_{0}^{S-1}, \ldots, F_{L}^{S-1}$, each transforming under rotations according to $F_{\ell}^{S-1} \mapsto \rho_{\ell}(R) F_{\ell}^{S-1}$.
- Ultimately, however, the objective of the network is to output a vector that is invariant with respect rotations, i.e., a collection of scalars.
- this simply corresponds to the $\widehat{f}_{0, j}^{S}$ fragments, since the $\ell=0$ representation is constant, and therefore the elements of F_{0}^{S} are invariant.
- Thus, the final layer can be similar to the earlier ones, except that it only needs to output this single (single row) matrix.

Summary of the algorithm

- The inputs to the network are $n_{\text {in }}$ functions $f_{1}^{0}, \ldots, f_{n_{i n}}^{0}: S^{2} \rightarrow \mathbb{C}$.
- E.g., for spherical color images, $f_{1}^{0}, f_{2}^{0}, f_{3}^{0}=$ red, green and blue
- The activation of layer $s=0$ is the union of the spherical transforms up to some band limit (resolution) L :

$$
\begin{equation*}
\left[\widehat{\hat{f}}_{\ell, j}^{0}\right]_{m}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-\pi}^{\pi} f_{j}^{0}(\theta, \phi)^{*} Y_{\ell}^{m}(\theta, \phi) \cos \theta d \theta d \phi \tag{22}
\end{equation*}
$$

- For layers $s=1,2, \ldots, S-1$, the Fourier space activation $\widehat{f}^{s}=\left(F_{0}^{s}, F_{1}^{s}, \ldots, F_{L}^{s}\right)$

$$
\begin{equation*}
G_{\ell_{1}, \ell_{2}}^{s}=F_{\ell_{1}}^{s-1} \otimes F_{\ell_{2}}^{s-1} \quad 0 \leq \ell_{1} \leq \ell_{2} \leq L \tag{23}
\end{equation*}
$$

- decomposing into ρ_{ℓ}-covariant blocks by

$$
\begin{equation*}
\left[G_{\ell_{1}, \ell_{2}}^{s}\right]_{\ell}=C_{\ell_{1}, \ell_{2}, \ell}^{\dagger} G_{\ell_{1}, \ell_{2}}^{s}, \tag{24}
\end{equation*}
$$

Summary of the algorithm (2)

- All $\left[G_{\ell_{1}, \ell_{2}}^{s}\right]_{\ell}$ blocks with the same ℓ are concatenated into a large matrix $H_{\ell}^{s} \in \mathbb{C}^{(2 \ell+1) \times \overline{\tau_{\ell}^{s}}}$, and this is multiplied by the weight (learnable) matrix $W_{\ell}^{s} \in \mathbb{C}^{\overline{\tau^{s}} \times \tau_{\ell}^{s}}$ to give

$$
\begin{equation*}
F_{\ell}^{s}=H_{\ell}^{s} W_{\ell}^{s} \quad \ell=0,1, \ldots, L \tag{25}
\end{equation*}
$$

- The operation of the final layer S is similar, except that the output type is $\tau^{S}=\left(n_{\text {out }, 0,0, \ldots, 0}\right)$, so components with $\ell>0$ do not need to be computed. By construction, the entries of $F_{0}^{s} \in \mathbb{C}^{1 \times n_{\text {out }}}$ are $\mathrm{SO}(3)$-invariant scalars, i.e., they are invariant to the simulatenous rotation of the $f_{1}^{0}, \ldots, f_{n_{\text {in }}}^{0}$ inputs.
- These scalars may be passed on to a fully connected network or plugged directly into a loss function.

Experiments: Rotated MNIST on the Sphere

- NR/NR = both the training and test sets were not rotated;
- $N R / R=$ the training set was not rotated while the test was randomly rotated;
- $\mathrm{R} / \mathrm{R}=$ both the training and test sets were rotated

Method	NR/NR	NR/R	R/R
Baseline CNN	97.67	22.18	12
Cohen et al.	95.59	94.62	93.4
Kondor et al.	96.4	96	96.6

- Other experiments:
- Atomization Energy Prediction
- 3D Shape Recognition
- \rightarrow good performance

