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MOTIVATIONS

In 1970, Bellman and Zadeh (Bellman, Zadeh, 1970)
suggested using fuzzy set theory to solve multicrite-
ria choice problems. Criteria reduction is considered
as an operation with fuzzy sets using analogues of
set-theoretic operations on them. The decision maker
chooses an operation on fuzzy sets after evaluating his
potential actions. In this work, Bellman and Zadeh use
the minimum and maximum functions as the AND and
OR connectives corresponding to the intersection and
union of goals. These connectives later became known
as rigid. However, experiments have shown that this
preset does not always reflect the behavior of the de-
cision maker (Thole, Zimmermann, Zysno, 1979). This
circumstance gave impetus to the search for alterna-
tive connectives. The use of the latter has fully justified
itself, for example, when describing complex linguistic
categories (Zimmermann, Zysno, 1983). It was shown
that logical connectives with a compensation effect are
more effective from the point of view of control. Such
connectives are the average values between the maxi-
mum and minimum and are called soft connectives.
Summing up the study of averaging operations, Zim-
merman lists the most studied generalized averages in
terms of applications (Zimmerman, 2010): arithmetic
and geometric means, symmetric sum and difference,
“fuzzy and” and “fuzzy or”, compensatory AND and
OR, convex combinations of maximum and minimum,
of products and sums, OWA-operators.
Bobyr (Bobyr, 2018) justified the use of soft connectives
in machine learning models and presented the results
of computer experiments. The use of a hard minimum
in traditional fuzzy inference algorithms does not allow
obtaining satisfactory indicators of model accuracy. The
main reason is that the minimum has a specific nature
of the value dependence on the argument. When the
critical value is crossed, the uniform increase in values
is abruptly replaced by a loss of dependence. Due to
this, dead zones of the ML model are formed.
There are two standard tricks to solve this problem. The
first one is to decrease the angle between the tangents
at the break point (for the minimum function, this angle
is 45o). The second one is the smoothing of the function.
However, there are two other circumstances that nega-
tively affect the quality of the model using soft connec-
tives: possible violation of monotonicity in arguments
and non-associativity. The latter is inevitable, since
all smooth averages are non-associative (Aczel, 1969).
So, the main problem of soft computing is that there
is no monotonic, smooth, and associative soft connec-
tives. The classical approach to solving this problem is
to use a one-parameter family of soft connectives ap-
proximating the minimum. The optimal parameter for
the accuracy of the ML model is selected experimen-
tally.
The general disadvantage of the used approximations
is the impossibility of independent influence on the be-
havior near the smoothing point and on the measure of
non-associativity. We suggest using a spline to smooth
the minimum with the smallest possible deviation from
associativity.
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Definition. A soft signum is a family of functions
φδ(z) converging pointwise to the function sgn(z) as
δ → 0 on the interval [−1, 1].
Definition. A soft minimum is a function of the form

minδ(x, y) =
x + y − (x− y)φδ(x− y)
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When choosing the optimal parameter, two trends
collide. On the one hand, softening eliminates a
sharp change in the growth rate of values, but on the
other hand, a soft minimum is increasingly different
from an associative operation. The latter becomes a
negative factor for the learning process. The smaller
the angle between the tangents, the greater the dif-
ference. The optimal parameter δ is the compromise
between two tendencies.
In an attempt to get closer to the signum, reducing
the non-associativity, one has to increase the curva-
ture of the mean value at the diagonal point. The
reason is the particular choice of approximation in
the form of smooth functions of a fixed type. In these
classes of functions, there is no possibility to improve
one factor by fixing another. For this to be possi-
ble, the value of the derivative at zero should not
affect the behavior of the generalized signum out-
side some neighborhood of zero. We suggest using
the spline method. The soft signum must be an odd
C1-function and consist of two splines on the interval
[0, 1]. The first spline is responsible for the curvature,
the second one generates a connective that differs
little from the associative one. As a parameter, we
choose the value of the derivative of the soft signum
at zero. In addition, it is necessary to guarantee the
commutativity, monotonicity, and pointwise conver-
gence to signum of the generated connectives.
Definition. A function φk is k-admitted, k > 0, if the
properties hold
1. φk ∈ C1[−1, 1].
2. There exists z0 ∈ [0, 1] such that φ(z) = kz for
z ∈ [−z0, z0].
3. For all z ∈ [−1, 1] holds φk(z) + z · φ′

k(z) ≤ 1.
Problem. To find k-admitted function φk0 for which
the measure of non-associativity

∆(φk) =

∫ 1

0

|1− φk(z)|dz

has minimal rate. As k increases, the function φk0

must converge pointwise to the signum.
In this formulation, the problem has an exact solu-
tion.

COMPARISON

Soft sgn type Rate of ∆(φ) Non-associativity Monotonicity

Pegat, 2009 0.5/k + o(1/k) almost all triples yes

Bobyr, 2015 1/k + o(1/k) almost all triples no

Berenji, 1992 0.69/k + o(1/k) almost all triples no

Spline-solution 0.37/k + o(1/k) almost 2/3 of triples yes

Spline-solution

CONCLUSION

In the presented study, a new approach was pro-
posed for constructing connective approximations
for soft computations in machine learning. Instead of
using smooth functions, we suggested using spline
approximations. Thanks to this, the problem of sep-
arating the negative factors that worsen the accu-
racy of ML-models was solved. Such factors include
curvature, non-monotonicity and non-associativity of
soft connectives. We have built a spline-connective
that has a vast area of exact associativity, which was
not previously noticed by specialists. The described
model can be improved in several ways. Due to the
fact that the weight of the curvature factor at the crit-
ical point is not known, one can try to design the
experiment with zero curvature. To do this, it suf-
fices to specify on the segment [−z0, z0] not a lin-
ear dependence, but a monomial of odd degree, for
example, kz3. In this case, for any k the curvature
will remain zero as the rate of decrease of deviation
will drop. What will be the optimal value of the pa-
rameter in this case, needs to be set experimentally.
We can forego the smoothness of a continuous soft
signum outside zero, which will improve the devia-
tion, but form the original problem of a sharp jump
in the dependence on the argument in the neighbor-
hood of the diagonal. Alternatively, you can keep
the break at the critical point by allowing the soft
spline-signum to break at zero, greatly reducing the
deflection. In all proposed variants of modifications,
spline-signums have more advantageous positions
in comparison with regular functional classes of high
smoothness.
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