Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет»

> Физический факультет Кафедра вычислительной физики

Выбор гиперпараметров нейронной сети для решения задач математической физики

Выполнил: Поляков Даниил Николаевич Научный руководитель: Степанова Маргарита Михайловна

Санкт-Петербург, 2023

Введение

- Дифференциальные уравнения:
 - Метод конечных разностей (МКР)
 - Метод конечных элементов (МКЭ)
- Physics-Informed Neural Network (PINN)
- Hyper-Parameter Optimization (HPO)
- Построение и тренировка модели: PyTorch
- Автоматическая оптимизация гиперпараметров: Ray Tune

Цели, поставленные в текущей работе:

- 1. изучить влияние гиперпараметров на сходимость нейронной сети к решению;
- 2. сравнить методы автоматического подбора гиперпараметров;
- 3. исследовать возможность решения уравнения Гельмгольца в пространстве большой размерности.

Решение уравнений с помощью нейронных сетей

$$f\left(\mathbf{x}; u; \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 u}{\partial x_n \partial x_n}\right) = 0, \quad \mathbf{x} \in D, \quad D \subset \mathbb{R}^n$$
$$b(\mathbf{x}, u)|_{\Gamma} = 0$$

В качестве меры ошибки и целевой функции можно использовать взвешенную сумму L^2 норм отклонений (невязок) по уравнению и по границе:

$$\log s = \omega_f \log_f + \omega_b \log_b$$

$$\log s_f = \frac{1}{|N_f|} \sum_{x \in N_f} \left\| f\left(x; \hat{u}; \frac{\partial \hat{u}}{\partial x_1}, \dots, \frac{\partial \hat{u}}{\partial x_n}; \frac{\partial^2 \hat{u}}{\partial x_1 \partial x_1}, \dots, \frac{\partial^2 \hat{u}}{\partial x_n \partial x_n} \right) \right\|^2$$

$$\log s_b = \frac{1}{|N_b|} \sum_{x \in N_b} \left\| b(x, \hat{u}) \right\|^2$$

где ω_f , ω_b — веса; $N_f = [x_1, ..., x_{|N_f|}]$, $N_b = [x_1, ..., x_{|N_b|}]$ — множества точек коллокации (тренировочная выборка) по уравнению и по границе соответственно; $|N_f|$, $|N_b|$ — количества точек; \hat{u} — решение нейронной сети.

Рассматриваем уравнение Гельмгольца размерности *n* на единичном кубе: *n*

$$-\Delta u(\mathbf{x}) - u(\mathbf{x}) = (4\pi^2 n - 1) \cdot \prod_i \sin(2\pi x_i)$$
$$u|_{\Gamma} = 0$$

$$D = \{ \vec{x}: 0 \le x_i \le 1, i = 1, ..., n \}$$

Правая часть уравнения выбрана таким образом, чтобы решение рассчитывалось аналитически для любой размерности: $u(\mathbf{x}) = \prod_{i=1}^{n} \sin(2\pi x_i)$

В решаемой задаче возможно жёсткое форсирование граничного условия (см. след. слайд), поэтому функция ошибки будет состоять только из невязки по уравнению:

$$\operatorname{loss} = \operatorname{MSE}_{f} = \left\langle \left(\Delta u(\mathbf{x}) + u(\mathbf{x}) + (4\pi^{2}n - 1) \cdot \prod_{i}^{n} \sin(2\pi x_{i}) \right)^{2} \right\rangle$$

Структура сети

Рисунок 2. Схема используемой FNN-сети

Количество слоёв L, ширина слоя N, и функция активации σ подлежат подбору. На выходе сети производится форсирование граничного условия. Оно реализуется домножением выходного значения на гладкую функцию, удовлетворяющую граничным условиям:

$$\widetilde{u} = u \cdot \prod_{i}^{n} (x_{i} - 0)(1 - x_{i})$$

Обучающую выборку генерируем двумя способами:

- классическим генератором равномерно распределённых случайных чисел;
- квазислучайным генератором из последовательности Соболя.

При квазислучайной генерации точек гарантируется равномерное заполнение области определения уравнения и каждого батча.

Тестовые точки будем всегда выбирать из классического равномерного распределения. Их количество всегда выбираем равным количеству точек в обучающей выборке.

Рисунок 3. Примеры выборок, сгенерированных двумя генераторами

Гиперпараметры, связанные с процессом обучения:

- |N_f| количество точек в обучающей выборке;
- RNG способ генерации точек в обучающей выборке;
- $|N_{\text{batch}}|$ размер батча;
- *lr* начальная скорость обучения;
- *lr* scheduler планировщик скорости обучения:
 - None;
 - ExponentialLR-0.95;
 - ReduceLROnPlateau-0.1-10;
 - ReduceLROnPlateau-0.5-2.

Гиперпараметры, связанные с архитектурой сети:

- N ширина скрытого слоя (количество нейронов в скрытом слое);
- *L* количество скрытых слоёв;
- *о* функция активации:

• ELU(x) =
$$\begin{cases} x, & x > 0 \\ e^{x} - 1, & x \le 0 \end{cases}$$

• sigmoid(x) = $\frac{1}{1 + e^{-x}}$

•
$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

•
$$\sin(x)$$

$$\circ \quad \frac{\tan^{-1}(x)}{\pi/2}$$

Обучение нейронных сетей проводилось на узлах РЦ ВЦ СПбГУ:

- ручная оптимизация **NVIDIA Tesla P100**, 16 GB;
- автоматическая оптимизация и финальное обучение NVIDIA RTX A6000, 48 GB.

RTX A6000 превосходит Tesla P100 по скорости обучения моделей примерно в 1.8 раз.

Ручная оптимизация гиперпараметров — Методика

Сначала проводим исследование влияния гиперпараметров на сходимость сети в случаях 2-мерной и 5-мерной задач.

Ручная оптимизация гиперпараметров — Результаты

Ручная оптимизация гиперпараметров — Результаты

Таблица 1. Лучшая конфигурация модели для решения 5-мерной задачи, полученная вручную

<i>t</i> , сек	MSE _f	RMSE _u	N	L	σ	$ N_f $	RNG	$ N_{\rm batch} $	lr	lr sched uler
300	8.92E-02	1.52E-03	512	1	sin	10 ⁴	квазисл.	2048	10 ⁻²	None

Ручная оптимизация гиперпараметров — Выводы

- Размер батча имеет относительно низкое влияние на сходимость сети по сравнению с другими параметрами. Однако не следует выбирать размер батча слишком малым.
- При больших значениях *lr* целевая функция быстро понижается на первых итерациях, а затем приобретает осциллирующий вид. При малых *lr* сходимость медленная, но более плавная, а абсолютная точность сети, как правило, выше.
- Использование планировщика *lr* в большинстве случаев предпочтительнее, чем постоянное значение *lr*, и даёт выигрыш по скорости и абсолютной точности. Однако, неправильно подобранные параметры планировщика могут ухудшить результат.
- Увеличение числа точек коллокации не всегда улучшает скорость сходимости, а иногда даже значительно ухудшает её.
- Квазислучайный метод генерации точек превосходит случайный метод, но выигрыш, как правило, заметен при небольшом количестве точек.
- Для рассмотренной задачи лучшую аппроксимацию дают неглубокие сети с 1–2 скрытыми слоями.
- Из рассмотренных функций активации sin превосходит tanh и сильно превосходит все остальные функции.

Суммарное процессорное время, ушедшее на ручную оптимизацию в случае 5-мерной задачи — 24 часа.

Автоматическая оптимизация гиперпараметров (НРО) состоит из двух основных компонентов:

- алгоритм поиска выбирает точку из области гиперпараметров;
- **планировщик** заранее останавливает процесс обучения сети в случае плохой сходимости относительно предыдущих результатов.

Алгоритмы поиска

Самым базовым методом поиска является поиск по сетке. Такой поиск применим только для небольшого набора гиперпараметров.

Улучшение по сравнению с поиском по сетке даёт случайный поиск, который статистически превосходит поиск по сетке, особенно при больших размерностях области поиска.

Байесовская оптимизация — последовательный итерационный алгоритм, основанный на двух компонентах: вероятностной суррогатной модели и функции сбора. В качестве суррогатных моделей традиционно применяются гауссовы процессы и древовидный оцениватель Парзена (TPE). Методы байесовской оптимизации показывают себя лучше случайного поиска и предназначены для оптимизации достаточно ресурсоёмких функций.

Планировщики обучения

Медианная остановка является простейшим методом ранней остановки.

В алгоритме последовательного деления (Successive Halving, SHA) со временем прекращается обучение половины наихудших конфигураций, затем процесс повторяется для оставшихся конфигураций.

HyperBand и Asynchronous Successive Halving (ASHA) являются модификациями метода SHA.

Алгоритмы поиска и планировщики обучения могут работать в комбинации независимо друг от друга. **ВОНВ** — гибрид байесовского поиска и HyperBand.

метода последовательного деления

Для автоматической оптимизации гиперпараметров используем фреймворк Ray Tune:

- алгоритмы поиска: поиск по сетке, случайный поиск, Ax, BayesOptSearch, BOHB, BlendSearch, CFO, Dragonfly, HEBO, HyperOpt, Optuna, SigOpt, Scikit-Optimize, ZOOpt;
- планировщики: ASHA, HyperBand, Median Stopping Rule, Population Based Training (PBT), Population Based Bandits (PB2), BOHB.

Сравнение алгоритмов оптимизации гиперпараметров на примере 5-мерной задачи

N	qlograndint(64, 2048, 32)
L	randint(1, 5)
σ	ELU, sigmoid, tanh, sin, atan
$ N_f $	$10^4, 10^5, 10^6$
$ N_{ m batch} $	qlograndint(64, 32768, 32)
lr	qloguniform(1e-4, 1, 1e-4)
lr	None, ExponentialLR-0.95,
scheduler	ReduceLROnPlateau-0.1-10, ReduceLROnPlateau-0.5-2
t	300 сек
Т	8 часов

Таблица 2. Область поиска и ограничение по времени для всех алгоритмов НРО

Сравнение алгоритмов оптимизации гиперпараметров на примере 5-мерной задачи

RMSE_u $|N_f|$ $|N_{\text{batch}}|$ t, ceĸ MSE_f *lr* scheduler $|N_{\rm cfg}|$ N⁰ Ν L σ lr Случайный поиск 107 300.1 5.0E-02 6.3E-04 1728 sin 10⁵ 160 3.6E-01 ReduceLROnPlateau-0.5-2 5 4.3E-01 1.3E-03 10⁵ 96 10 697 300.0 96 sin 1056 2.2E-01 ReduceLROnPlateau-0.1-10 1 21 304.9 3.2E+00 1.3E-02 1088 10⁶ 128 8.0E-04 6 3 sin None Случайный поиск + ASHAScheduler 1.2E-02 2.6E-04 1216 10⁵ 364 550 300.1 sin 1760 7.9E-01 ReduceLROnPlateau-0.5-2 1593 581 1039 300.1 2.8E-02 2.7E-04 10⁵ 4608 9.5E-01 ReduceLROnPlateau-0.1-10 704 1 sin 5 106 300.1 4.7E-02 4.4E-04 1728 sin 10⁵ 160 3.6E-01 ReduceLROnPlateau-0.5-2 HyperOptSearch 277 300.2 3.3E-01 1.7E-03 768 10⁵ 928 8.1E-03 ReduceLROnPlateau-0.5-2 90 2 sin 4.3E-01 1.3E-03 **10**⁵ 2816 2.1E-01 ReduceLROnPlateau-0.5-2 76 1130 300.1 416 96 1 sin 250 300.2 5.3E-01 2.1E-03 928 sin 10⁵ 1408 2.0E-03 ReduceLROnPlateau-0.5-2 81 2 HyperOptSearch + ASHAScheduler 817 624 300.1 1.1E-02 1.7E-04 928 10⁵ 2016 1.0E+00 ReduceLROnPlateau-0.5-2 sin 1.1E-02 2.3E-04 8.6E-01 1053 548 696 300.1 736 1 sin 10⁵ 1824 ReduceLROnPlateau-0.5-2 607 690 300.1 1.1E-02 1.7E-04 704 10⁵ 1728 9.9E-01 ReduceLROnPlateau-0.5-2 sin BOHB 1695 200.0 4.1E-01 1.4E-03 544 10⁴ 736 1.4E-02 ReduceLROnPlateau-0.1-10 820 2 sin 4.3E-01 ReduceLROnPlateau-0.1-10 1108 223 326 219.5 4.2E-01 1.2E-03 128 sin 10⁵ 736 10⁴ 1059 2561 219.0 4.3E-01 1.2E-03 160 736 7.9E-01 ReduceL ROnPlateau -0.1-10 sin

Таблица З. Лучшие конфигурации модели, полученные алгоритмами НРО

Автоматическая оптимизация гиперпараметров — 2-мерная задача

N	qlograndint(64, 2048, 32)
L	randint(1, 5)
σ	ELU, sigmoid, tanh, sin, atan
$ N_f $	10 ² , 10 ³ , 10 ⁴
$ N_{ m batch} $	qlograndint(64, 32768, 32)
lr	qloguniform(1e-4, 1, 1e-4)
lr	None, ExponentialLR-0.95,
scheduler	ReduceLROnPlateau-0.1-10, ReduceLROnPlateau-0.5-2
t	30 сек
T	1 час

Таблица 4. Область поиска и ограничение по времени для 2-мерной задачи

Таблица 5. Лучшие конфигурации модели, полученные для 2-мерной задачи

$ N_{ m cfg} $	Nº	i	<i>t</i> , сек	MSE _f	RMSE _u	N	L	σ	$ N_f $	$ N_{ m batch} $	lr	<i>lr</i> sched uler
	457	1306	30.0	5.6E-05	1.4E-05	416	2	sin	1000	640	2.8E-02	ReduceLROnPlateau-0.5-2
665	594	1286	30.0	7.8E-05	1.1E-05	672	2	sin	1000	384	1.5E-02	ReduceLROnPlateau-0.5-2
	596	1720	30.0	8.8E-05	1.2E-05	640	2	sin	1000	544	2.0E-02	ReduceLROnPlateau-0.5-2

Автоматическая оптимизация гиперпараметров — 2-мерная задача

График 2.

Зависимость невязки по уравнению и невязки по решению от времени лучшей конфигурации для 2-мерной задачи

Автоматическая оптимизация гиперпараметров — 2-мерная задача

Автоматическая оптимизация гиперпараметров — 2-мерная задача на области [0; 2]

Таблица 6. Область поиска и ограничение по времени для 2-мерной задачи на области [0; 2]

qlograndint(64, 2048, 32)
randint(1, 5)
ELU, sigmoid, tanh, sin, atan
10 ² , 10 ³ , 10 ⁴
qlograndint(64, 32768, 32)
qloguniform(1e-4, 1, 1e-4)
None, ExponentialLR-0.95,
ReduceLROnPlateau-0.1-10, ReduceLROnPlateau-0.5-2
30 сек
1 час

Таблица 7. Лучшие конфигурации модели, полученные для 2-мерной задачи на области [0; 2]

$ N_{\rm cfg} $	Nº	i	<i>t</i> , сек	MSE _f	RMSE _u	N	L	σ	$ N_f $	$ N_{\rm batch} $	lr	<i>lr</i> sched uler
	492	196	30.0	1.2E-03	2.4E-04	1504	2	sin	10 ⁵	640	7.1E-03	ReduceLROnPlateau-0.5-2
660	629	77	30.0	1.3E-03	2.0E-04	1568	2	sin	10 ⁵	160	8.1E-03	ReduceLROnPlateau-0.5-2
	404	267	30.0	1.3E-03	1.6E-04	896	2	sin	105	608	1.2E-02	ReduceLROnPlateau-0.5-2

Автоматическая оптимизация гиперпараметров — 2-мерная задача на области [0; 2]

График 4. Зависимость невязки по уравнению и невязки по решению от времени лучшей конфигурации для 2-мерной задачи на области [0; 2]

Автоматическая оптимизация гиперпараметров — 2-мерная задача на области [0; 2]

Лучшее решение 2-мерной задачи и его отклонение от аналитического решения

Автоматическая оптимизация гиперпараметров — 5-мерная задача

N	qlograndint(64, 2048, 32)
L	randint(1, 5)
σ	ELU, sigmoid, tanh, sin, atan
$ N_f $	$10^4, 10^5, 10^6$
$ N_{ m batch} $	qlograndint(64, 32768, 32)
lr	qloguniform(1e-4, 1, 1e-4)
lr	None, ExponentialLR-0.95,
scheduler	ReduceLROnPlateau-0.1-10, ReduceLROnPlateau-0.5-2
t	300 сек
T	8 часов

Таблица 8. Область поиска и ограничение по времени для 5-мерной задачи

Таблица 9. Лучшие конфигурации модели, полученные для 5-мерной задачи

$ N_{\rm cfg} $	NՉ	i	<i>t</i> , сек	MSE _f	RMSE _u	N	L	σ	$ N_f $	$ N_{\rm batch} $	lr	lr sched uler
	817	624	300.1	1.1E-02	1.7E-04	928	1	sin	10 ⁵	2016	1.0E+00	ReduceLROnPlateau-0.5-2
1053	548	696	300.1	1.1E-02	2.3E-04	736	1	sin	10 ⁵	1824	8.6E-01	ReduceLROnPlateau-0.5-2
	607	690	300.1	1.1E-02	1.7E-04	704	1	sin	10 ⁵	1728	9.9E-01	ReduceLROnPlateau-0.5-2

Автоматическая оптимизация гиперпараметров — 5-мерная задача

Зависимость невязки по уравнению и невязки по решению от времени лучшей конфигурации для 5-мерной задачи

Автоматическая оптимизация гиперпараметров — 5-мерная задача

Автоматическая оптимизация гиперпараметров — 8-мерная задача

N	qlograndint(64, 2048, 32)
L	randint(1, 5)
σ	ELU, sigmoid, tanh, sin, atan
$ N_f $	$10^6, 10^7, 10^8$
$ N_{ m batch} $	qlograndint(64, 32768, 32)
lr	qloguniform(1e-4, 1, 1e-4)
lr	None, ExponentialLR-0.95,
scheduler	ReduceLROnPlateau-0.1-10, ReduceLROnPlateau-0.5-2
t	1800 сек
T	48 часов

Таблица 10. Область поиска и ограничение по времени для 8-мерной задачи

Таблица 11. Лучшие конфигурации модели, полученные для 8-мерной задачи

$ N_{ m cfg} $	Nº	i	<i>t</i> , сек	MSE _f	RMSE _u	N	L	σ	$ N_f $	$ N_{ m batch} $	lr	<i>lr</i> sched uler
	260	60.9	1802.1	3.3E+01	1.5E-02	2016	1	sin	10 ⁶	160	6.8E-02	ExponentialLR-0.95
313	262	60.2	1802.2	3.3E+01	1.5E-02	2016	1	sin	10 ⁶	160	7.1E-02	ExponentialLR-0.95
	273	61.9	1803.0	3.9E+01	1.7E-02	1632	1	sin	10 ⁶	160	7.7E-02	ExponentialLR-0.95

Автоматическая оптимизация гиперпараметров — 8-мерная задача

Зависимость невязки по уравнению и невязки по решению от времени лучшей конфигурации для 8-мерной задачи

Автоматическая оптимизация гиперпараметров — 8-мерная задача

- В ходе работы удалось эффективно использовать средства автоматической оптимизации гиперпараметров (HPO) для подбора конфигурации модели, аппроксимирующей уравнение Гельмгольца. Использование алгоритма ранней остановки позволяет рассмотреть гораздо больше конфигураций, и целесообразно в первую очередь применять его, а для большей точности можно подключить и байесовский алгоритм поиска. Из рассмотренных алгоритмов HPO наилучший результат был получен при комбинации HyperOptSearch + ASHAScheduler.
- Посредством автоматической оптимизации гиперпараметров было получено более точное решение с меньшими ресурсными затратами, чем при ручной оптимизации. Таким образом, средства НРО можно эффективно применять при решении прикладных задач.
- В работе продемонстрирована возможность решения уравнения Гельмгольца посредством нейронных сетей в пространствах больших размерностей (до 8). Однако, при увеличении размерности задачи быстро растут потребности в вычислительных ресурсах, что смягчается возможностью автоматизации процесса.