Генерация показаний наемных детекторов и поиск аномалий в данных с помощью нейронных сетей

> Фитагдинов Роберт ИЯИ РАН, МФТИ DLCP 2024

Космические лучи и широкие атмосферные ливни

Космические лучи (КЛ)- заряженные частицы, прилетающие к нам от далеких космических объектов.

Широкий атмосферный ливень(ШАЛ) - каскад вторичных частиц, вызванный КЛ из-за его взаимодействия с атмосферой Земли.

Из-за невозможности прямого детектирования КЛ и стохастичности распространения ШАЛ, исследование КЛ является тяжелой задачей.

Эксперимент Telescope Array

Эксперимент состоит из 507 сцинтилляционного детектора и 3 флуоресцентных детектора.

Поверхностные детекторы равномерно распределены по решетке 762 км² с расстоянием 1,2 км между каждым детектором.

The surface detector array of the Telescope Array experiment / T. Abu-Zayyad [μ gp.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 2012. — T. 689. — C. 87—97.

Генеративно-состязательная сеть вассерштейна с градиентным штрафом (WGAN-GP)

• WGAN состоит из двух сетей: генератор и критик. Суть обучения GAN состоит в конкуренции этих двух моделей. Генератор производит реалистичные данные, критик пытается отличить реальные от сгенерированных.

- Генерация показаний и поиск аномальных событий на данных полученных с наиболее активного детектора в каждом событии
- 2. Генерация данных нескольких детекторов в каждом событии

Данные наиболее активного детектора

• Данные имеют размер (128, 2)

2 - показания двух каналов детектора

128- количество бинов, на которые разбивается интервал в 2560 нс.

Всего мы располагали около 500к данных, полученных с помощью метода МК, использующего в своей основе различные модели высокоэнергетических взаимодействий. Модели

Схема генеративносостязательной сети для задачи генерации наиболее активного детектора.

а) - схема дискриминатора (150к обучаемых параметров);

b) - схема генератора(180к обучаемых параметров);

Результаты генерации

Алгоритм поиска аномалий

$$L = L_{pixel}(real, fake) + w * L_{disc}(real, fake)$$

- L_{pixel} Сумма по всем элементам разницы реальных и сгенерированных данных
- L_{disc} разница показаний дискриминатора.
- w вес ошибки 2. В нашем случае 0,001

1. Создается случайный шум и подается на вход генератору.

2. Считается функция ошибок от выходных данных генератора и данных переданных алгоритму.

3. С помощью градиентного спуска и автодифференцирования, оптимизируется шум, подаваемый на вход генератору.

4. Пункты 2-3 повторяются некоторое количество раз (количество шагов оптимизации или условия ранней остановки являются гиперпараметрами алгорилма) 05921 9

Поиск аномалий (Результаты)

Результаты для протонов в качестве космического луча с использованием моделей QGSJET-II-03 (Q3 на гистограмме) и QGSJET-II-04 (Q4 на гистограмме) (1 и 4 гистограммы), для реальных данных с эксперимента (2ая гистограмма) и для ядер железа в качестве космического луча (3ая гистограмма) Как видно из гистограмм, наиболее аномальные события присутствуют в наиболее легких частицах. Проанализировав детальней эти события, было обнаружено, что наиболее аномальные события имели низкий азимутальный угол падения космического луча (почти вертикальное падение)

Примеры наиболее аномальных событий

Генерация нескольких детекторов (данные)

Данные по каждому детектору имею 4 канала

- сигнал интегральный (слева)
- время реконструированного плоского фронта (справа, цвет)
- разница реального время детекции ШАЛ и плоского фронта (справа, числовые значения)
- маска сработавших детекторов (nan/ not nan)

Генерация нескольких детекторов (Пример)

13

Η 0 Π КЕ времени детекции ц

функция ошибок

$$t(\vec{R}) = t_0 + t_{\text{plane}}(\vec{R}) + a \times (1 + r/R_L)^{1.5} LDF(r)^{-0.5}$$

ополнительная

$$LDF(r) = \left(\frac{r}{R_m}\right)^{-1.2} \left(1 + \frac{r}{R_m}\right)^{-(\eta - 1.2)} \left(1 + \frac{r^2}{R_1^2}\right)^{-0.6}$$

 $t_{\text{plane}}\left(\vec{R}\right) = \frac{1}{c}\vec{n}\left(\vec{R} - \vec{R}_{\text{core}}\right)$

 $r = \sqrt{\left(\vec{R} - \vec{R}_{\text{core}}\right)^2 - \left(\vec{n}\left(\vec{R} - \vec{R}_{\text{core}}\right)\right)^2}$

 $R_m = 90.0 \text{ m}, R_1 = 1000 \text{ m}, R_L = 30 \text{ m}$

при

Где

Точность фитирования параметров ШАЛ Phi Theta Theta Phi our uopau 40 ວິຍ 200 LIDDal 40 5 200 real real real real

Фитирование углов наклона оси ливня для всех событий (справа) и для событий с зенитным углом более 20 градусов (слева).

Таким образом данная функция ошибок применима только для событий с зенитным углом более 20 градусов

Генерация нескольких детекторов с использованием физической функции ошибок (Пример)

Signal

Time

Time

Спасибо за внимание