8th International Conference on Deep Learning in Computational Physics (DLCP-2023) June 19-21, 2023. SINP MSU & IO RAS, Moscow, Russia

APPLICATION OF MACHINE LEARNING METHODS FOR ANALYZING DATA FROM SEMICONDUCTOR GAS SENSORS IN DYNAMIC TEMPERATURE MODE*

<u>Igor Isaev^{1,2,3}</u>, Kirill Chernov⁴, Nickolay Shchurov^{1,4}, Sergey Dolenko¹, and Valeriy Krivetskiy^{3,5}

¹ D.V. Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, Russia.
 ² Kotelnikov Institute of Radio Engineering and Electronics, RAS, Moscow, Russia.
 ³ Scientific-Manufacturing Complex Technological Centre, Zelenograd, Moscow, Russia

 ⁴ Physics Department, MSU, Moscow, Russia
 ⁵ Chemistry Department, MSU, Moscow, Russia

* The study was carried out at the expense of the grant No. 22-19-00703 from the Russian Science Foundation, https://rscf.ru/en/project/22-19-00703/.

Gas sensor

Schematic design of a semiconductor gas sensor

The principle of operation of the sensor is based on the fact that gas molecules binding to the sensor material affect its conductivity (electrical resistance).

Gas sensor

Schematic design of semiconductor gas sensor

Binding degree depends on:

- □ Type of gas and its concentration
- Sensor material
- □ Temperature

Gas sensor

Schematic design of semiconductor gas sensor

Binding degree depends on:

- Type of gas and its concentration _
- Sensor material
- **Temperature**

Set of semiconductor sensors

are used to achieve selectivity

when detecting certain gases

Gas sensor

Assembly of sensor elements

Binding degree depends on:

- Type of gas and its concentration
- Sensor material
- Temperature

Set of semiconductor sensors

when detecting certain gases

Gas sensor

Assembly of sensor elements

Binding degree depends on:

- Type of gas and its concentration ___ with different doping components
- Sensor material
- Temperature

SnO₂

- 1. SnO_2 ;
- 2. $SnO_2 Ru;$
- 3. $SnO_2 Au;$
- 4. $SnO_2 Pt;$
- 5. $SnO_2 Pd;$
- 6. $SnO_2 Cr Nb;$
- 7. $SnO_2 Si;$
- 8. $SnO_2 Si Au;$

TiO₂

- 9. $TiO_2 Cr;$
- 10. $TiO_2 Cr Au;$
- 11. $TiO_2 Nb Au;$
- 12. $TiO_2 Nb$

Set of semiconductor sensors

- are used to achieve selectivity

when detecting certain gases

Gas sensor

Heating dynamics

Binding degree depends on:

- Type of gas and its concentration
- Sensor material
- **Temperature**

- Binding gas molecules decreasing with temperature increase
- Heating is necessary
 to bring the sensor
 to original state
- Cyclic heating and cooling had to be used to ensure the temporal resolution

Gas sensor

Heating dynamics

Binding degree depends on:

- Type of gas and its concentration
- Sensor material
- **Temperature**

 The electrical resistance of semiconductor materials also depends on temperature

- Binding gas molecules decreasing with temperature increase
- Heating is necessary to bring the sensor to original state
- Cyclic heating and cooling had to be used to ensure the temporal resolution

To increase the selectivity of gas determination, various temperature operating conditions were used: the so-called heating dynamics

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

- Linear heating and cooling
 - Linear long
 - Linear short
- Stepwise smooth increase or decrease in temperature
 - Step up
 - Step down
- Stepwise smooth
 increase or decrease in temperature
 and short-term pulsed temperature
 jumps to maximum
 - Step up pulse
 - Step down pulse

Gas concentrations

The response forms of the 12 sensors were collected at 6 various heating dynamics in 6 different gas concentrations

in an atmosphere of clean air, as well as in air with an admixture of gases: CO, H₂, CH₄, NH₃, NO, NO2, H₂S, SO₂, HCOH (only one gas at a time)

Data Preprocessing

Data preparation and preprocessing steps:

- Converting data into the format:
 "1 cycle of heating dynamics –
 1 sample of a dataset."
- Replacing sensor response values above 10° Ohms with a fixed value of 10° Ohms, and below 10 Ohms with a fixed value of 10 Ohms.

Data Preprocessing

Data preparation and preprocessing steps:

- Exclusion of data sections where the experimental setup was purged: the first few cycles in each separate experiment.
- 4. Exclusion of the first few cycles after changing the concentration and several cycles immediately before changing the concentration

Data Preprocessing

Data preparation and preprocessing steps:

- 5. Logarithm of sensory response
- 6. Scaling to minimum and maximum concentration values

Data Preprocessing

Data preparation and preprocessing steps:

7. <u>Stratified</u> division into subsets.

From each area with a fixed concentration of the gas:

- First *n* cycles were selected into training set,
- Next *m* cycles into validation set,
- Subsequent k cycles into test set

Then the procedure was repeated for other sections with a fixed concentration.

Data Preprocessing

Data preparation and preprocessing steps:

n:*m*:*k* = 40:10:5

Data Preprocessing

Data preparation and preprocessing steps:

n:*m*:*k* = 18:5:3

Machine learning methods

- Linear methods
 - Linear regression
 - Lasso
 - Ridge
- Nonlinear methods
 - Multi-layer Perceptron

All methods showed qualitatively similar results

Results

Linear long	Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12
CH4	1.000	0.998	0.999	0.998	0.996	0.977	0.999	1.000	0.990	0.986	0.992	0.995
СО	0.999	1.000	1.000	1.000	0.999	0.994	0.999	0.999	0.999	0.999	0.999	0.999
H2	1.000	1.000	0.999	0.998	0.998	0.997	0.999	0.998	0.986	0.997	0.994	-17.332
H2S	1.000	1.000	1.000	1.000	1.000	0.993	0.999	0.998	0.999	0.999	0.966	0.961
НСОН	0.999	0.999	0.999	1.000	0.999	0.991	1.000	1.000	1.000	0.999	0.941	0.963
NH3	1.000	0.999	0.999	1.000	0.999	0.986	0.999	1.000	0.999	0.999	0.994	0.974
NO	0.994	0.996	0.993	0.997	0.966	0.972	0.996	0.995	0.986	0.986	0.963	0.821
NO2	0.998	0.999	0.999	0.999	0.990	0.989	0.999	1.000	0.994	0.991	0.891	-2.214
SO2	0.974	0.935	0.948	0.928	0.987	0.803	0.968	0.977	0.930	0.939	0.589	0.882

Linear_short	Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12
CH4	0.983	0.973	0.986	0.975	0.984	0.484	0.991	0.976	0.964	0.950	0.888	0.923
СО	0.992	0.991	0.991	0.982	0.991	0.924	0.996	0.995	0.993	0.994	0.923	0.755
H2	0.998	0.998	0.999	0.996	0.994	0.976	0.993	0.996	0.936	0.989	0.873	0.984
H2S	1.000	0.999	1.000	0.999	0.999	0.967	0.999	1.000	0.998	0.998	0.933	0.960
НСОН	0.994	0.995	0.998	0.995	0.993	0.954	0.997	0.998	0.995	0.995	0.926	0.976
NH3	0.997	0.998	0.997	0.996	0.998	0.935	0.997	0.998	0.998	0.999	0.972	0.981
NO	0.964	0.932	0.983	0.983	0.965	0.905	0.983	0.975	0.971	0.959	****	########
NO2	0.176	0.284	0.183	0.485	0.436	-2.300	0.338	0.556	0.476	0.457	0.037	-0.098
SO2	0.824	0.856	0.901	0.920	0.910	0.402	0.795	0.856	0.858	0.805	-0.317	0.164

Results

Steps up	Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12
CH4	0.998	0.997	0.998	0.996	0.992	0.814	0.998	0.999	0.926	0.880	0.893	0.998
CO	0.998	0.996	0.999	0.996	0.993	0.978	0.998	0.999	0.990	0.991	0.993	0.981
H2	0.998	0.995	0.997	0.993	0.995	0.989	0.998	0.998	0.872	0.953	0.947	0.998
H2S	0.996	0.996	0.999	0.987	0.997	0.974	0.994	0.997	0.970	0.980	0.810	0.630
НСОН	0.995	0.998	0.998	0.995	0.995	0.971	0.998	0.999	0.992	0.993	0.781	0.958
NH3	0.999	0.998	0.997	0.997	0.998	0.953	0.998	0.999	0.996	0.997	0.920	########
NO	0.988	0.990	0.987	0.986	0.977	0.927	0.986	0.976	0.920	0.972	0.862	########
NO2	0.996	0.998	0.995	0.996	0.992	0.982	0.996	0.997	0.895	0.951	0.504	0.889
SO2	0.221	0.821	0.881	0.263	0.954	0.297	-0.712	0.837	0.267	0.180	0.039	0.853

Steps down	Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12
CH4	0.903	0.978	-0.222	0.526	0.943	0.620	0.787	0.989	0.877	0.811	0.942	-96.562
CO	0.809	0.871	0.936	0.884	0.585	0.972	0.952	0.962	0.979	0.917	-0.019	-2.905
H2	0.774	0.938	0.997	-0.235	0.726	0.970	-1.094	0.811	0.867	0.869	-19.303	-12.650
H2S	0.998	0.844	0.525	0.855	0.789	0.443	0.918	0.856	0.724	0.864	-0.567	#######
HCOH	0.563	0.926	0.576	0.958	0.778	0.956	0.695	0.955	0.880	0.824	0.883	-31.567
NH3	0.987	0.936	-0.171	0.977	0.622	0.522	0.766	0.989	0.943	0.963	0.201	****
NO	-3.018	-1.853	-2.202	0.279	-0.869	0.637	0.936	-2.718	0.868	0.890	########	######################################
NO2	0.988	0.959	0.976	0.984	0.900	0.836	0.960	0.973	0.705	0.733	0.570	*****
SO2	-2.720	-1.849	-4.586	-2.103	0.542	-0.282	-1.780	-2.711	-0.582	-5.860	#########	#######################################

Results

Steps up pulse		Sensor No										
gas_name	1	2	3	4	5	6	7	8	9	10	11	12
CH4	0.993	0.995	0.997	0.988	0.989	0.834	0.997	0.998	0.939	0.912	0.972	0.991
СО	0.998	0.998	0.999	0.998	0.996	0.991	0.998	0.999	0.989	0.993	0.999	0.990
H2	0.996	0.998	0.981	0.996	0.988	0.947	0.998	0.977	****	0.710	0.893	0.445
H2S	0.999	0.998	1.000	0.997	0.998	0.979	0.997	0.999	0.998	0.999	0.988	0.939
НСОН	0.995	0.996	0.998	0.994	0.996	0.951	0.998	0.999	0.990	0.991	0.966	0.989
NH3	0.996	0.999	0.998	0.998	0.998	0.947	0.998	0.998	0.996	0.997	0.940	0.948
NO	0.991	0.983	0.995	0.981	0.944	0.922	0.992	0.992	0.960	0.960	****	########
NO2	0.987	0.981	0.990	0.992	0.992	0.967	0.982	0.987	0.945	0.934	0.475	0.917
SO2	0.837	0.912	0.880	0.947	0.959	0.051	0.906	0.951	0.636	0.578	0.053	0.232

Steps down pulse		Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12	
CH4	0.995	0.996	0.996	0.991	0.994	0.797	0.998	0.999	0.938	0.752	0.976	-2.378	
СО	0.998	0.998	0.999	0.999	0.994	0.984	0.999	0.999	0.990	0.995	0.998	-37.406	
H2	0.999	0.998	0.998	0.996	0.994	0.985	0.997	0.994	0.854	0.972	0.977	########	
H2S	0.997	0.999	0.999	0.998	0.999	0.966	0.999	1.000	0.999	0.999	0.981	0.962	
НСОН	0.995	0.997	0.997	0.997	0.996	0.970	0.998	0.999	0.991	0.994	0.964	-24.974	
NH3	0.998	0.998	0.998	0.998	0.998	0.951	0.999	0.999	0.998	0.997	0.903	0.978	
NO	0.990	0.977	0.993	0.989	0.941	0.867	0.972	0.993	0.941	0.963	0.930	########	
NO2	0.994	0.992	0.994	0.994	0.992	0.954	0.995	0.996	0.930	0.961	0.896	#######################################	
SO2	0.434	0.174	0.537	0.567	0.901	-1.305	0.567	0.733	0.338	-0.422	-0.605	0.332	

Results

Av. heat dynamic		Sensor No											
gas_name	1	2	3	4	5	6	7	8	9	10	11	12	
CH4	0.979	0.990	0.792	0.912	0.983	0.754	0.962	0.993	0.939	0.882	0.944	-15.839	
CO	0.966	0.976	0.987	0.976	0.926	0.974	0.990	0.992	0.990	0.982	0.815	-6.097	
H2	0.961	0.988	0.995	0.791	0.949	0.977	0.648	0.962	-21.788	0.915	-2.436	-91.065	
H2S	0.998	0.973	0.920	0.973	0.964	0.887	0.984	0.975	0.948	0.973	0.685	-48.826	
НСОН	0.924	0.985	0.928	0.990	0.960	0.966	0.948	0.992	0.974	0.966	0.910	-8.776	
NH3	0.996	0.988	0.803	0.994	0.936	0.882	0.959	0.997	0.988	0.992	0.822	****	
NO	0.318	0.504	0.458	0.869	0.654	0.872	0.977	0.369	0.941	0.955	########	*****	
NO2	0.857	0.869	0.856	0.908	0.884	0.405	0.878	0.918	0.824	0.838	0.562	#######	
SO2	0.095	0.308	-0.073	0.254	0.875	-0.006	0.124	0.274	0.408	-0.630	-24.963	****	

Av. sensors	Heat dynamic												
gas_name	Linear long	Linear short	Steps down	Steps up	Steps down pulse	Steps up pulse							
CH4	0.994	0.923	-7.367	0.957	0.671	0.967							
СО	0.999	0.961	0.495	0.993	-2.205	0.996							
H2	-0.531	0.978	-2.194	0.978	-42.339	-10.443							
H2S	0.993	0.988	-24.180	0.944	0.991	0.991							
нсон	0.991	0.985	-1.881	0.973	-1.173	0.989							
NH3	0.996	0.989	-29.259	-44.665	0.984	0.984							
NO	0.972	*****	*****	*****	*****	###########							
NO2	0.720	0.086	*****	0.933	*****	0.929							
SO2	0.905	0.664	-78.119	0.408	0.188	0.662							

Conclusions

Conclusions

- Best heating dynamics linear long
 - Reducing the length (linear short)
 leads to a deterioration in the quality of the solution
- Heating dynamics with increasing temperature show better results than with decreasing temperature
- □ Worst sensor No. 12 $(TiO_2 Nb)$
- Applying trained models to repeated measurements taken over time leads to complete breakdown of the solution !!!

Thank you for your attention!