Астрофизика частиц и анализ экспериментальных Данных _{Кузьмичев Л.}

21.06 2024

Гамма-кванты и нейтрино и космические лучи

$$P + P \longrightarrow \pi^+ + X \longrightarrow v$$

 $P + P \longrightarrow \pi^0 + X \longrightarrow \gamma$

В каких астрофизических источниках ускоряются и как распространяются частицы высоких энергий во Вселенной

Гамма-астрономия высоких энергий

Атмосферные черенковские гамма-телескопы

(IACTs – Imaging Atmospheric Cherenkov telescopes)

10 м² → 1 ТэВ

Стерео метод

~ 10 km

200 m² → 50 T∋B

gamma ray

particle

shower

A

120 m

Энергетический порог ~ 1 / (площадь зеркал)

Установки, регистрирующие заряженную компоненту ШАЛ

НАWC Array (4100 м над уровнем моря)

S = 0.02 km², 300 водных баков

Gamma/hadron separation

Energy 1 nHit/ all pmt - Range параметр В -2. E = F(SIZE40, θ)

Muon content

Compactness = Nhit/CxPE40 (число р.е вне 40 м)

 $LIC = \log_{10} \frac{1}{compactness} = \log_{10} \frac{CxPE_{40}}{nHit}$, Log Inverse of Compactness

DisMax - расстояние в метрах между ФЭУ с наибольшими амплитудами

Восстановление энергии программа Neural network (0703039

Range (%)

4.4 - 6.7

6.7 - 10.5

10.5 - 16.2

16.2 - 24.7

24.7 - 35.6

35.6 - 48.5

48.5 - 61.8

61.8 - 74.0

74.0 - 84.0

84.0 - 100.0

0

2

3

4

 $\frac{5}{6}$

7

 $\frac{8}{9}$

ebin

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

 $5.00 \\ 5.25$

Log E(GeV)

Функция пространственного распределения (ФПР)

PINC (parameter of identification if CR) – параметр «гладкости» ФПР

50 TeV

Зависимость коэффициента режекции адронов от энергии

Стандартный подход (1701.01778)

PoS (icrc2021)745

Use of Machine Learning for gamma/hadron sepa with HAWC

Спектр гамма-квантов от Крабовидной туманности

Нейтринная астрофизика

Ice Cube

IceCube / Deep Core

- 5160 optical sensors between 1.5 ~ 2.5 km
- 10 GeV to infinity
- ~ 0.5 degree on-line
 < 0.2 degree off line
- < 30% energy resolution

BAIKAL-GVD - 1km3

План развертывания детектора

Год	Суммарное число кластеров	Число ОМ	
2016	1	288	
2017	2	576	
2018	3	864	
2019	5	1440	
2020	7	2016	
2021	9	2592	

2024 -14 кластеров

nee serese of revenue are a survey

КМЗNeT – в средиземном море (1 км³)

Trident – нейтринный телескоп в Южно-Китайском море

1200 стрингов, объем 8 км3

Будет готов к 2030 году!

Что регистрируют нейтринные телескопы

Мюонный трек электромагнитный+ адронный каскад
∨_µ + N → µ + адроны ∨_e + N → e + адроны
Точность восстановление угла < 1° точность угла - 10 - 15°</p>

Мюонные нейтрино могут атмосферными и астрофизическими Тау – нейтрино – только атмосерными

Основные методические задачи

1. Выделить нейтринное событие

2. Восстановить направление трека мюона и энергию мюона

- 3. Восстановить энергию каскада и направление
- 4. Отличить событие от атмосферного нейтрино от астрофизического

Атмосферное нейтрино - нейтрино рождаемое в атмосфере от космических лучей

В источнике: v_e : v_µ : v_T = 2:1:0 На Земле : v_e : v_µ : v_T = 1:1:1 Осцилляции нейтрино

Источники фона

1. Фоновый сигнал на оптическим модуле: вспышка света, ⁴⁰К

- 2. Группы мюонов от ШАЛ
- з. Атмосферные нейтрино для регистрации астрофизических

Patm ~ 1/ cos Pastr - изотропные

Machine learning in IceCube

Approx. 50 literature results covering:

- Boosted decision trees [1705.08103]
- Random forests [2006.05215]
- Deep neural networks [1906.04317]
- Convolutional neural networks [2101.11589]
- Etc.
- + Many not-yet-public efforts

Arc of ML in physics (not just IceCube):

From Simple, analysis-level models on high-level features

Towards Complex, multi-purpose models on low-level features

 $\rightarrow\,$ Focus on **neural networks** as a highly flexible ML paradigm

Результаты применения ML

CNNs

Точность реконструкции каскадов

50% improvement in resolution at high energies

2-3 orders of magnitude reduction in reconstruction time¹

2101.11589

Graph Neural Networks for Low energy events Classification&Reconstruction (2209.03042)

Targets	Description	Residual Definition
ν/μ	Classification of neutrino vs. muon events	_
Ε	Deposited energy of neutrino interaction	$R_E = \log_{10}(E_{\text{reco}}) - \log_{10}(E_{\text{true}})$
$ heta,\phi$	Zenith and azimuth angles of neutrino	$R_{\text{angle}} = \text{angle}_{\text{reco}} - \text{angle}_{\text{true}}$
r	Direction vector of neutrino	$R_{\vec{r}} = \arccos \frac{\vec{r}_{\text{reco}} \cdot \vec{r}_{\text{true}}}{ \vec{r}_{\text{reco}} \vec{r}_{\text{true}} }$
$V_{\rm xyz}$	Vertex position of neutrino interaction	$R_{V_{\text{xyz}}} = \vec{P}_{\text{reco}} - \vec{P}_{\text{true}} $
\mathcal{T}/\mathcal{C}	Classification into tracks and cascades	_

Классификация событий

Улучшение реконструкции (GNN)

Выделение событий от Тнейтрино: двойной каскад

Время жизни Т-лептон 3 10⁻¹³ сек Е = 1 PeV Лоренц фактор E/ m= 0.510⁶ Пробег = 50 м

Адронный каскад

Двойной каскад

Тау-нейтрино- 2 кандидата (2016)

Пробег тау-лептона с энергией 1 ПэВ – 50 м

Развертки по времени

Нулевая гипотеза исключается на 2.8 сигма

В 2024 – 7 тау нейтрино Новым методом

Новый поиск тау-нейтрино (CNN) 50 ТэВ — 1ПэВ

Данные за 10 лет

Ожидаемое число событий после отбора

	$\nu_{ au,CC}^{ m astro}$ [59]	$\nu_{\rm other}^{\rm astro}$ [59]	$\nu_{\rm conv.}^{\rm atm}$ [60–63]	$\nu_{\rm prompt}^{\rm atm}$ [56, 64–66]	$\mu_{\mathrm{conv.}}^{\mathrm{atm}}$ [67–70]	all background
initial	$160 \pm 0.2 \ (190 \pm 0.3)$	$400 \pm 0.7 \ (490 \pm 0.8)$	580 ± 7	72 ± 0.1	8400 ± 110	$9450 \pm 110 \ (9540 \pm 110)$
final	$6.4 \pm 0.02 \ (4.0 \pm 0.02)$	$0.3 \pm 0.02 \ (0.2 \pm 0.01)$	0.1 ± 0.008	0.1 ± 0.001	0.01 ± 0.008	$0.5 \pm 0.02 \ (0.4 \pm 0.02)$

7 Тау -нейтрино

Астрофизические нейтрино

Открытие локального источника нейтрино

22.09 1917 ІсеСиbe зарегистрировал нейтринное событие с Энергией ~290 ТэВ. Направление совпадает с направление на блазар TXS -0506+056 (в созвездии Ориона)

Космические лучи: от 10¹⁵ до 10¹⁸ эВ (от «колена до лодыжки»)

Установки с площадью ~1 км²

Задачи установок: Восстановить энергетический спектр и массовый состав космических лучей

Широкоугольные черенковские установки для измерения пространственно-временных характеристик черенковского излучения ШАЛ

Энергия ШАЛ $E = A \cdot [Q(200m)]^g$ $g = 0.94 \pm 0.01$ (при E = 10 - 1000 ПэВ 1 Положение оси ШАЛ: 5 -10 м 2 Угловое разрешение: ~ 0.1 град. 3 Энергия ШАЛ: ~ 15%) 4 X_{max} : ~ 20 -25 g/cm²)

Энергетический спектр

Средний массовый состав

Новый анализ данных KASCADE по спектру групп ядер (2312.08279)

Заключение

Методы машинного обучения важны для Астрофизики частиц высоких энергий и Область их использования будет расширяться.

Спасибо за внимание