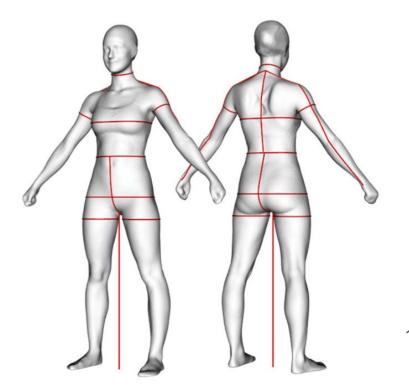
Машинное обучение и 3D анализ сцен в оценке сложноизмеряемых геометрических характеристик тела человека для задач биомедицины


Репченко А.С., Голев А.С., Кисиль С.И, Грачёв Е.А.

докладчик: Репченко Александр, аспирант кафедры математического моделирования и информатики, физический факультет МГУ имени М.В.Ломоносова

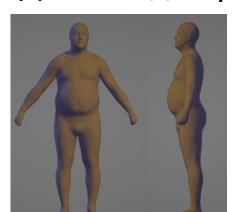
Интегрально-геометрические измерения

$$V(X)=\int_X dv$$
 — объем тела $S(X)=\int_{\delta X} ds$ — площадь поверхности тела (ППТ) $H(X)=\int_{\delta X} rac{1}{2}\left[rac{1}{R_1}+rac{1}{R_2}
ight]ds$ — средняя интегральная кривизна тела

Антропометрические измерения

- Обхват шеи (ГОСТ Р ИСО 8559-1-2020 5.3.2)
- 2. Длина спины до талии (ГОСТ Р ИСО 8559-1-2020 5.4.5)
- 3. Обхват руки верхний (ГОСТ Р ИСО 8559-1-2020 5.3.16)
- 4. Расстояние от шейной точки до запястья (ГОСТ Р ИСО 8559-1-2020 5.4.17)
- 5. Ширина плеч через шейную точку (ГОСТ Р ИСО 8559-1-2020 5.4.3)
- 6. Обхват бюста (ГОСТ Р ИСО 8559-1-2020 5.3.4)
- 7. Обхват талии (ГОСТ Р ИСО 8559-1-2020 5.3.10)
- 3. Обхват бедер на уровне ягодиц (ГОСТ Р ИСО 8559-1-2020 5.3.13)
- 9. Обхват бедра (ГОСТ Р ИСО 8559-1-2020 5.3.20)
- 10. Высота уровня основания ног (ГОСТ Р ИСО 8559-1-2020 5.1.15)

Постановка задачи


Пусть $X = \{x \mid x \in \mathbb{R}^n\}$ - множество антропометрических измерений человека, где n - количество различных измерений.

 $M = \{V, S, H\}$ — интегрально-геометрические характеристики тела человека. V - объем, S - площадь поверхности, H - средняя интегральная кривизна тела человека.

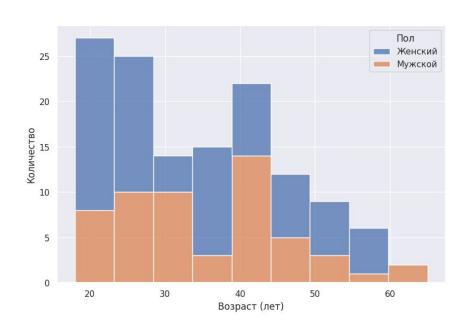
Построить отображение f:

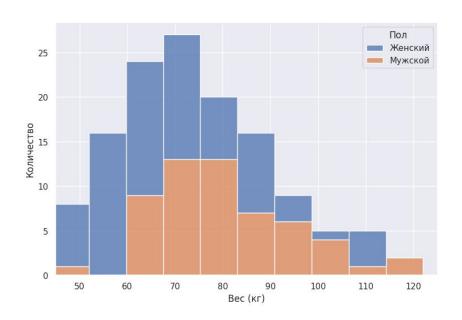
$$f: X \to M, \forall x \in X$$

Данные для решения задачи

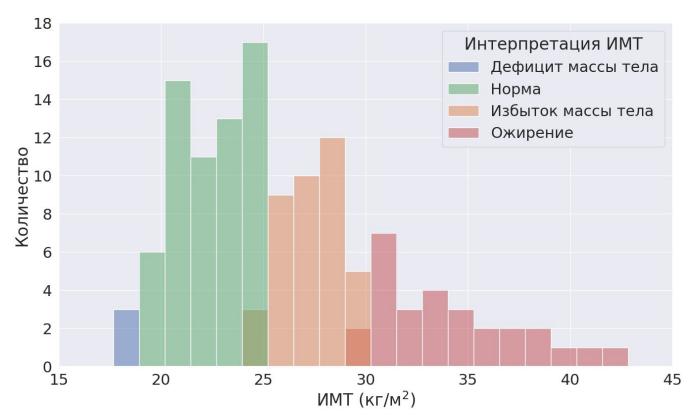
В основу решения задач лег <u>открытый набор данных</u> Института инженеров электротехники и электроники IEEE.

3D-модели людей получались с помощью специальных станций сканирования, а именно:

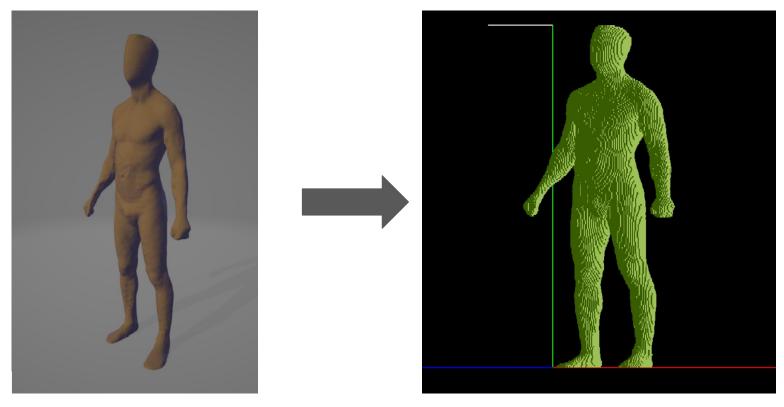

- VITUS bodyscan, <u>Human Solutions GmbH</u>
- 2. SS20, Size Stream LLC
- 3. MOVE4D, <u>Instituto de Biomecánica</u>
- Portal MX, <u>Texel LLC</u>


В наборе данных от IEEE содержатся 3D-модели более ста различных жителей США и Европы.

Advancing Technology


for Humanity

Распределение данных по возрасту и весу



Распределение данных по ИМТ

Вычисление параметров 3D-моделей

Пример перехода 3D-модели от полигонального представления к воксельному

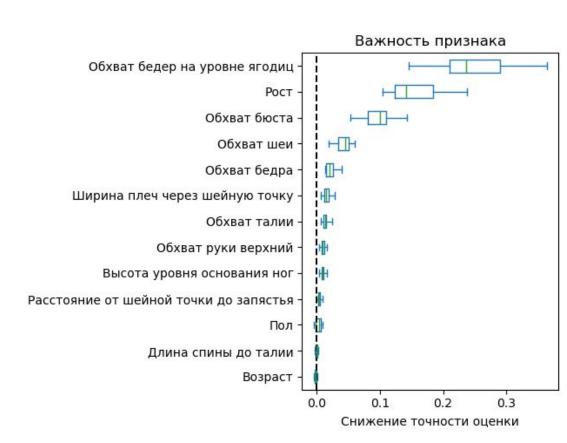
Датасет

	Пол	Возраст	Bec	ТМИ	Рост	Обхват шеи		Обхват бедер на уровне ягодиц	Обхват бедра	Высота уровня основания ног	v	S	н
0	0.00	25.00	69.40	25.77	1,641.00	341.00		1,056.00	658.00	723.00	75,948,643.59	1,740,622.64	12,271.69
1	0.00	23.00	51.10	19.71	1,610.00	308.00	***	928.00	518.00	731.00	56,491,283.86	1,552,698.67	12,656.73
2	0.00	18.00	66.60	23.43	1,686.00	342.00		1,011.00	592.00	776.00	72,021,693.60	1,789,892.62	13,186.45
3	0.00	19.00	83.50	29.24	1,690.00	384.00	- 121	1,056.00	650.00	756.00	90,266,524.52	1,918,339.62	12,683.42
4	1.00	31.00	82.50	26.10	1,778.00	395.00		1,037.00	604.00	743.00	89,008,232.18	1,964,216.83	12,837.60
		- 1056		575	107)	- 512	107.)	515	#355	555	5.55
127	0.00	55.00	64.70	24.06	1,640.00	337.00		970.00	521.00	739.00	73,592,570.76	1,688,128.06	12,301.77
128	0.00	49.00	65.40	26.53	1,570.00	328.00		1,046.00	603.00	683.00	74,575,990.72	1,695,094.75	11,921.43
129	1.00	55.00	122.00	33.09	1,920.00	426.00	5757	1,162.00	651.00	899.00	133,241,364.96	2,447,824.45	14,091.49
130	0.00	55.00	106.10	40.93	1,610.00	375.00		1,355.00	749.00	688.00	119,728,599.34	2,114,308.19	11,764.43
131	1.00	25.00	70.70	22.44	1,775.00	356.00	***	977.00	571.00	842.00	79,800,977.96	1,893,016.70	13,472.40

132 различных человека в выборке

Признаки: пол, возраст, вес, рост, ИМТ и 10 дополнительных $X=(x_i)_{i=1}^N\in\mathbb{R}^{N\times D}$ антропометрических измерений.

Значения: Объем, площадь поверхности, кривизна

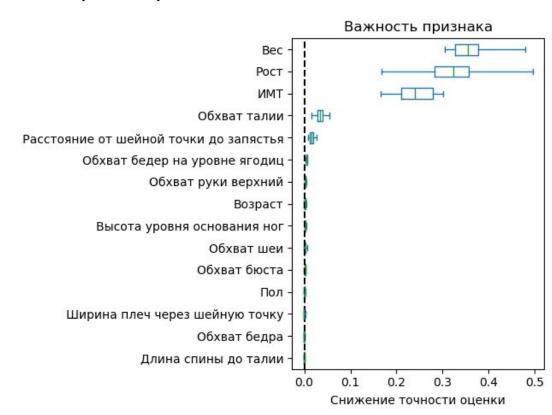

$$y = (y_i)_{i=1}^N \in \mathbb{R}^{\mathbb{N}}_{9}$$

Объем тела

Относительная погрешность классического подхода (через среднюю плотность): 10%

Относительная погрешность лучшей модели: **1.5**%

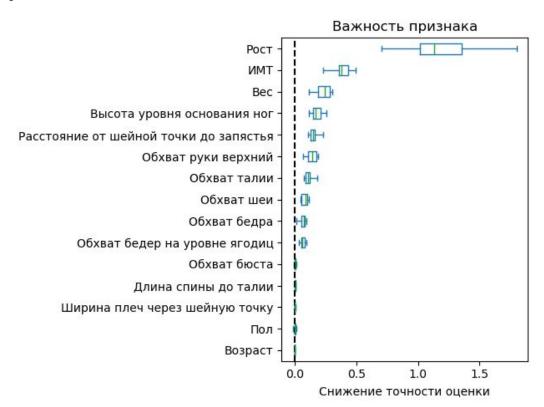
Относительная погрешность без учета информации о весе: 3%


Площадь поверхности тела (ППТ)

Относительная погрешность формулы Дюбуа и Дюбуа: 2%

$$\Pi\Pi T = \frac{\text{Macca}^{0,425} \times \text{Poct}^{0,725}}{139, 2}$$

Относительная погрешность лучшей модели: **1%**


Относительная погрешность без учета информации о весе: 1.4%

Средняя интегральная кривизна тела человека

Относительная погрешность лучшей модели: **1.4%**

Относительная погрешность без учета информации о весе: 1.4%

Спасибо за внимание