
Deep Learning in Computational Physics 2024

Application of neural networks for computing
path integrals in quantum theory

Artyom Vasiliev1, Alexandr Ivanov1,
Dmitry Salnikov1,2 and Vsevolod Chistiakov1

salnikov@inr.ru
1Lomonosov Moscow State University

2Institute for Nuclear Research of the Russian Academy of Science

The work of DS and VC is supported by «BASIS» Foundation grants:
№ 23-2-2-40-1 and № 23-2-9-18-1.

June 19, 2024

1/14

Introduction

� Path integral in imaginary time:

〈O〉β =
1

Z

∫
D[x(t)]O[x(t)] e−SE [x(t)], x(0) = x(β). (1)

� Gibbs average:

〈O〉β =
1

Z
Tr
[
e−βH O

]
=

1

Z

∑
n

〈n|O|n〉e−βEn . (2)

� Low temperature limit: lim
β→∞

〈O〉β = 〈0|O|0〉.

� Theory on the lattice:

D[x(t)] =
∏
n

dxn ≡ dnx, SE [x(t)] = SE(x1, ..., xn) ≡ SE(x). (3)

� QFT generalization: t→ xµ, x(t)→ φ(x).

2/14

Monte Carlo calculation

� Average over a distribution:

〈O〉β =

∫
dnxO(x) p(x) ' 1

N

N∑
j=1

O
(
x(j)

)
, (4)

where
{x(j)} ∼ p(x) = 1

Z
e−SE(x). (5)

� Path integral calculation = generation of the samples {x(j)} with
target density distribution function.

3/14

Markov chain Monte Carlo (Metropolis)

� Starting with a sample of the «cold» trajectories:

X0 = {x(j)}, x(j)i = 0. (6)

� Random modification of the trajectories:

x̃
(j)
i = x

(j)
i + σ(τ)u

(j)
i , u

(j)
i ∼ U [−1, 1]. (7)

� Replacement the trajectories (j) in the sample X0 with probabili-
ties

π(y(j), x(j)) = min

{
p(y(j))

p(x(j))
, 1

}
(8)

and obtain the new sample X1.
� A sample chain X0 → X1 → ...→ Xm has target density distribu-

tion function p(x) in the limit.

4/14

Markov chain Monte Carlo (Metropolis)

� Disadvantages:
� High computing costs and time are required;
� Unable to take into account the physical symmetries.

5/14

Alternative approach

� Alternative approach: construction a map x = g(z), z = g−1(x),
where z is a set of random variables with a certain density distri-
bution π(z).

� Then target distribution p(·) and g(·) are connected as follows:

p(x) = π(z)

∣∣∣∣det ∂zi∂xj

∣∣∣∣ = π(g−1(x))

∣∣∣∣detdg−1dx

∣∣∣∣ . (9)

� Neural Network as the map:

x(j) = g(z(j);w), (10)

where z(j) ∼ Nn(0, 1) and sample {x(j)} has target density distri-
bution p(x).

6/14

Neural Networks

Figure 1 – Normalizing Flow scheme

Figure 2 – Normalizing Flow architecture

7/14

Normalizing Flows

� The map g is a composition of affine transformations:

g = An ◦ ... ◦A1 (11)

� We divide z on two parts: z = u+v, where, for example, u contains
coordinates with even numbers, and v with the odd one.

A(u) = u, [A(v)]k = eθ1k(u)vk + θ2k(u), θ : Rn/2 → Rn. (12)

� Loss function reads as follows:

Loss(w) = DDL(pg || p)− lnZ =

∫
dnx pg(x)[ln pg(x) + S(x)].

(13)
� Orthogonal transform x = Og(z) was applied to account the shift

symmetry of the theory.

8/14

Models

� Euclidean action:

SE(x1, ..., xn) = τ

n∑
i=1

[K(xi − xi−1) + V (xi)] , x0 = xn, (14)

where K(·) and V (·) are kinetic and potential energies terms.
� Non-relativistic model:

Hkin =
p2

2m
, K(ξ) =

mξ2

2
. (15)

� Relativistic model:

Hkin =
√
p2 +m2 −m, K(ξ) =

1

τ
ln

[
mτK1(m

√
τ2 + ξ2)

π
√
τ2 + ξ2

]
.

(16)
� Ultra-relativistic regime m→ 0:

Hkin = |p|, K(ξ) = −1

τ
ln
[
π(τ2 + ξ2)/τ

]
. (17)

9/14

Relativistic Oscillator

H =
√
p2 +m2 −m+

mω2x2

2
(18)

10/14

Relativistic double well

H =
√
p2 +m2 −m+ g(x2 − x20)2 (19)

11/14

Relativistic Morse

H =
√
p2 +m2 −m+

1

2

[(
e−αx − 1

)2 − 1
]

(20)

12/14

Conclusions

� The use of neural networks makes it possible to speed up the cal-
culation of functional integrals several times.

� The approach is universal: acceleration is observed for different
models. This will allow it to be used for a wide range of tasks.

� The symmetry of the problem is taken into account, which may be
especially important for applications to the theory of gauge fields.

� The artificial intelligence algorithms used are quite simple. It is
expected to significantly improve the results by applying more so-
phisticated methods.

13/14

Thank you!

14/14

