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ionals for neural network training LL%

Neural network training requires a loss functional: residual functional, energy
functional, etc.

Some authors suggest, in the absence of classical (energy) functionals, to use
nonclassical functionals from variational principles for nonpotential operators
for neural network training:

@ Y.Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty
quantification without labeled data. Journal of Computational Physics 394
(2019) 56-81

@ N.Geneva and N.Zabaras. Modeling the dynamics of PDE systems with

physics-constrained deep auto-regressive networks. Journal of Computatio-
nal Physics 403 (2020) 109056

The prioblem: can nonclassical variational functionals of the theory of varia-
tional principles for nonpotential operators be used in training neural networks
that approximate solutions to boundary value problems for equations of mathe-
matical physics?
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Physics-Informed Neural Networks (PINNs)

M. Raissi, P. Perdikaris, G.E. Karniadakis. Physics-Informed Neural Networks:
A Deep Learning Framework for Solving Forward and Inverse Problems Involving

Nonlinear Partial Differential Equations. Journal of Computational Physics 378
(2019) 686-707

Given

e physical model equation (PDE) Z[u]=0,x¢€f
o initial and boundary conditions Z[u] =0, x € IN
e physical laws (properties) (if any) Z[u]l=0,x€Q

Appriximate the solution v with a neural network output using the residual loss
functional of the form

S [u] = 12 [a][§ + 12 []l50 + 12 [u]llg
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The method of symmetrizing operator -[%

The method of constructing variational formulations for boundary value problems,
proposed by V.M. Shalov in 1963, consists of constructing two vector operators
A and B such that operator A is B-symmetric:

(Au, Bv) = (Bu, Av) Vu,v

and B-positive:
(Au, Bu) > 0Vu #£ 0,

(Auy, Bu,) = 0, n = 00 = |Juy|| — 0, n — oo,

where the boundary value problem (partial differential equation and boundary
conditions) is represented in the form

Au="1,

where f is a vector function, then the variational functional for the boundary
value problem has the form

Du]l ={(Au, Bu) —2(f, Bu).
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Boundary value problem for hyperbolic equation -[%

We study the construction of a variational formulation for a homogeneous
hyperbolic equation

Ugn = 0 (1>
in a rhombus-shaped domain  with vertices at the points I'g(0, 0), I'y (7, ),
I'y(27, 0), T3(w, —m) with boundary conditions

uly, =x1(8),
Un |y, =2 (1),
Up |y =03 (1), (2)
Ug |y =13 (§),
U |y, =14 (8),

where the segment ~; connects the points I'g (0, 0) and I'; (7, 7), the segment
2 connects the points I'i(w, 7) and I'y(2m, 0), the segment ~y3 connects the
points I'y(27, 0) and T's(7, —7), the segment 74 connects the points I's(w, —)
and T(0, 0).

Here u € W3 (Q) and (X1, @2, ©3,%3,%4) € La (71 X 72 X V3 X Y3 X Y4).
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Domain €2 and outer normal to 9f2 -Eﬂ

A
I
7'[' L .
M 72
G 2me
&)
V4 § 73
_7‘[‘ L T T :
I's

B C.I. (PYOH)

Improving PINNs v

The components of the outer normal
7 to the boundary 0 on different
sections of the boundary ~1,v2,73,74
are calculated using the formulas:

) = 55 (1.1),
(00) = 5 (1. 1).

(08) = 5 (1. 1),
() = <5 (-1, -1)
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or operators A and B and vector function f -Eﬂ

The vector differential operator A and the vector integro-differential operator
B, acting from W3 (Q) to Ly (2 X 71 X v2 X 73 X ¥3 X 74), are defined by the
equalities

Ugy I E’YIU’M Up (Ca 7]) dC + f:lu’w 3 (53 T) dr |
u v
u —n1 (2) [ vy () dC
Au= K 5 Bv= § 4 ’
R ! —n1 (3) " vy (Cm) dC
ug —n3 (73) %2 ve (&, 7)dT
U —n2 (74) [, ve (§,7)dr ]
and the vector function f is equal to
0
X1
f=| 7
¥3
V3
(o
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Scalar product on €2 Xy X9 X3 X3 X4

Vector functions A u, Bv and f are defined on the Cartesian product of domains
X791 X2 X3 X 73 X V4.

The scalar product of vectors Au and Bw is calculated by multiplying the
corresponding components, calculating the integrals over the corresponding sets,
and summing the resulting values using the formula

(Au, Bo) = /(Au)l (Bu), dfdn+/(Au)2(Bv)2 ds+/(Au)3 (Bu), ds+

Q Y1 Y2

+/(Au)4(Bv)4 ds+/(Au)5 (Bv); ds+/(Au)6 (Bv)g ds

3 V3 Y4
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Shalov’s functional for the boundary value p1

The variational functional by V.M. Shalov for the boundary value problem under
consideration (1)—(2) has the form

Du] = / (uf +up) d§dn+/u2 ds+

Q Y1
7 Y4
_Z/Xluds+2/<p2n1/un (C,n)d(ds—i—2/<,037”Llsin§/u77 (¢,m) d¢ ds+
" V2 13 73 3
Y2 2
+2/1/J3n2/u5 &, 1) des—|—2/¢4n2/u§ (&, 7)drds. (3)
¥s n Ya 7

However, this form of the functional is not convinient for use as a loss functional
in training a neural network due to repeated integrals.
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Final form of variational functional @

The variational functional by V.M. Shalov (3) for the boundary value problem
(1)—(2) can be written in the form

Du| = / (ug + ufl — 20w, — 2W ug) dédn + / (u? — 2x1u) ds, (4)
Q 71

@(n):{wz(n), 0<n<m 7\1,(5):{1/)3(5),

T < &< 2,
¢4(§)7 <£<

o

Functional (4) contains the first-order derivatives of the function w and can
be used for training a neural network that approximates the solution of the
boundary value problem (1)-(2).
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The solution of a boundary value problem for hyperbolic equation

ufnzoa (fa 77) €N

with boundary conditions

uly, =x1(8),
Un |y, =2 (1),
Uy vy =03 (1),
g |y =13 (§),
Ug |y, =14 (§)

can be approximated by a deep neural network with the output f (¢, n; 6),
where £, 7 are the input values, and 0 is the vector of parameters (weights and
biases) of the neural network:

w(&m) = f(&n;0).
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Training with residual fun

When training a neural network, the residual functional can be used as a loss
(error) functional:

2 2 2
Lr(f) = Ifenlld + 17 = xall?, + 11y — 2ll?, +
2 2 2
1 = sl + e = wal®, + I1fe — wall?,

where ||f||§{ =[x |f (@) p(z)dz, p(z) is the density of some probability
distribution on X (for example, a uniform distribution).

When using the residual functional Lg(f), it is necessary to calculate five
integrals included in Lg (f), for which it is necessary to construct random
samples from five different domains — €2, v1, 72, 73, 74, and calculate the partial
derivatives of the unknown function f up to and including the second order.
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Training with quasiclassical functional -Eﬂ

When training a neural network, the obtained quasiclassical functional can also
be used as a loss (error) functional.

ﬁQ(f)Z/(f£2+fg—2@fn—2\I/f§) d£dn+/(f2—2x1f)ds.

Q Y1

When using the quasiclassical functional Lq (f), it is necessary to calculate two
integrals from Lg (f), and, accordingly, to construct two random samples from
the domain € and from the part of the boundary ~;, and calculate the first-
order partial derivatives of the unknown function f.

Therefore, generally, when using the quasiclassical functional, training of a
neural network requires less computational resources compared to using the
residual functional due to the use of a smaller number of random samples and
the calculation of lower-order partial derivatives.

s C.I. (PYIIH) Improving PINNs via Q sical Loss DLCP’2024



Training with quasiclassical functional L£g (1) -[%

The algorithm for training a neural network using a quasiclassical functional

Lo(f) = / (f2 4 f2 — 2B f,y — 2 fe) dedn + / (f2 - 2. f) ds
Q Y1

as a loss functional includes the following steps:

1) Select the initial set of neural network parameters 8 and the initial learning
rate «apq
2) Generate two random samples for the domain Q and the boundary 09,
namely
o generate a random sample {(&,, 7iy)};,~, Of 7o points from the domain
with distribution vg
o generate a random sample {(&i,, 75,)};_; of n1 points from the boundary
segment vy, C 92 with distribution 4

s C.I. (PYIIH) Improving PINNs via Q sical Loss DLCP’2024



Training with quasiclassical functional Lg (2) [%

3) Calculate the functional Lq (f) for the generated random samples combined
into a mini-batch s, = {{(&-O, mo)}zo 11 1721)}11 1)
1 no
Lq (f,sk;0k) = P, Z (2 (igs Mios Ok) + 17 (Sia» Mio: Ok) —

’Lo:l

-2V (fz‘o) Je Gios Migs Or) — 2P (0iy) [ (Sio»> Mios Ok)) +

+ Z f2 6117771179/9)_2X1 (521>f(§i1777i1; ek))
7,1 1
4) Perform a number of gradient descent steps with a mini-batch (random
points) sj using the adaptive Adam algorithm (or other neural network
learning algorithm) with learning rate «y, (the learning rate oy is updated
automatically at each step):

011 =01, —arVeLlqg (f, si; Ok)

5) Repeat steps 2-4 until the change in neural network parameters ||@51 —05]|
becomes small enough (or use another stopping criterion)
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Neural network for a boundary value pr %

We run computational experiments on training neural networks to approximate
the solution of the hyperbolic equation ug, = 0 with boundary conditions

u |’Yl = Oa
AT
Uy |’Yz = - 5 sin 27, / '\‘{'\“"‘“‘““‘“\‘\\
i /””5/:'0"%"\‘\'\“\‘:\‘\\
by = = g sin2n, A

Ug |’YS - 5 sin 2§,

1 .
Ug |y, = ism2§,

which is equal to

1 1
u(&,m) = ~1 (:os2§—i-é—1 cos 27
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Parameters of computational experiments LL%

We use the residual functional and the constructed quasiclassical functional as
a loss functional.

Computational experiments are carried out for the neural network architecture
specified below with the following hyperparameter values:

a feedforward neural network (FF) with dense layers is used

the number of hidden layers is 4 with the activation function tanh
@ the number of neurons in the hidden layers is 100

@ one neuron without the activation function is in the output layer

200 training epochs are performed with 10 SGD steps for each epoch

the Adam optimizer is used with an initial learning rate of 0.0001

@ a batch contains 1000 samples from domain 2 and 500 samples for each
section of the boundary 052

The program code is implemented using TensorFlow framework and is executed
on a MacBook Pro computer with M2Max processor.
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# %% Sampling function for residuals functional - randomly sample xi-eta pairs
def sampler_r(nSim_i, nSim_b):
''' Sample xi-eta points from the function's domain;

points are sampled uniformly on the interior of the domain

and for initial/terminal/boundary points

Args:
nSim_i: number of points in the interior of domain to sample
nSim_b: number of points at the boundary to sample
# Sample #0: domain interior
X_0 = np.random.uniform(low=x_low, high=x_high, size=[nSim_i, 1])
t_0 = np.random.uniform(low=t_low, high=t_high, size=[nSim_i, 1])

# Sample #1: initial condition (gammal curve)
X_1 = np.random.uniform(low=x_low, high=x_high, size=[nSim_b, 1])
t_1 = t_low * np.ones((nSim_b, 1)) # np.zeros((nSim_b, 1))
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# Sample #2: boundary condition (gamma2 curve)
x_2 = x_high * np.ones((nSim_b, 1))
t_2 = np.random.uniform(low=t_low, high=t_high, size=[nSim_b, 1])

# Sample #3: terminal condition (gamma3 curve)
x_3 = np.random.uniform(low=x_low, high=x_high, size=[nSim_b, 1])
t_3 = t_high * np.ones((nSim_b, 1))

# Sample #4: boundary condition (gamma4 curve)
x_4 = x_low * np.ones((nSim_b, 1)) # np.zeros((nSim_b, 1))
t_4 = np.random.uniform(low=t_low, high=t_high, size=[nSim_b, 1])

return x_0 + t 0, x 0 - t 0, x 1+ t_1, x 1 - t_1, \
+t .2, x2-t2, x3+1t3, x3-t3,\
+ t 4, x4 -t 4

X_2
X_4
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Residual functional — loss calculation (1)

# Residuals loss functional for hyperbolic PDE boundary problem
def loss_r(model, x0, e@, x1, el, x2, e2, x3, e3, x4, e4):
''"' Compute total loss for training the neural network

Args:
model: neural network model object
x0: sampled xi points in the interior
e0: sampled eta points in the interior

x1,...,x4: sampled xi points at the boundary
el,...,e4: sampled eta points at the boundary

# Loss term #0: average L2-norm of hyperbolic PDE differential operator
# function value and derivatives at sampled points
with tf.GradientTape() as tUOx:
with tf.GradientTape() as tUO:
U0 = model(x0, e0)
Uox = tU@.gradient(U@, x0)
Uoxe = tU@Ox.gradient(Uox, e0)

L0 = tf.reduce_mean( tf.square(Uoxe) )
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ional — loss calculation (2)

# Loss term #1: average L2-norm of initial condition (on gammal)
Ul = model(x1, el)
L1 = tf.reduce_mean( tf.square(Ul) )

# Loss term #2: average L2-norm of boundary condition (on gamma2)
with tf.GradientTape() as tU2:
U2 = model(x2, e2)
U2e = tU2.gradient(U2, e2)
L2 = tf.reduce_mean( tf.square( U2e + 0.5xtf.math.sin(2.xe2) ) )

# Loss term #3: average L2-norm of terminal condition (on gamma3)
with tf.GradientTape() as tU3:
U3 = model(x3, e3)
U3x, U3e = tU3.gradient(U3, [x3, e3])
L3 = tf.reduce_mean( tf.square( U3e + 0.5xtf.math.sin(2.%e3) ) ) + \
tf.reduce_mean( tf.square( U3x - 0.5k%tf.math.sin(2.%x3) ) )

# Loss term #4: average L2-norm of boundary condition (on gamma4)
with tf.GradientTape() as tU4:
U4 = model(x4, ed)
U4x = tU4.gradient(U4, x4)
L4 = tf.reduce_mean( tf.square( U4x - 0.5xtf.math.sin(2.xx4) ) )

return LO + L1 + L2 + L3 + L4 #, Lo, L1, L2, L3, L4
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ional — the loss graph

Residual Loss Function in Neural Net Training
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Residual functional — 2d error
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Residual functional — 3d error surface
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Quasiclassical functional — the sampler

# %% Sampling function for quasi-classical functional - randomly sample xi-eta pairs
def sampler_q(nSim_i, nSim_b):

''"' Sample xi-eta points from the function's domain;
points are sampled uniformly on the interior of the domain
and for initial/terminal/boundary points

Args:
nSim_i: number of points in the interior of domain to sample
nSim_b: number of points at the boundary to sample
# Sample #0: domain interior
x_0 = np.random.uniform(low=x_low, high=x_high, size=[nSim_i, 11)
t_0 = np.random.uniform(low=t_low, high=t_high, size=[nSim_i, 1])

# Sample #1: initial condition (gammal curve)
x_1 = np.random.uniform(low=x_low, high=x_high, size=[nSim_b, 11)

t_1 = t_low * np.ones((nSim_b, 1)) # np.zeros((nSim_b, 1))

return x_0 + t_ 0, x 0 - t 0, x 1 + t_1, x_1 - t_1
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Quasiclassical functional — loss calculation

# quasi-classical loss functional for hyperbolic PDE boundary problem
def loss_q(model, x0, e0@, x1, el):
''"' Compute total loss for training the neural network

Args:
model: neural network model object
Xx0: sampled xi points in the interior
e0: sampled eta points in the interior
x1: sampled xi points at the boundary
el: sampled eta points at the boundary

# Loss term #0: average L2-norm of hyperbolic PDE differential operator
# function value and derivatives at sampled points
with tf.GradientTape() as tU@:
U@ = model(x0, e0)
Uox, Ule = tU@.gradient(U0, [x0, e0])
L0 = tf.reduce_mean(tf.square(U0x) + tf.square(Ude) - \
Uoxxtf.math.sin(2.%x0) + U@extf.math.sin(2.%*e0))

# Loss term #1: average L2-norm of initial condition (on gammal)
Ul = model(x1, el)
L1 = tf.reduce_mean( tf.square(Ul) )

return LO + L1 #, Lo, L1
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Quasiclassical functional — the loss graph

000 Quasi-classical Loss Functional in Neural Net Training
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Quasiclassical functional — the ¢
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Quasiclassical functional — 3d error surface
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Indicators of training and quality for neural networks -Eﬂ

Indicators of training Neural network with Neural n.etwo%rk with
. . . quasiclassical
and quality residual functional .
functional
Training time
(for 200 epochs) 119.9 sec 40.2 sec
MSE 0.0305 0.0002
(mean squared error)
MAE
(mean absolute error) 0-1169 0-0090
2 .
R (coefficient of 19.2% 99.7%
determination)
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Conclusion -Eﬂ

e The boundary value problem (1)—(2) under consideration for hyperbolic
equation admits variational functional

Lo (f) = / (f+ fo =22 fy — 2V fe) dédn + / (f* =2x1f) ds,

Q Y1

which can be used as a loss functional when training a neural network

o The obtained variational functional has a number of advantages over the
residual functional when training a physics-informed neural network.

o The implementation of the neural network training algorithm with the
obtained variational functional demonstrates the convergence of the neural
network training process and the achievement of sufficiently high quality
indicators of the resulting physics-informed neural network for the boundary
value problem (1)—(2)
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