

МОДЕЛЬ МАШИННОГО ОБУЧЕНИЯ НА ГАУССОВСКИХ ПРОЦЕССАХ ДЛЯ ПРЕДСКАЗАНИЯ ЭНЕРГОВЫДЕЛЕНИЯ В ТОПЛИВНЫХ ЯЧЕЙКАХ АКТИВНОЙ ЗОНЫ ИССЛЕДОВАТЕЛЬСКОГО ЯДЕРНОГО РЕАКТОРА

Н.В.Смольников Аспирант НИ ТПУ г.Томск

21.06.2024

ИССЛЕДОВАТЕЛЬСКИЕ РЕАКТОРЫ

Применение исследовательских ядерных установок в научных и производственных направлениях:

- Ядерная медицина
- Окрашивание полудрагоценных камней
- Ядерное легирование кремния
- Наработка изотопов медицинского и технического назначений
- Разработка и тестирование перспективных конструкционных и функциональных материалов
- Изучение кристаллических и магнитных структур порошков

томский

Излучение Вавилова – Черенкова на реакторе ИРТ-Т

РЕАКТОР ИРТ-Т

- Тип реактора бассейновый
- Мощность реактора 6 МВт
- Отражатель: металлический бериллий
- Замедлитель и теплоноситель: вода
- Макс. плотность потока быстрых нейтронов: 2.0·10¹³ н·см⁻²·с⁻¹
- Макс. плотность потока тепловых нейтронов: 2.1·10¹⁴ н·см⁻²·с⁻¹
- Длительность топливной кампании 25-35 эфф.суток
- Загрузка активной зоны: ТВС ИРТ-ЗМ
 - 11 восьмитрубных
 - 9 шеститрубных
- Максимальная объемная неравномерность энерговыделения К_v≈3.0

Ведутся работы по повышению мощности реактора **до 10МВт**

ПРОБЛЕМА ПРОФИЛИРОВАНИЯ ЭНЕРГОВЫДЕЛЕНИЯ

До перегрузки топлива

Глубина выгорания, %							
Ячейка*	6	5	4	3			
7	13.23	9.58	41.41	49.68			
6	33.20	58.42	26.37	32.60			
5	59.14	Be	Ве	41.00			
4	67.02	Be	Be	40.28			
3	32.47	23.94	57.97	31.17			
2	13.07	41.01	9.54	47.55			
	Глубина выгорания по сторонам, %						
	35	5.11	37	' .76			

Энерговыделение, кВт								
6	5	4	4	3	Ячейка			
303	348	2	82	264	7			
285	240	3	78	348	6			
228	Ве	E	Be	369	5			
195	Ве	E	Be	360	4			
279	348	24	46	345	3			
306 261		3	51	258	2			
Энергов								

- Разница между наименее и наиболее выгоревшими ТВС ≈50%
- <u>«Правосторонний» перекос</u> по энерговыделению
- Средняя глубина выгорания 36.4%

После перегрузки топлива

Глубина выгорания, %								
Ячейка*	6	5	4	3				
7	13.23	9.58	41.41	49.68				
6	33.20	58.42	26.37	32.60				
5	0.00	Be	Be	41.00				
4	0.00	Be	Be	40.28				
3	32.47	23.94	57.97	31.17				
2	13.07	41.01	9.54	47.55				
	Глубина выгорания по сторонам, %							
	22	.49	37	' .76				

Энерговыделение, кВт								
6	5	4	4 3					
306	327	252	228	7				
291	237	348	303	6				
407	Be	Be	321	5				
408	Be	Be	315	4				
288	351	228	300	3				
312	249	318	222	2				
Энергов	Энерговыделение по сторонам, кВт							
	317 283							

- Разница между наименее и наиболее выгоревшими ТВС ≈45%
- «Левосторонний» перекос по энерговыделению
- Средняя глубина выгорания 30.1%

*нумерация ячеек имеет вид: 7-6, где 7 –строка, 6 – столбец

<u>Среднее изменение энерговыделения по ячейкам составило ≈15%</u>

ПРОБЛЕМА ПРОФИЛИРОВАНИЯ ЭНЕРГОВЫДЕЛЕНИЯ

Моделирование процесса переноса излучения и определение нейтронно-физических характеристик реактора на основе трехмерной полномасштабной модели в ПС MCU-PTR*

- Итерационный процесс
- Выбор ячеек для перестановок на основе предположений
- Эффективность перестановок определяется <u>по</u> результатам моделирования
- Существует множество возможных комбинаций наиболее оптимальная конфигурация может быть не достигнута
- Временные затраты на оценку схем перестановок и подготовку индивидуальной программы <u>4-12 часов</u>

ПРОБЛЕМА ПРОФИЛИРОВАНИЯ ЭНЕРГОВЫДЕЛЕНИЯ

Концепция оптимизации процесса профилирования энерговыделения

постановка задачи

Глубина выгорания, %								
Ячейка*	6	5	4	3				
7	13.23	9.58	41.41	49.68				
6	33.20	58.42	26.37	32.60				
5	0.00	Ве	Ве	41.00				
4	0.00	Ве	Ве	40.28				
3	32.47	23.94	57.97	31.17				
2	13.07	41.01	9.54	47.55				

Обучение с учителем

Энерговыделение, кВт								
6	Ячейка							
306	327	252	228	7				
291	237	348	303	6				
407	Be	Be	321	5				
408	Be	Be	315	4				
288	351	228	300	3				
312	249	318	222	2				

Значения глубины выгорания – множество входных признаков **X**_{m,n} Значения энерговыделения – множество допустимых ответов **Y**_{m,n}

$$\mathbf{X}_{\mathbf{mn}} = \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix} \qquad \qquad \mathbf{Y}_{\mathbf{mn}} = \begin{pmatrix} y_{11} & \dots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{m1} & \cdots & y_{mn} \end{pmatrix}$$

$$g_{m1}: \mathbf{X}_{mn} - > y_{m1}$$
 $R(g_{m1}) = \frac{1}{m} \sum_{i=1}^{m} L(y_{i1}, g_{i1})$ $R(g_{mn}) = [R(g_{m1}), \dots, R(g_{mn})]$

РАБОТА С ДАННЫМИ

«The 10 Times Rule» - не менее 10 примеров на каждый признак

<u>До аугментации</u>

Размер исходной выборки – 80 топливных загрузок Недостаток примеров - искаженные формы распределений

После аугментации

Размер исходной выборки – 600 топливных загрузок Отсутствие пропусков

9

РАБОТА С ДАННЫМИ

Несимметричная форма бериллиевого отражателя и режим частичных перегрузок

Для <u>«идеальной»</u> активной зоны энерговыделение в каждой ячейке <u>300кВт</u> Средняя разница между периферийной (7-6) и напряженной (5-3) ячейками <u>составляет ≈40%</u> Нулевая гипотеза H₀ о нормальности распределений <u>отвергается</u> по критерию асимметрии и эксцесса для некоторых центральных ячеек

РАБОТА С ДАННЫМИ

Корреляционный анализ

						Р- з	начени	е					
	Ячейка*	7-6_э	7-5_э	7-4_э	2-3_э	2-4_э	2-5_э	7-6_в	7-5_в	7-4_в	2-3_в	2-4_в	2-5_E
	7-6_э		0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.15	0.03	0.01	0.01
Ξ	7-5_э	0.35		0.00	0.00	0.00	0.00	0.12	0.00	0.96	0.00	0.01	0.01
קד	7-4_э	0.32	0.25		0.00	0.00	0.00	0.16	0.71	0.00	0.01	0.02	0.01
Бе С	2-3_э	-0.38	-0.40	-0.34		0.00	0.00	0.02	0.00	0.02	0.00	0.08	0.36
ddo	2-4_э	-0.35	-0.42	-0.37	0.34		0.00	0.01	0.00	0.02	0.49	0.00	0.05
Т КС	2-5_э	-0.34	-0.44	-0.37	0.25	0.40		0.02	0.00	0.02	0.94	0.06	0.00
ен деј	7-6_в	-0.88	-0.08	-0.08	0.13	0.14	0.13		0.81	0.35	0.63	0.95	0.70
1ци Сен	7-5_в	-0.09	-0.89	-0.03	0.15	0.21	0.17	0.01		0.25	0.27	0.47	0.17
<u>ڳ</u>	7-4_в	-0.09	0.01	-0.88	0.12	0.15	0.16	0.04	-0.05		0.36	0.75	0.86
þec	2-3_в	0.12	0.15	0.11	-0.89	0.01	0.02	0.01	0.02	0.01		0.31	0.67
ΙŽ	2-4_в	0.14	0.17	0.13	-0.09	-0.87	-0.10	0.01	-0.03	0.02	-0.03		0.50
	2-5_в	0.16	0.18	0.15	-0.02	-0.09	-0.88	0.02	-0.03	0.01	-0.04	0.04	

_э, _в – постфиксы энерговыделения и глубины выгорания, соответственно

– слабая положительная связь, $r \in [0.15; 0.30)$

– умеренная положительная связь, $r \in [0.30; 0.70]$

- умеренная отрицательная связь, $r \in [-0.30; -0.70]$

сильная отрицательная связь, *r* ∈ [-0.70;-1.00]

Значение выходного признака формируется исходя из множества входных – высокая дисперсия

построение модели

Оценка производительности на основе кросс-валидации

Алгоритм	<i>R</i> ² по ячейкам	САО* по ячейкам, %
Гребневая регрессия (Ridge)	0.91	2.3
Лассо регрессия (Lasso)	0.01	97.1
Метод опорных векторов (SVM)	0.71	5.5
Метод ближайших соседей (KNN)	0.55	7.0
Гауссовский процесс (GPR)	0.95	1.9
Градиентный бустинг (GBR)	0.88	2.8

Интервал прогнозирования (PI) при 2σ ±14.7 кВт

*САО – среднее абсолютное отклонение

Выбор в пользу **<u>GPR</u>** для подбора оптимальной ковариационной функции (кернел)

построение модели

Точность работы модели GPR с ковариационными функциями **<u>RBF и WN</u>**:

- R² составил ≈0.99
- САО составило 0.5%
- РІ при 2σ ±4.5 кВт

построение модели

Моделирование в MCU-PTR

Прогноз GPR (RBF + WN)

Ячейка	6	5	4	3
7	256	272	345	309
6	240	367	375	339
5	300	Be	Be	423
4	313	Be	Be	292
3	256	293	295	338
2	201	265	262	259

6	5	4	3	Ячейка
254	273	347	312	7
242	368	377	340	6
299	Be	Be	428	5
310	Be	Be	293	4
254	291	295	339	3
199	263	260	256	2

Пример №1

Пример №2

Ячейка	6	5	4	3
7	239	299	298	250
6	269	344	357	328
5	310	Be	Be	370
4	303	Be	Be	383
3	263	337	344	263
2	276	260	208	299

6	5	4	3	Ячейка
238	298	294	248	7
269	345	356	326	6
311	Ве	Ве	369	5
305	Be	Be	382	4
263	339	346	263	3
277	264	209	300	2

ЗАКЛЮЧЕНИЕ

- Высокая степень неравномерности излучения в активной зоне реактора ИРТ-Т является причиной значительного перераспределения энерговыделения при изменении компоновки топлива
- Выравнивание неравномерности энерговыделения требует предварительного ресурсозатратного моделирования и последующей разработки индивидуального плана перестановки топлива
- Предложено использовать машинное обучение с учителем для прогнозирования энерговыделения в ячейках на основе глубины выгорания топлива
- Подготовлен датасет, состоящий из 600 уникальных картограмм загрузок активной зоны реактора
- Проведены тесты нормальности в рамках H₀ существуют ячейки, для которых H₀ отвергается
- Проведенный корреляционный анализ показал наличие связи между входными и выходными признаками
- Проведен сравнительный анализ применимости моделей машинного обучения (Ridge, Lasso, SVM, GPR и др.) для рассматриваемой задачи
- Наивысшую точность показала модель GPR: R²=0.95, CAO = 1.9%, PI = ±14.7 кВт
- Настойка модели за счет использования составной ковариационной функции позволила повысить точность до: R²≈0.99, CAO = 0.5%, PI = ±4.5 кВт

Спасибо за внимание!

H.B.Смольников nvs38@tpu.ru г.Томск