Legacy of Tunka-Rex software and data

P. Bezyazeekov for the Tunka-Rex collaboration

API ISU, Russia

28 June 2021

P. Bezyazeekov (Tunka-Rex Collab.)

28 June 2021 1 / 17

EL SQA

Tunka-Rex

Tunka Radio Extension

- Frequency band 30-80 MHz
- Duplex and triplex measurements: $\gamma_{\rm ch}/\mu/e$ + radio
- World-uniqe radio and air-Cherenkov cross-calibration
- First direct measurement of shower maximum with radio
- Cost-effective
- Proof-of-feasibility

Talk structure

- Template fitting reconstruction
- Autoencoder denoising
- Efficiency model
- Self-trigger study
- Tunka-Rex Virtual Observatory

EL SQA

TEMPLATE FIT

(ロ) (型) (E) (E) (E) (E) (O)

Template fit: method

Chi-square fit of optimally-clipped envelopes concatenated to single trace

Template fit: results [Phys.Rev. D 97, 122004]

AUTOENCODER

E 990

イロト イポト イヨト イヨト

Autoencoder denoising

- Unsupervised neural network with compressed representation
- Use Keras and Tensorflow with GPU support
- Based of 1D convolution layers
- ReLu (max(0, x)) activation function
- Max pooling (and upsampling) after convolutional layers
- Binary crossentopy loss function and RMSprop optimizer
- Train networks via uDocker on SCC ForHLR II cluster

Example of correct identification

True signal and noise are identified correctly, noise is removed

Energy reconstruction by denoised data: method

28 June 2021 10 / 17

Energy reconstruction (after cuts)

Reconstruction based on single antenna method, $E = \kappa A_d e^{-\eta(d-d_0)}$ Normalization factor from standard reconstruction; $\mu = 0\%$, $\sigma = 26\%$

▶ ∢ ⊒

= 900

EFFECTIVE APERTURE

イロト イポト イヨト イヨト

ELE DOG

Effective aperture model

$$\mathcal{A}(E) = \int_{\Omega} \int_{S} \varepsilon(E, \theta, \alpha, x, y) \cos \theta \, \mathrm{d}S \, \mathrm{d}\Omega$$
$$\varepsilon(E, \theta, \alpha, x, y) = \varepsilon_{R}(E, \theta, \alpha, x, y) \varepsilon_{a}(E, \theta, \alpha)$$

E1= 990

Comparison with experimental data

Gen.	Year	Antennas	Expected	Detected	Efficiency
		number	events	events	
1a	2012/13	18	23	20	$0.85^{+0.05}_{-0.09}$
1b	2013/14	25	28	27	$0.96\substack{+0.02\\-0.05}$
2	2015/16	44	14	14	$1.00^{+0.00}_{-0.07}$
3	2016/17	63	17	16	$0.94_{-0.08}^{+0.04}$
		Total	82	77	$0.94^{+0.02}_{-0.03}$

(ロ) (型) (E) (E) (E) (E) (O)

TRVO

P. Bezyazeekov (Tunka-Rex Collab.)

Tunka-Rex Virtual Observatory

- Over 1 million of measured and simulated events
- Modular interface
- Preparing to open access

イロト (過) (ヨト (ヨト) ヨヨ うのう

Conclusion

- Developed techiques may be used in various radio experiments
- Energy resolution of 10%
- Shower maximum resolution of 25-35 g/cm²
- Efficiency model is in agreement with experimental data
- Studies of autoencoder and self-trigger continues
- Preparing TRVO for open access

Autoencoder: motivation

Average of 400 events, expected noise reduction with factor $\sqrt{400} = 20$

- \Rightarrow Noise is not white/contain features
- \Rightarrow Train autoencoder to learn these features

Chosen architecture (autoencoder)

- Unsupervised neural network with compressed representation
- Use Keras and Tensorflow with GPU support
- Based of 1D convolution layers
- ReLu (max(0, x)) activation function
- Max pooling (and upsampling) after convolutional layers
- Binary crossentopy loss function and RMSprop optimizer
- Train networks via uDocker on SCC ForHLR II cluster

Learning strategy and training pipeline

Datasets:

• 25k upsampled (×16) traces with real background + low-amplitude simulations (< $100 \,\mu$ V/m) with randomly located pulse

Training and evaluation:

- Depth (D) and number of filters per layer as free parameters
- Primary evaluate by loss metrics
- Blind test with full-pipeline Offline reconstruction

i-th encoding layer is described by the following (i = 1, ..., D):

$$S_i = S_{\min} \times 2^{D-i}, \ n_i = 2^{i+N-1},$$
 (1)

where S_i is a size of the *i*-th filter, n_i is a number of filters per layer D and N are free parameters; $S_{\min} = 16$ is minimal size of layer Size of input/output array: 4096 (1280 ns) – 25% of original trace

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Threshold and metrics

- Threshold amplitude \Leftrightarrow 5% tolerance to false positives
- Efficiency: $N_{\rm rec.}/N_{\rm tot.}$, fraction of events passed the threshold
- Purity: $N_{\rm hit}/N_{\rm rec.}$, fraction of events with reconstructed position of the peak: $|t_{\rm rec.} t_{\rm true}| < 5$ ns

Example: no identification

True signal is heavily distorted by noise, and removed as background

- A 🖓

-

Example: double identification

Signal-like RFI is identified as signal

Full-pipeline reconstruction with autoencoder

Autoencoder is binded with Tunka-Rex fork of Auger Offline Reconstruction of CoREAS simulations (reproduction of 2012-2014 events)

(日) (同) (日) (日)

Data-driven benchmark

- Tunka-133/Tunka-Rex events with $E \in [10^{16} 10^{17}] \text{ eV}$
- Almost zero events in this energy band by standard method
- Decreasing autoencoder threshold $0.395/0.500 \rightarrow 0.200/0.500$
- Cross-check cuts: direction reconstruction $\Delta \Omega < 5^{\circ}$, clustering events

