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The Problem Context

» The general topic within which this work was carried out:
establishing relationships between various methods of
machine learning (ML)

» ultimate goal = a better theoretical understanding of these
methods and their improvements
» In particular, a correspondence has recently been established
between the appropriate asymptotics of deep neural
networks (DNNs), including convolutional ones (CNNs), and
the ML method based on Gaussian processes (GPs)

> Gaussian processes are mathematically equivalent to free
(Euclidean) quantum field theory (QFT) = potential for using
a broad range of QFT methods for analyzing DNNs
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Posing the Problem and Main Result

» An important feature of CNNs is their equivariance
(consistency) with respect to the symmetry transformations of
the input data

» In this work, we have established a relationship between the
many-channel limit of equivariant CNNs and the
corresponding equivariant Gaussian processes (GPs), and
hence the QFT with the appropriate symmetry

» The approach used provides explicit equivariance at each
stage of the derivation of the relationship
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Gaussian Processes for Machine Learning: Example of
Regression (1/2)

>

| 2

GP ML C kernel method
approach in ML
In the GP regression rather than
claiming f(x,0) relates to some
specific models
> e.g., linear, quadratic or even
non-polynomial
one can consider every possible
function that matches data
but in order that f(x, ) be not
too wiggly (overfitting, etc.) =
covariance matrix
> to ensure that values that are
close together in input space will
produce output values that are
close together
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» An example of simple
regression task (Ebden,
arXiv:1505.02965 )

» given noisy data
points =
estimating the
value at additional
point x, = 0.2
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Gaussian Processes for Machine Learning: Example of
Regression (2/2)

» GP assumes that data set
p(y1,--.,yn) is jointly Gaussian, o
with some mean and covariance
k(xi, xj; 0) = positive definite
kernel function &

» using a number of nice GP T e e e oo
properties, including
» conditional Gaussian = Gaussian » Result of the
» marginal Gaussian = Gaussian

. i GP-regression (Ebden,
> integrability

arXiv:1505.02965 )

» + some rather lengthy matrix > solid line: mean of
algebra ys« for 1000 values
of x,

> shaded: 95%
confidence interval

» one can find ~ p(y.|x, x,y)
» ML: optimization of 6 in
k(xi, xj; 0) using Bayes’ theorem
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Fully-Connected Neural Networks < GPs

» R.M.Neal (1996,2012): the function defined by a single-layer
fully-connected NN with
» infinitely many hidden units (= shallow and co-wide)
» ii.d. zero-mean weights and biases as network prior

is equivalent to a GP

> J.Lee et al (2018), A.G.Matthews et al (2018): extended these
results to arbitrarily deep fully-connected NN with
infinitely many hidden units in each layer

» provide an explicit form for the prior over functions encoded by
NN architectures and initializations
» = analytical investigation and means for a theoretical
understanding of DL, e.g.:
»> 0O.Cohen (2019) et al: predictions for learning curves of DNNs
trained on regression problems
> G. Naveh (2020) et al: predictions of the outputs of some
finite networks with high accuracy
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Finite NNs < GPs

> in practice one is interested in networks with finite width N:
> It is supposed (not rigorously proven so far) that they can be
drawn from a distribution that receives 1/N corrections
relative to the Gaussian distribution,
> i.e., from a non-Gaussian process (NGP), see, e.g., S.Yaida
(2020)

» |t is worth noting: from the technical point of view studying
neural networks with close-to-Gaussian distribution on function
space are to some extent analogous to perturbative quantum
field theory (QFT),

» J.Halverson et al (2020): experimental evidences for the
(NGPs/perturbative QFT) < (finite-width FCNNs)
relationship
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Convolutional Neural Networks (CNNs) < GPs

» fully-connected networks (FCNNSs) are rarely used in practice
» CNN = localized filter, essentially not very wide!

» R.Novak et al (2018), A.Garriga-Alonso et al (2018): if each
hidden layer has an infinite number of convolutional filters
(that is infinite number of channels), the CNN prior is

equivalent to a GP
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The figure is borrowed from R.Novak et al (2018)
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Step aside: equivariance in CNNs (1/2)

» Well-known fact: usual CNNs are translational equivariant

» Recent years: huge activity to
extend this to other symmetries

> e.g., rotations in 2D & 3D,
Euclidean motions, Lorentz
group, etc

> works by Kondor, Trivedi, Cohen,
Welling, Esteves, Ravanbakhsh,...
and many others

» the main ingredient of these
extensions is appropriate
generalization of the
convolution operation from plane
grids to other homogeneous spaces
and even to arbitrary manifolds
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[llustration of translational
equivariance of classical
CNNs

The figure is borrowed from D.E.Worrall
et al (2017)
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Step aside: equivariance in CNNs (2/2)
F(r, ¢) F(r,¢ —0)

W, xF(r, ¢ — 0)
= ™ [W,, x F(r, ¢)]

A demonstration of the meaning of equivariance (2D rotational
symmetry)

The figure is borrowed from D.E.Worrall et al (2017)
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A note on the terminology

Please do not confuse the two notions that sound somewhat
similar;

> equivariance ~ consistency with symmetry transformations

» covariance ~ 2d moment of a distribution
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Equivariant CNN with Infinite Number of Channels =
Equivariant GPs (1/4)

» All the preceding seminal works on the CNN-GP relationship
did not take into account equivariance
> neither generalized nor even explicit translational equivariance
» On the other hand, there exists investigations of equivariant
GPs (e.g., P.Holderrieth et al (2020)) but without established
relations with CNNs in the appropriate limit
» The present work is intended to fill the gap between
equivariance of CNNs and that of the corresponding GPs
» the method constituents are
» layer-by-layer derivation of GP covariances in the
many-channel limit by using the law of large numbers that
results in the recursive relation for the top-layer covariance
> keeping explicit equivariance at each step of the derivation

The figure is borrowed from J.Lee et al (2018)
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Equivariant CNN with Infinite Number of Channels =

Equivariant GPs (2/4)

CNNs

equivariant
CNNs

=
=

GPs




Equivariant CNN with Infinite Number of Channels =
Equivariant GPs (3/4)

» the main question in our work is how to deal with
vector-valued functions
» the point is that such vectors (of finite
dimensionality) are also treated as channels,
so the question is how one can go to the
infinite-channel limit

» our solution is based on using the so called
steerable CNNs (T.Cohen & M.Welling =
(2016)) which in turn heavi|y use induced from P.Holderrieth et al

. (2020)
representations of symmetry groups
» all-in-all this allows us to separate channels indices in two
categories:

1. the indices that numerate the vector components within an
irrep and used to describe their transformations under matrix
representations of a symmetry group;

2. the indices that numerate different irreducible representations
(of the same or different types);
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Equivariant CNN with Infinite Number of Channels =
Equivariant GPs (4/4)
» the 2d type of the indices are not restricted

and can be used for the limiting transition
to the corresponding GP

» as result we obtain the equivariant GP as
the limit of (steerable) CNNs with the
covariance

K(% x') = K(%—x,0) = K(X — x')
K(RX) = p(R)K(X)p(R)"
) =

R = a transformation; p(R) = matrix irrep

» these relations provide the required The figure is borrowed

from P.Holderrieth et al

equivariance = = = (2020)

» and thereby fill the gap between
many-channel CNNs and equivariant GP
introduced in P.Holderrieth et al (2020)
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Example of (recursion) relations for the GP kernel

» for the rotation equivariant CNN and a specific choice of
nonlinearity (quadratic nonlinearity in the Fourier space)
» Fourier components of the NN-GP kernel (Gaussian
covariance) are expressed via data covariance K as follows
2\ 2
KL (x,x') = <G2W> daa/ [KO * KO %k KO} I(X,X/)

a,a
a,a’ #£0

2L times

For K}y(x, x") we have the recursive relation:
o4
Kéo(x, X') TWZKKIXXZKEZLXX
! ZKZ 1(x,x") é:gl(x,x')

» All the terms transforms according to SO(2) irreps = explicit
equivariance
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Conclusion

» Currently there exists rather promising new trend in ML
based on the relationship between FCNN/CNNs and GPs
» many related subtopics, e.g., signal propagation in NNs,
learning curve, QFT methods in ML
» In this work we have derived the many-channel limit for CNNs
with symmetry on Euclidean plane (translations+rotations)
> with explicit equivariance at each step of the derivation
» calculated the corresponding equivariant GP kernel in the case
of specific nonlinearities
> thereby filled the gap between many-channel equivariant
CNNs and independently introduced equivariant GP

» many subtleties and mathematically rigorous proofs were
dropped in the report but essentially they go in parallel with
the case of classical (translationally equivariant) CNNs
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