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The Problem Context

I The general topic within which this work was carried out:
establishing relationships between various methods of
machine learning (ML)
I ultimate goal = a better theoretical understanding of these

methods and their improvements

I In particular, a correspondence has recently been established
between the appropriate asymptotics of deep neural
networks (DNNs), including convolutional ones (CNNs), and
the ML method based on Gaussian processes (GPs)

I Gaussian processes are mathematically equivalent to free
(Euclidean) quantum �eld theory (QFT) ⇒ potential for using
a broad range of QFT methods for analyzing DNNs
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Posing the Problem and Main Result

I An important feature of CNNs is their equivariance
(consistency) with respect to the symmetry transformations of
the input data

I In this work, we have established a relationship between the
many-channel limit of equivariant CNNs and the
corresponding equivariant Gaussian processes (GPs), and
hence the QFT with the appropriate symmetry

I The approach used provides explicit equivariance at each
stage of the derivation of the relationship
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Gaussian Processes for Machine Learning: Example of
Regression (1/2)

I GP ML ⊂ kernel method
approach in ML

I In the GP regression rather than
claiming f (x , θ) relates to some
speci�c models
I e.g., linear, quadratic or even

non-polynomial

one can consider every possible
function that matches data

I but in order that f (x , θ) be not
too wiggly (over�tting, etc.) ⇒
covariance matrix
I to ensure that values that are

close together in input space will
produce output values that are
close together

I An example of simple
regression task (Ebden,
arXiv:1505.02965):
I given noisy data

points ⇒
estimating the
value at additional
point x∗ = 0.2
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Gaussian Processes for Machine Learning: Example of
Regression (2/2)

I GP assumes that data set
p(y1, . . . , yN) is jointly Gaussian,
with some mean and covariance
k(xi , xj ; θ) ≡ positive de�nite
kernel function

I using a number of nice GP
properties, including
I conditional Gaussian = Gaussian
I marginal Gaussian = Gaussian
I integrability

I + some rather lengthy matrix
algebra

I one can �nd ∼ p(y∗|x∗, x , y)

I ML: optimization of θ in
k(xi , xj ; θ) using Bayes' theorem

I Result of the
GP-regression (Ebden,
arXiv:1505.02965):
I solid line: mean of

y∗ for 1000 values
of x∗

I shaded: 95%
con�dence interval
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Fully-Connected Neural Networks ⇔ GPs

I R.M.Neal (1996,2012): the function de�ned by a single-layer
fully-connected NN with
I in�nitely many hidden units (= shallow and ∞-wide)
I i.i.d. zero-mean weights and biases as network prior

is equivalent to a GP

I J.Lee et al (2018), A.G.Matthews et al (2018): extended these
results to arbitrarily deep fully-connected NN with
in�nitely many hidden units in each layer
I provide an explicit form for the prior over functions encoded by

NN architectures and initializations
I ⇒ analytical investigation and means for a theoretical

understanding of DL, e.g.:
I O.Cohen (2019) et al: predictions for learning curves of DNNs

trained on regression problems
I G. Naveh (2020) et al: predictions of the outputs of some

�nite networks with high accuracy
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Finite NNs ⇔ GPs

I in practice one is interested in networks with �nite width N:
I It is supposed (not rigorously proven so far) that they can be

drawn from a distribution that receives 1/N corrections
relative to the Gaussian distribution,

I i.e., from a non-Gaussian process (NGP), see, e.g., S.Yaida
(2020)

I It is worth noting: from the technical point of view studying
neural networks with close-to-Gaussian distribution on function
space are to some extent analogous to perturbative quantum
�eld theory (QFT),

I J.Halverson et al (2020): experimental evidences for the
(NGPs/perturbative QFT) ⇔ (�nite-width FCNNs)
relationship
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Convolutional Neural Networks (CNNs) ⇔ GPs

I fully-connected networks (FCNNs) are rarely used in practice

I CNN ⇒ localized �lter, essentially not very wide!

I R.Novak et al (2018), A.Garriga-Alonso et al (2018): if each
hidden layer has an in�nite number of convolutional �lters
(that is in�nite number of channels), the CNN prior is
equivalent to a GP

The �gure is borrowed from R.Novak et al (2018)
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Step aside: equivariance in CNNs (1/2)

I Well-known fact: usual CNNs are translational equivariant

⇓ ⇓I Recent years: huge activity to
extend this to other symmetries
I e.g., rotations in 2D & 3D,

Euclidean motions, Lorentz
group, etc

I works by Kondor, Trivedi, Cohen,
Welling, Esteves, Ravanbakhsh,...
and many others

I the main ingredient of these
extensions is appropriate
generalization of the
convolution operation from plane
grids to other homogeneous spaces
and even to arbitrary manifolds

Illustration of translational
equivariance of classical
CNNs

The �gure is borrowed from D.E.Worrall
et al (2017)
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Step aside: equivariance in CNNs (2/2)

A demonstration of the meaning of equivariance (2D rotational
symmetry)

The �gure is borrowed from D.E.Worrall et al (2017)
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A note on the terminology

Please do not confuse the two notions that sound somewhat
similar:

I equivariance ∼ consistency with symmetry transformations

I covariance ∼ 2d moment of a distribution
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Equivariant CNN with In�nite Number of Channels =
Equivariant GPs (1/4)

I All the preceding seminal works on the CNN-GP relationship
did not take into account equivariance
I neither generalized nor even explicit translational equivariance

I On the other hand, there exists investigations of equivariant
GPs (e.g., P.Holderrieth et al (2020)) but without established
relations with CNNs in the appropriate limit
I The present work is intended to �ll the gap between

equivariance of CNNs and that of the corresponding GPs
I the method constituents are

I layer-by-layer derivation of GP covariances in the
many-channel limit by using the law of large numbers that
results in the recursive relation for the top-layer covariance

I keeping explicit equivariance at each step of the derivation

The �gure is borrowed from J.Lee et al (2018)
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Equivariant CNN with In�nite Number of Channels =
Equivariant GPs (2/4)
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Equivariant CNN with In�nite Number of Channels =
Equivariant GPs (3/4)

I the main question in our work is how to deal with
vector-valued functions

I the point is that such vectors (of �nite
dimensionality) are also treated as channels,
so the question is how one can go to the
in�nite-channel limit

I our solution is based on using the so called
steerable CNNs (T.Cohen & M.Welling
(2016)) which in turn heavily use induced
representations of symmetry groups

from P.Holderrieth et al
(2020)

I all-in-all this allows us to separate channels indices in two
categories:
1. the indices that numerate the vector components within an

irrep and used to describe their transformations under matrix
representations of a symmetry group;

2. the indices that numerate di�erent irreducible representations
(of the same or di�erent types);
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Equivariant CNN with In�nite Number of Channels =
Equivariant GPs (4/4)

I the 2d type of the indices are not restricted
and can be used for the limiting transition
to the corresponding GP

I as result we obtain the equivariant GP as
the limit of (steerable) CNNs with the
covariance

K (~x , ~x ′) = K (~x − ~x ′,~0) ≡ K̂ (~x − ~x ′)

K̂ (R~x) = ρ(R)K̂ (~x)ρ(R)T

R = a transformation; ρ(R) = matrix irrep

I these relations provide the required
equivariance ⇒ ⇒ ⇒

I and thereby �ll the gap between
many-channel CNNs and equivariant GP
introduced in P.Holderrieth et al (2020)

The �gure is borrowed
from P.Holderrieth et al

(2020)
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Example of (recursion) relations for the GP kernel
I for the rotation equivariant CNN and a speci�c choice of

nonlinearity (quadratic nonlinearity in the Fourier space)
I Fourier components of the NN-GP kernel (Gaussian

covariance) are expressed via data covariance K 0 as follows

KL
αα′(x , x ′) =

(
σ2w
2

)2L

δαα′

[
K 0 ? K 0 ? · · · ? K 0︸ ︷︷ ︸

2L times

]
α,α′

(x , x ′)

α, α′ 6= 0

For K l
00(x , x ′) we have the recursive relation:

K `
00(x , x ′) =

σ4w
4

∑
β

K `−1
β,β (x , x)

∑
η

K `−1
η,η (x ′, x ′)

+
∑
β

K̄ `−1
β,β (x , x ′)K `−1

β,β (x , x ′)


I All the terms transforms according to SO(2) irreps ⇒ explicit

equivariance
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Conclusion

I Currently there exists rather promising new trend in ML
based on the relationship between FCNN/CNNs and GPs
I many related subtopics, e.g., signal propagation in NNs,

learning curve, QFT methods in ML

I In this work we have derived the many-channel limit for CNNs
with symmetry on Euclidean plane (translations+rotations)
I with explicit equivariance at each step of the derivation
I calculated the corresponding equivariant GP kernel in the case

of speci�c nonlinearities

I thereby �lled the gap between many-channel equivariant
CNNs and independently introduced equivariant GP

I many subtleties and mathematically rigorous proofs were
dropped in the report but essentially they go in parallel with
the case of classical (translationally equivariant) CNNs
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