
A Convolutional Hierarchical
Neural Network Classifier

I.M.Gadzhiev, S.A.Dolenko*

D.V.Skobeltsyn Institute of Nuclear Physics,
M.V.Lomonosov Moscow State University

5th International Workshop on Deep Learning in Computational Physics

June 29, 2021

Online

Hierarchical Neural Network Classifier (HNNC)

Solves multi-class classification problems.

HNNC is a tree, in each node of which

there is a neural network that is trained

on a certain subset of all classes.

Class groups are formed adaptively.

• The neural network in each node is a “weak” multi-layer perceptron (MLP)
with a small number of neurons (2-4) in the single hidden layer,
solving a classification problem with one-hot encoding at the output

• After a pre-defined number of training epochs,
the statistics of the network output on the training set is analyzed

• If some classes are consistently mixed up
(for the majority of “voting” input patterns of a class),
such classes are merged by modification of the desired output

• The cycle “training – class merging” is repeated
while classes continue to merge (and the number of classes is greater than 2),
and until the network error for the modified class set on the validation dataset
stops to decrease for a pre-defined timeout

• For each class group that has been formed by class merging,
a new node is trained

HNNC Training Algorithm

Convolutional HNNC (CHNNC)

• Designed to solve multi-class
image classification problems

• Each node contains
a convolutional neural network
(CNN) instead of an MLP

• The hierarchy of the classes
obtained with “weak” CNNs
can be re-used
with “strong” CNNs
to improve
the recognition rate
(too low with “weak” CNNs)

The figure displays patterns

from benchmark datasets

CIFAR-10 and CIFAR-100,

consisting of images

of 10 and 100 classes,

respectively.

Image Classification Benchmark Problems

The weak CNN used at the first stage of the algorithm.
The single convolutional layer contains 2-3 neurons (filters).
Each dense layer contains 2-3 neurons in the single hidden layer.

The strong CNN used at the second stage of the algorithm.
Each convolutional layer contains 32 neurons (filters).
Each dense layer contains 10 neurons in the single hidden layer.

Architectures of CNN Models in a Node

• The weak CNN is trained on the initial set of data.

• After a pre-defined number of training epochs,
the classes, which get mixed up, are merged.

• The cycle “training – class merging” is repeated
while classes continue to merge
(and the number of classes is greater than 2),
and until the network error for the modified class set
on the validation dataset
stops to decrease for a pre-defined timeout.

• For each class group that has been formed by class merging,
the described algorithm is applied recursively

First Stage - Construction of the Hierarchy

An Example of Class Hierarchy for CIFAR-10

An Example of Class Merging Diagram (CIFAR-10)

• A CNN with stronger parameter values is placed
in each node of the resulting hierarchy.

• Training is repeated without class merging.

• The weak models are effective for tree construction,
but their use result in low recognition rate.

• Use of strong models allows one to reduce
the effects of error multiplication when moving down the tree.
(Multiplication of errors of weak models
result in an extremely weak classifier).

Second Stage - Training Strong Models

• To determine which classes the network mixes up most often,
voting of patterns of each class is performed on the training set.

• If most of the patterns from Class i are assigned to Class j,
then these two classes are merged into one.

• Problem – influence of random weight initialization on the voting.

• Result – random merging of classes
and low reproducibility of the design of the classification tree.

Construction of the Hierarchy: Pattern Voting

• The thresholds are introduced to solve the problem of random merging

• Activation Threshold:
The votes of only those patterns,
for which the maximum activation of the output neuron
is greater than the Activation Threshold,
are taken into account

• Voting Patterns Share Threshold:
Class i is merged with Class j only if
the percentage of Class i patterns that voted for Class j
is greater than the Voting Patterns Share Threshold

Pattern Voting: Activation Threshold
and Voting Patterns Fraction Threshold

Two methods of selection of the Activation Threshold are tested:

1. Setting fixed threshold values for all nodes.

The optimal value of the threshold is determined by enumeration.

2. Setting the threshold equal to the upper boundary of the

output activation localization area with random initialization.

We define the localization area as

 = 𝜇 + 𝑘𝜎

where 𝜇 and 𝜎 are the mean and standard deviation

of the output activations on the patterns from the training set

in this node with random initialization of the weights.

𝑘 is the coefficient selected by enumeration.

Selection of the Activation Threshold

• Benchmark Dataset – CIFAR-10.

• Weak CNN: 3 filters 22 in 1 convolutional layer,
3+10 neurons in the fully connected layers.

• Strong CNN: 32 filters 44 in each of the 2 convolutional layers,
10+10 neurons in the fully connected layers.

• Adam, learning rate 0.001 (Tensorflow library).

• 5 runs for each pair of threshold values, results averaged.

• For the first and second algorithm stages,
the training set was split into two parts in 1:4 proportion.

• Voting Patterns Share Threshold values from 0.2 to 0.5 step 0.1.

• Two methods for Activation Threshold values:
1. Fixed values from 0.1 to 0.4 step 0.05
2. Values of 𝑘 from 0 to 2 step 0.5

Algorithm Testing
for Various Threshold Values

Threshold Values Control the Height of the Tree

Results: Fixed Activation Threshold, Stage 1 Only

Results: Fixed Activation Threshold, Both Stages

The second stage of the algorithm provides cardinal improvement of the results

Results: Adaptive Activation Threshold, Stage 1 Only

Results: Adaptive Activation Threshold, Both Stages

There is no pronounced dependence of the results on the threshold values

• We have introduced a novel version
of the Hierarchical Neural Network Classifier –
a Convolutional Hierarchical Neural Network Classifier,
and an algorithm for its construction.

• The necessity of the second stage of the algorithm has been demonstrated.

• The obtained class hierarchy can be re-used in other algorithms.

• Introduction of two types of threshold demonstrated no pronounced
dependence on the threshold values. However, the best results for CIFAR-10
problem were obtained for the two-stage algorithm with adaptive Activation
Threshold with 𝑘 =1 and Voting Patterns Share Threshold equal to 0.3.

• The algorithm requires further investigation of the optimal methods
for setting of the threshold values at the first stage
and of the optimal parameters at the second stage

• Testing on other benchmark problems is also required

Conclusion

Thank you for your attention!

