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Galaxy imaging surveys enable us to map the cosmic matter density field through weak gravita-
tional lensing analysis. The density reconstruction is compromised by a variety of noise originating
from observational conditions, galaxy number density fluctuations, and intrinsic galaxy properties.
We propose a deep-learning approach based on generative adversarial networks (GANs) to reduce
the noise in the weak lensing map under realistic conditions. We perform image-to-image translation
using conditional GANs in order to produce noiseless lensing maps using the first-year data of the
Subaru Hyper Suprime-Cam (HSC) survey. We train the conditional GANs by using 30000 sets
of mock HSC catalogs that directly incorporate observational effects. We show that an ensemble
learning method with GANs can reproduce the one-point probability distribution function (PDF)
of the lensing convergence map within a 0.5− 1σ level. We use the reconstructed PDFs to estimate
a cosmological parameter S8 = σ8

√
Ωm0/0.3, where Ωm0 and σ8 represent the mean and the scatter

in the cosmic matter density. The reconstructed PDFs place tighter constraint, with the statistical
uncertainty in S8 reduced by a factor of 2 compared to the noisy PDF. This is equivalent to increas-
ing the survey area by 4 without denoising by GANs. Finally, we apply our denoising method to
the first-year HSC data, to place 2σ-level cosmological constraints of S8 < 0.777 (stat) + 0.105 (sys)
and S8 < 0.633 (stat) + 0.114 (sys) for the noisy and denoised data, respectively.

I. INTRODUCTION

Impressive progress has been made in observational
cosmology in the past decades. An array of multi-
wavelength astronomical data have established the stan-
dard cosmological model of our universe, referred to as
ΛCDM model, with precise determination of major cos-
mological parameters. The nature of the main energy
contents in our universe remains unknown, however. In-
visible mass component called dark matter is needed to
explain the formation of large-scale structures in the uni-
verse [1, 2], and an exotic form in energy appears to be
responsible for the accelerating expansion of the late-time
universe [3].

In order to reveal the nature of dark matter and the
late-time cosmic acceleration, a number of astronomical
surveys for detailed observations of large-scale structures
are ongoing. Accurate measurement of cosmic lensing
shear signals is one of the primary goals aimed at in the
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ongoing galaxy imaging surveys such as the Kilo-Degree
Survey (KiDS1), the Dark Energy Survey (DES2), and
the Subaru Hyper Suprime-Cam Survey (HSC3), even
for upcoming projects including the Wide Field Infrared
Survey Telescope (WFIRST4), the Large Synoptic Sur-
vey Telescope (LSST5), and Euclid6.

The large-scale matter distribution can be recon-
structed through measurements of lensing shear signals
by collecting a large set of galaxy images [4–6]. Al-
though the image distortion of individual galaxy shapes
is usually tiny, averaging over many galaxies makes it
possible to infer the distribution of underlying dark mat-
ter in an unbiased way in principle. However, there are
well known challenges when extracting the rich cosmo-
logical information from the reconstructed weak lens-

1 http://kids.strw.leidenuniv.nl/index.php
2 https://www.darkenergysurvey.org/
3 http://hsc.mtk.nao.ac.jp/ssp/
4 https://wfirst.gsfc.nasa.gov/
5 https://www.lsst.org/
6 http://sci.esa.int/euclid/
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ing maps. The non-linear gravitational growth of large-
scale structures makes statistical properties of the weak
lensing signals complicated. Numerical simulations have
shown that simple statistics for random Gaussian fields
are not sufficient to fully describe the statistical informa-
tion imprinted in weak lensing maps [7–9]. To utilize the
so-called non-Gaussian information, various approaches
have been proposed [10–26], but no single statistic can
capture the full information, unfortunately.

In practice, the observed weak lensing maps are largely
contaminated by noises arising from intrinsic galaxy
properties and observational conditions. The former is
commonly called as shape noise, which contaminates the
original physical information. It is known that the overall
effect of the noise contamination can be estimated and
mitigated for some Gaussian statistics [27, 28], but it is
not understood quantitatively how the shape noise affects
non-Gaussian statistics. Non-Gaussian information can
potentially be a powerful probe to validate the ΛCDM
model and test a variety of extended cosmological mod-
els even in the presence of shape noises [29–31]. Clearly,
it is necessary to devise a noise reduction method in order
to maximize the science returns from wide-field lensing
surveys.

A straightforward method to reducing the shape noise
is to smooth weak lensing maps over a large angular scale
(e.g. ∼ 20−30 arcmins in Refs. [32, 33]), but the smooth-
ing also erases the non-Gaussian information in the map
[7, 34]. A novel approach has been proposed to keep a
high angular resolution of ∼ 1arcmin and yet preserves
non-Gaussian information [35]. The method is based on
a deep-learning framework called conditional generative
adversarial networks (GANs) [36]. Thanks to the rich
expressive power of deep neural networks, conditional
GANs enable to denoise the weak lensing map on a pixel-
by-pixel basis (see also Ref. [37] for a similar attempt with
a deep learning method).

In this paper, we construct and test conditional GANs
that can be applied to the real galaxy imaging data taken
by the Subaru HSC survey [38]. Using a large set of mock
HSC catalogs [39], we train the GANs in a realistic sit-
uation and test the denoising capability by our GANs
using 1000 test data. We assess several possible system-
atic errors in the denoising process, and investigate the
cosmological dependence on the denoised map by mak-
ing the best use of numerical simulations of gravitational
lensing. We then show how well our GANs denoise the
real HSC data and improve cosmological parameter con-
straints.

The rest of the present paper is organized as follows.
In Section II, we summarize the basics of gravitational
lensing. Section III describes the HSC data as well as
our numerical simulations used for training and testing
GANs. In Section IV, we provide the analysis methods
including the details of our training strategy of GANs
and the likelihood analysis for testing the cosmological
model. In Section V, we show the results of our denoised
map for the HSC data and the gain of our GAN-based

denoising for the cosmological constraints. Concluding
remarks and discussions are given in Section VI.

II. WEAK GRAVITATIONAL LENSING

A. Basics

We first summarize the basics of gravitational lensing
induced by the large-scale structure. Weak gravitational
lensing effect is characterized by the distortion of the
image of a source object by the following 2D matrix:

Aij =
∂βi

∂θj
≡
(

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (1)

where θ represents the observed position of a source ob-
ject, β is the true position, κ is the convergence, and γ is
the shear. In the weak lensing regime (i.e., κ, γ � 1),
each component of Aij can be related to the second
derivative of the gravitational potential Φ [40]. Using
the Poisson equation and the Born approximation, one
can express the weak lensing convergence field as the
weighted integral of matter overdensity field δm(x):

κ(θ) =

∫ χH

0

dχ q(χ)δm(χ, r(χ)θ), (2)

where χ is the comoving distance, χH is the comoving
distance up to z → ∞ and q(χ) is called lensing kernel.
For a given redshift distribution of source galaxies, the
lensing kernel is expressed as

q(χ) =
3

2

(
H0

c

)2

Ωm0
r(χ)

a(χ)

∫ χH

χ

dχ′p(χ′)
r(χ′ − χ)

r(χ′)
,

(3)
where r(χ) is the angular diameter distance and p(χ)
represents the redshift distribution of source galaxies nor-
malized to

∫ χH
0

dχp(χ) = 1.

B. Smoothed lensing convergence map

In optical imaging surveys, galaxies’ shapes (elliptici-
ties) are commonly used to estimate the shear component
γ in Eq. (1). Since each component in the tensor Aij is
given by the second derivative of the gravitational poten-
tial, one can reconstruct the convergence field from the
observed shear, in Fourier space, as

κ̂(`) =
`21 − `22
`21 + `22

γ̂1(`) +
2`1`2
`21 + `22

γ̂2(`), (4)

where κ̂ and γ̂ are the convergence and shear in Fourier
space, and ` is the wave vector with components `1 and
`2 [5].

For a given source galaxy, one considers the relation
between the observed ellipticity εobs,α and the expected
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shear γ̃α,

γ̃α =
εobs,α

2R , (5)

γ̃α = (1 +mb)γtrue,α + cα, (6)

whereR is the conversion factor to represent the response
of the distortion of the galaxy image to a small shear
[41], γtrue,α is the true value of cosmic shear, and mb

and cα are the multiplicative and additive biases to as-
sess possible systematic uncertainty in galaxy shape mea-
surements. In practice, before employing the conversion
in Eq. (4), one must first construct the smoothed shear
field on grids [42],

γgrid,α(θ) =
∑
i∈θ wi (εi,obs,α/2R− ci,α)

(1 + 〈mb〉)
∑
i∈θ wi

, (7)

〈mb〉 =

∑
i∈all wimb,i∑
i∈all wi

, (8)

γsm,α(θ) =

∫
d2φγgrid,α(φ)W (φ− θ) (9)

where θi is the position of the i-th source galaxy, wi
represents the inverse variance weight, and W (θ) is a
smoothing filer. In the above,

∑
i∈θ represents the sum-

mation over the galaxies in the pixel at the angular coor-
dinate θ, while

∑
i∈all is the sum over all the galaxies in

our survey window. In this paper, we assume the func-
tional form for W as

W (θ) =
1

πθ2

[
1−

(
1 +

θ2

θ2
s

)
exp

(
−θ

2

θ2
s

)]
, (10)

for θ ≤ 10 θs and W (θ) = 0 otherwise. We set θs =
3 arcmins throughout this paper7. Using Eqs. (4) and (9),
one can derive the smoothed convergence field from the
observed imaging data through Fast Fourier Transform
(FFT).

Apart from the systematic uncertainty by shape mea-
surements, the observed ellipticity can be expressed as a
sum of two term in practice:

εobs = 2R γ + εN, (11)

where γ is the lensing shear of interest and εN represents
noise that originates from the intrinsic galaxy shape and
from observational conditions, referred to as shape noise.
Accordingly, we have two components in the observed
lensing map as

κobs = κWL + κN. (12)

7 The smoothing scale θs is commonly adopted to search for mas-
sive galaxy clusters in a smoothed lensing map [43]. Using nu-
merical simulations, Ref. [44] has found a one-to-one correspon-
dence between the peaks on a smoothed map by the filter in
Eq. (10) and massive galaxy clusters at z = 0.1 − 0.3 when im-
posing the peak height to be larger than ∼ 5σ.

The shape noise is much larger than the lensing shear
term for individual objects in typical galaxy imaging sur-
veys. Hence, the observed map κobs is significantly con-
taminated by the shape noise on a pixel-by-pixel basis.
This fact makes it challenging to extract the cosmologi-
cal information contained in the map. Our objective in
this paper is to estimate the noiseless field κWL from the
observed (noisy) map κobs. For this purpose, we adopt a
framework of conditional generative adversarial networks
(GANs).

III. DATA

A. Subaru Hyper Suprime-Cam Survey

Hyper Suprime-Cam (HSC) is a wide-field imaging
camera installed at the prime focus of the 8.2-meter Sub-
aru telescope [38, 45–48]. The Wide Layer in the HSC
survey will cover 1400 deg2 in five broad photometric
bands (grizy) in its 5-year operation, with superb im-
age quality of sub-arcsec seeing. In this paper, we use a
galaxy shape catalog that has been produced for cosmo-
logical weak lensing analysis in the first year data release
(HSC S16A hereafter). Details of the galaxy shape mea-
surements and catalog information are found in Ref. [49].

In brief, the HSC S16A galaxy shape catalog is based
on the HSC Wide-Layer data taken from March 2014
to April 2016 over 90 nights. We apply the same set
of galaxies as in Ref. [49] to construct a secure shape
catalog for weak lensing analysis. The sky areas around
bright stars are masked [50]. The HSC S16A weak lensing
shear catalog covers 136.9 deg2 that consists of 6 disjoint
patches: XMM, GAMA09H, GAMA15H, HECTOMAP,
VVDS, and WIDE12H. Among these 6 patches, we pay
special attention to the XMM in this paper because there
exist publicly available catalogs of galaxy clusters in opti-
cal [51] and X-ray bands [52] in the XMM patch. We use
these cluster catalogs to examine the reliability of our de-
noising process, i.e., we test the accuracy by performing
object-by-object matching.

In the HSC S16A shape catalog, the shapes of galaxies
are estimated using the re-Gaussianization PSF correc-
tion method applied to the i-band coadded images [53].
In the XMM region, the survey window is defined such
that 1) the number of visits within HEALPix pixels with
NSIDE=1024 to be (g, r, i, z, y) ≥ (4, 4, 4, 6, 6) and the i-
band limiting magnitude to be greater than 25.6, 2) the
PSF modeling is sufficiently good to meet our require-
ments on PSF model size residuals and residual shear cor-
relation functions, 3) there are no disconnected HEALPix
pixels after the cut 1) and 2), and 4) the galaxies do not
lie within the bright object masks. For details of defining
these masks, see Ref. [49].

The redshift distribution of source galaxies is estimated
from the HSC five broadband photometry. Ref. [54] mea-
sured photometric redshifts (photo-z’s) of galaxies in the
HSC survey by using several different methods. Among
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FIG. 1. The stacked photometric redshift distribution for
the galaxies in the XMM field. The line with points shows
the estimate by our baseline method, while the yellow solid
and black dashed lines stand for the results by frankenz and
mizuki, respectively.

them, we choose the photo-z with a machine-learning
code based on self-organizing map (mlz) as a baseline.
To study the impact of photo-z estimation with differ-
ent methods, we consider two additional photo-z’s es-
timated from a classical template-fitting code (mizuki)
and a hybrid code combining machine learning with tem-
plate fitting (frankenz). For our analysis, we select the
source galaxies by their best estimates (see Ref. [54]) of
the photo-z’s (zbest) in the redshift range from 0.3 to 1.5
as done in the main cosmological analyses for the HSC
S16A data [55]. For a given method of the photo-z esti-
mation, individual HSC galaxies are assigned a posterior
probability distribution function (PDF) of redshift. Fig-
ure 1 shows the stacked PDFs for the source galaxies in
the XMM. The mean source redshifts are found to be
0.96, 1.01, and 1.01 for the estimates by mlz, mizuki,
and frankenz , respectively.

We then reconstruct the smoothed convergence field
from the HSC S16A data as described in Section II B.
Adopting a flat-sky approximation, we first create a pix-
elized shear map for the XMM on regular grids with a
grid size of 1.5 arcmins. We then apply FFT and perform
convolution in Fourier space to obtain the smoothed con-
vergence field. Note that we limit the maximum number
of grids on a side to be 256 in our analysis. Currently, it is
still computationally expensive to train GANs with large-
size images with decent computer resources (see Ref. [56]
for a recent attempt). Since our aim here is to analyze
lensing convergence maps with an arcmin resolution, the
pixel size is set to be ∼ 1 arcmin. We will analyze ob-
servational data for a larger region in our future work.
Our survey window covers the range of [30.9, 37.3] deg
and [−7.29,−0.89] deg in right ascension (RA) and dec-
lination (dec), respectively. There are 1345810 source
galaxies available with photo-z estimates.

In actual observations, there are missing galaxy shear

data due to bright star masks. The observed regions have
also complex geometry. Applying our method directly to
such regions likely generates additional noises [57]. We
determine the mask regions for each convergence map
by using the smoothed number density map of the input
galaxies with the same smoothing kernel as in Eq. (10).
Then we mask all the pixels with the smoothed galaxy
number density less than 0.5 times the mean number den-
sity. After masking, the data region is found to cover 21.4
deg2.

B. Mock HSC observations

We use a large set of simulation data for training our
conditional GANs. Table I summarizes our mock simu-
lations.

1. Fiducial simulations

We first describe the mock shape catalogs for HSC
S16A. The mock catalogs are generated from 108 full-sky
lensing simulations presented in Ref. [59]8. In Ref. [59],
the authors perform a suite of cosmological N -body sim-
ulations with 20483 particles and generate lensing conver-
gence maps and halo catalogs. The N -body simulations
assume the standard ΛCDM cosmology consistent with
the 9-year WMAP cosmology [58] with the CDM den-
sity parameter Ωcdm = 0.233, the baryon density Ωb0 =
0.046, the matter density Ωm0 = Ωcdm + Ωb0 = 0.279,
the cosmological constant ΩΛ = 0.721, the Hubble pa-
rameter h = 0.7, the amplitude of density fluctuations
σ8 = 0.82, and the spectral index ns = 0.97. The gravi-
tational lensing effect is simulated with the multiple lens-
plane algorithm on a curved sky [44, 60]. Light-ray de-
flection is directly followed by using the projected matter
density fielf produced by the outputs from the N -body
simulations. Each lensing simulation data consists of 38
different source planes at redshift less than 5.3. Realistic
source redshift distributions are implemented following
the curves in Figure 1.

To generate mock shape catalogs, we employ essen-
tially the same method as developed in Refs. [20, 61]. We
use the full-sky simulations combined with the observed
photometric redshifts and angular positions of real galax-
ies. Provided the real catalog of source galaxies, where
each galaxy contains information on the position (RA
and Dec), shape, redshift, and the lensing weight, we
perform the following four-steps:

(i): Set the RA and Dec of the survey window in the
full-sky realization.

8 The full-sky light-cone simulation data are freely available for
download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/

allsky_raytracing/.

http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/
http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/
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Name # of realizations Cosmology Note Reference
Fiducial 2268 WMAP9 cosmology [58] Photo-z info by mlz Sec. III B 1

Photo-z run 1 100 - Photo-z info by mizuki Sec. III B 2
Photo-z run 2 100 - Photo-z info by frankenz -

multiplicative-bias run 1 100 - Change 〈mb〉 by +0.01 Sec. III B 3
multiplicative-bias run 2 100 - Change 〈mb〉 by −0.01 -

Cosmology-varied run 50×100 100 different models (Fig 2) Photo-z info by mlz Sec. III B 4

TABLE I. Summary of our mock catalogs for Subaru Hyper-Suprime Cam Survey first-year data. For each of 100 cosmological
models (parameter sets), we have 50 realizations of mock catalogs.

(ii): Populate source galaxies on the light-cone using
original angular positions and redshifts of the ob-
served galaxies.

(iii): Rotate the shape of each source galaxy at random
to erase the real lensing signal.

(iv): Add the lensing shear on each source galaxy using
the lensing simulations

Note that our method maintains the observed proper-
ties of the source galaxies on the sky. We increase the
number of realizations of the mock catalogs by extracting
multiple separate regions from a single full-sky simula-
tion. Finally we obtain 2268 mock catalogs in total.

2. Photometric redshift uncertainties

In the fiducial mock catalogs, we utilize the photo-z
information estimated by mlz. To examine possible sys-
tematic effects owing to photo-z uncertainties, we gener-
ate additional mock realizations adopting the two other
redshift estimates by mizuki or frankenz. We produce
100 mock realizations of the HSC S16A catalogs for each
model, and use them to evaluate the impact of photo-z
uncertainty in our denoising process, as well as of cosmo-
logical parameter inference.

3. Image calibration uncertainties

We use a single value of multiplicative bias 〈mb〉 (de-
fined in Eq. [8]) when generating our fiducial mock cat-
alogs. Estimating 〈mb〉 is based on image simulations,
and thus there remains a 1%-level uncertainty [62]. To
account for possible systematic effects by the misestima-
tion of the multiplicative bias, we make additional mock
realizations by changing 〈mb〉 → 〈mb〉+∆mb in the pro-
duction process. We assume two values of ∆mb = ±0.01.
For each value of ∆mb, we produce 100 mock realizations
of the HSC S16A.

4. Varying cosmological models

To study the cosmological dependence on weak lensing
maps, we also generate mock catalogs of the HSC S16A

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ωm0

0.4

0.6

0.8

1.0

S
8

=
σ

8
(Ω

m
0
/0
.3

)0.
5

FIG. 2. The 100 different cosmological models to study
the cosmological dependence on weak lensing maps. At
each point, we generate 50 mock realizations of the HSC
S16A data. The hatched region represents the prior infor-
mation adopted in our cosmological parameter inference (see,
Sec. IV B).

data by varying cosmological models. We design the cos-
mological models for simulations so as to cover a much
wider area in the two-parameter space (Ωm0, σ8) than
the constraints by the current galaxy imaging surveys
[55, 63–65]. We choose a sample of cosmological models
in the Ωm0 − σ8 plane by using a public R package to
generate the maximum-distance sliced Latin Hypercube
Designs (LHDs) [66]. The code allows flexible experimen-
tal designs by subdividing the whole designs into different
“slices”. The distance metric is maximized both for the
individual slices and the whole design. We first gener-
ate 240 designs in two slices (120 designs each) in a two
dimensional rectangle specified by 0.1 ≤ Ωm0 ≤ 0.7 and
0.4 ≤ σ8(Ωm0/0.3)0.6 ≤ 1.1 using the codes. We then
restrict the designs to those with 0.4 ≤ σ8 ≤ 1.4. This
leaves 200 designs (100 per slice). We use the 100 designs
only in the first slice for this study. Figure 2 shows the
resultant 100 cosmological models adopted in our sim-
ulations. Note that we set ΩΛ = 1 − Ωm0 assuming a
spatially flat universe. For other parameters, we adopt
Ωb0h

2 = 0.02225, h = 0.6727 and ns = 0.9645. These
parameters are consistent with the results from Planck
2015 [2].
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FIG. 3. The configuration of N -body boxes in our ray-
tracing simulation for the cosmology with Ωm0 = 0.3.

For each cosmological model, we perform ray-tracing
simulations under a flat-sky approximation. We adopt
the multiple lens-plane algorithm [7, 8] to simulate the
gravitational lensing effects on a light cone of angular
size 10◦ × 10◦. We place a set of N -body simulations
with different volumes to cover a wide redshift range as
well as have higher mass and spatial resolutions at lower
redshifts (e.g. see, Ref. [9]). We consider four different
box sizes on a side and each box size is varied as a func-
tion of the cosmological model. The box size Lbox of the
N -body simulations for our ray-tracing simulations is set
by the following criteria:

Lbox,1 = χ(z = 0.5)× (θsim + ∆θ), (13)

Lbox,2 = χ(z = 0.8)× (θsim + ∆θ), (14)

Lbox,3 = χ(z = 1.5)× (θsim + ∆θ), (15)

Lbox,4 = χ(z = 3.0)× (θsim + ∆θ), (16)

where Lbox,i is the box size for the i-th smallest-volume
simulation and θsim = 10 deg. We introduce the buffer
in opening angle to compute Lbox and set ∆θ = 2 deg.
We then place the N -body simulations with the box size
of Lbox,1, Lbox,2, Lbox,3 and Lbox,4 to cover the light cone
in the redshift range of 0 < z < 0.5, 0.5 < z < 0.8,
0.8 < z < 1.5, and 1.5 < z < 3.0, respectively. Figure 3
shows an example of the configuration of N -body boxes
in our ray-tracing simulation in the case of Ωm0 = 0.3.

For a given single N -body simulation volume, we pro-
duce two sets of the projected density fields with a pro-
jection depth of Lbox/2 on 96002 grids by using the
triangular-shaped cloud assignment scheme [67]. By solv-
ing the discretized lens equation numerically, we obtain
the lensing convergence κ and shear γ on 40962 grids
with a grid size of 0.15 arcmin. A single realization of
our ray-tracing data consists of 22 source planes in the

range of z <∼ 3. We perform 50 ray-tracing realizations
of the underlying density field by randomly shifting the
simulation boxes assuming periodic boundary conditions.
We finally produce the mock catalog of the HSC S16A as
described in Sec III B 1.

When running cosmological N -body simulations, we
use the parallel Tree-Particle Mesh code GADGET2 [68].
We generate the initial conditions using a parallel code
developed by Refs. [69, 70], which employ the second-
order Lagrangian perturbation theory [71]. The number
of N -body particles is set to 5123. We set the initial
redshift by 1 + zinit = 36 (512/Lbox), where we compute
the linear matter transfer function using CAMB [72]. Note
that our choice of the initial redshift is motivated by the
detailed study of Ref. [73].

IV. ANALYSIS

A. Denoising by deep-learning networks

1. Conditional generative adversarial networks

To perform mapping from a noisy lensing field κobs to a
noiseless counterpart κWL, we use a model of conditional
generative adversarial networks developed in Ref [36].
The networks have two main components, a generator
and a discriminator. We train the networks so that the
generator applies some transformation to the input noisy
field κobs to output a noise field κN. The discriminator
compares the input image to an unknown image (either
a target image from the data set or an output image
from the generator) and tries to judge if it is produced
by the generator. To be specific, the input image for the
discriminator is set to the noisy field κobs, while the tar-
get image is either of the noise counterpart of κobs or an
output from the generator.

The structure of the generator and the discriminator
in our networks is essentially the same as in Ref. [35], ex-
cept for minor parameter tuning. The generator uses a
U-Net structure [74] with an eight set of convolution and
deconvolution layers. Each convolution layer consists of
convolution with a kernel size of 5×5, the batch normal-
ization, and the application of the activation function of
leaky ReLU with a leak slope of 0.2. The deconvolu-
tion layer does the inverse operation of the convolution
layer. The generator also has additional skip connec-
tions between mirror layers to propagate the small-scale
information that would be lost as the size of the images
decreases through the convolution process. The discrim-
inator produces a single value from a given input image
for the decision whether the input is real or a fake. The
final output of the discriminator is made after the image
reduction through 4 convolution layers and after averag-
ing all the responses from the convolution layers. In the
convolution layers in the discriminator, we remove the
batch normalization to balance the losses of the genera-
tor and the discriminator in a stable way. The resulting
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number of parameters in our networks is close to 400000.

2. Training the networks

The objective of our networks is to solve an optimiza-
tion problem with a cost function expressed as a combi-
nation of loss functions as

minG maxD

{
LcGAN(G,D) + λLL1

}
, (17)

where G indicates the generator and D is the discrimi-
nator. We here introduce two loss functions as

LcGAN(G,D) = Ex,y logD(x, y)

+Ex,z log {1−D(x,G(x, z))} , (18)

LL1(G) = Ex,y,z
∑
map

|y −G(x, z)| , (19)

where x is the input noisy field, y is the true noise field,
and z is a random noise vector at the bottom layer of the
generator. The function D(X1, X2) returns the score in
the range of zero to unity to evaluate if the noise coun-
terpart of X1 and a noise field X2 is identical or not. In
Eq. (19), the summation runs over all the pixels in a map
but with the masked region excluded. In the training, we
alternate between one gradient descent step on D, then
one step on G. As suggested in Ref. [75], we train to
maximize the term of logD(x,G(x, z)). Also, we divide
the objective by 2 while optimizing D, which slows down
the learning rate of D relative to G.

When training the networks, we use the minibatch
Stochastic Gradient Descent (SGD) method and apply
the Adam solver [76], with learning rate 0.0002, momen-
tum parameters β1 = 0.5 and β2 = 0.9999. We also set
λ = 100 in Eq. (17). The latter controls the strength
of the regularization given by the L1 norm. All the net-
works in this paper are trained with a batch size of 1.
We initialize the model parameters in the networks from
a Gaussian distribution with a mean 0 and a standard
deviation of 0.02. We train our networks using the Ten-
sorFlow implementation9 on a single NVIDIA Quadro
P5000 GPU. While processing, we randomly select train-
ing and validation data from the input data sets. Each
network is validated every time it learns 100 image pairs.

To prepare the training data set, we use 400 realiza-
tions of our mock HSC S16A catalogs (Sec. III B 1). Us-
ing the information of noiseless lensing maps κ and γ in
our survey window, we generate 60000 noisy maps by in-
jecting independent noise realizations at random. From
the 60000 image pairs of the noisy field κobs and the un-
derlying noise κN, we select 30000 image pairs by boot-
strap sampling so that each bootstrap realization can

9 We use the modified version of https://github.com/

yenchenlin/pix2pix-tensorflow

contain 200 realizations of noiseless lensing fields. In our
previous study, we find that it is near-optimal to use 200
realizations of noiseless lensing fields and set the number
of training sets to 30000 for our networks [35].

3. Production of the final denoised image

As reported in Ref. [35], a single set of our networks
trained by 30000 image pairs has a large scatter in the
image-to-image translation. To reduce this dependence
on training data sets, we generate 100 bootstrap sam-
pling of 30000 training data and obtain a total 100 net-
works for denoising. Namely, we obtain 100 candidates
of the underlying noise field κN for a given noisy field
κobs. To evaluate the best estimate of κN, we take the
median over the 100 candidates on a pixel-by-pixel basis.
Once the averaged estimate of κN is determined in this
manner, we evaluate the underlying noiseless field κWL

by subtracting the best noise model from the observed
one κobs.

The denoising process by our networks is tested by
1000 noisy data from the fiducial mock catalogs. These
test data are not used in the training process. We in-
vestigate the properties of the denoised fields in Ap-
pendix A. In short, our denoising method with the condi-
tional GANs reproduces the one-point PDF for the noise-
less field within a 0.5 − 1σ level. However, the denoised
field is less accurate on a pixel-by-pixel basis with re-
spect to the noiseless (true) counterpart. It is worth
noting that the denoised field shows a tight correlation
with the noiseless one at large angular scales. The cross-
correlation coefficient in the two-point correlation func-
tion is close to unity for the separation angle of > 30 ar-
cmins. It is remarkable that 44.3% of the positive peaks
with their peak heights larger than 5σ on a denoised map
are found to have single counterparts of massive-cluster-
sized halos at z < 1. These results suggest that the
denoised lensing map with our networks retains at least
a part of the original cosmological information.

B. Likelihood analysis

To explore the possibility to infer the cosmological
model with our GAN-based denoising, we perform a like-
lihood analysis for a summary statistic of a lensing map.
To this end, we use the one-point PDF P of the lens-
ing map in this paper. For a given lensing map, we
measure the one-point PDF as a function of (κ − µ)/σ
where µ and σ are the spatial average and root-mean-
square. We perform a linear-spaced binning in the range
of −15 < (κ − µ)/σ < 15 with a step of 0.3. If the ob-
served PDF follows the multivariate Gaussian distribu-
tion with covariance matrix C, the log-likelihood func-

https://github.com/yenchenlin/pix2pix-tensorflow
https://github.com/yenchenlin/pix2pix-tensorflow
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tion is expressed as

−2 logL(p) =
∑
i,j

C−1
ij [Pobs(xi)− Pmodel(xi,p)]

× [Pobs(xj)− Pmodel(xj ,p)] , (20)

where x is the normalized lensing field with the zero mean
and unit variance, Pobs is the observed PDF, Pmodel is
the model template of the PDF as a function of x as
well as the parameters of interest p. We then minimize
Eq. (20) by varying the parameters p and define the best-
fit parameters at the minimum in −2 logL. In this paper,
we consider the two parameters (Ωm0, S8) to be varied,

where S8 = σ8

√
Ωm0/0.3 is a primary parameter in the

cosmological inference based on weak lensing analyses.
We limit the range of the lensing PDF P to be larger than
0.03 to remove the high-σ information10. For a noisy
PDF, the responsible range of pixel values is found to
be −2.1 < (κ − µ)/σ < 2.4, while the range is −1.8 <
(κ− µ)/σ < 2.4 for a denoised PDF.

Because of the limited constraining power due to the
large sample variance, we resort to introducing prior in-
formation in the two-parameter space to obtain reason-
able cosmological constraints. We set 0.2 ≤ Ωm0 ≤ 0.4
and 0.45 ≤ S8 ≤ 1.05 for the prior. We adopt a uniform
prior in this paper. The prior range in the parameter
space is shown in the hatched region in Figure 2.

For the model template, we use the cosmology-
dependent mock data sets as described in Sec. III B 4.
For each of the 100 cosmological models, we have 50 re-
alizations of the PDFs for the noisy lensing fields, and
also the denoised fields by our GANs. We then use the
averaged PDFs over 50 realizations for the model tem-
plates in Eq. (20). The covariance matrix is evaluated
with 1000 realizations from the fiducial mock catalogs as
in Sec. III B 1. Note that these 1000 realizations are not
used in the training process for our GANs.

To estimate the confidence interval from the likelihood
analysis, we need to compute the log-likelihood function
at a designated parameter point (model), but our sam-
pling in the parameter space is limited (see Figure 2). In
this paper, we first calculate the log-likelihood values at
the 100 cosmological parameter sets (cosmological mod-
els) as shown in Figure 2. We then evaluate −2 logL at
arbitrary points in the prior range by using a Gaussian
process (GP) regression. In practice, we input 100 differ-
ent sets of −2 logL as a function of Ωm0 and S8 and then
calculate the log-likelihood for a given set of the cosmo-
logical parameters. We use a publicly available code GPy
[82] and adopt a stationary Matern 3/2 kernel. To choose

10 The high-σ information should be related to the abundance of
massive galaxy clusters [77] and contain rich cosmological infor-
mation [16, 78]. Nevertheless, such regions are likely affected by
various systematic effects as the baryonic physics [79, 80] and the
intrinsic alignments [81], not included in our analysis pipeline.
To be conservative, we decide to remove this information in the
likelihood analysis.

the kernel function in the GP regression, we first make a
training data of −2 logL with 99 elements by reserving a
single data of the log-likelihood from the parent 100 data
points for validation. We then optimize the hyperparam-
eters of the GP kernel with the 99 data points, do the GP
interpolation to the reserved single data of −2 logL (not
used in the training). We repeat the test 100 times by
changing the validation data point. For the validation,
we use a chi-square metric as

χ2 =

100∑
i=1

[logLtest(pi)− logLGP(pi)]
2

σ2
logL(pi)

, (21)

where logLtest(pi) is the test log-likelihood at the i-th
cosmological model, logLGP(pi) is the prediction by the
GP, and σlogL(pi) is defined by a 68% confidence level
of the GP prediction. Among Matern 5/2, Matern 3/2,
Gaussian, and Exponential kernels, the Matern 3/2 ker-
nel shows the second smallest χ2 with small bias. The
exponential kernel provides the smallest χ2 but this is
due to the large prediction uncertainty σlogL for differ-
ent cosmological models.

After the validation, we construct the GP model of
−2 logL from the 100 data points and use it in the cos-
mological parameter inference below. The interpolation
error by our GP regression is presented and discussed in
Sec. V C 1 and we consider the error properly in the final
constraints on the cosmological parameters.

V. RESULTS

A. Visual impression

We apply our GAN-based denoising to the real weak
lensing map obtained from the HSC S16A data. Figure 4
shows a comparison of the denoised images between mock
and real data set. In the figure, we normalize the lensing
field so that it has zero mean and unit variance. The top
left panel shows a noisy lensing field in a mock observa-
tion taken from 1000 realizations of the fiducial catalogs
(Sec. III B 1). The top right panel represents the denoised
weak lensing fields for the mock data. In the bottom, the
left and right panels are similar to the top, but for the
real HSC S16A data. On the denoised field, we mark the
position of the matched galaxy cluster to the local maxi-
mum with its peak height greater than 5σ. For the mock
data, we define the galaxy clusters by the dark matter ha-
los with their masses greater than 1014 h−1M� and their
redshifts z < 1 in N -body simulations. On the other
hand, for the real data, we select the optically selected
galaxy clusters [51] in the HSC S16A with their richness
of > 15 and the X-ray selected clusters [52] in our survey
window by their X-ray temperature being > 2.14 keV.
Ref. [51] has shown that our selection of the optical rich-
ness and X-ray temperature roughly corresponds to the
selection of the cluster mass by > 1014 h−1M�. Accord-
ing to the results in Appendix A 4, we expect ∼ 44.3% of
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FIG. 4. Performance of the denoising of the observed weak lensing map in the Subaru HSC first-year data. In upper panels,
the left and right panels show a noisy input map and the denoised counterpart for a mock observation among 1000 realizations,
respectively. The bottom panels show the results similar to the upper ones, but for the real observational data. In the top
right panel, the gray points show the matched dark matter halos to the local maxima on the denoised map. In the bottom left
panel, the star and square symbols show the matched galaxy clusters selected in optical and X-ray bands, respectively. Note
that the hatched region represents the masked area because of missing the data.

the peaks in a denoised field with their peak heights > 5σ
will find their counterparts of galaxy clusters. In our de-
noised map for the real HSC S16A, we find 30 peaks and 8
peaks have the counterparts. This matching rate is a bit
smaller than the expectation from our experiments with
1000 mock observations, but it is still consistent within
a 2σ level.

B. Cosmological dependence on lensing PDFs

Our primary interest is the cosmological information
contents in the denoised maps. To study the cosmologi-
cal dependence on the denoised lensing map, we use the
mock catalogs as in Sec. III B 4. We have 50 mock re-
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FIG. 5. The cosmological dependence of the one-point PDF
of the denoised maps. The top panel shows the PDF as a
function of the pixel value (κ − µ)/σ, where µ and σ is the
spatial average and root-mean-square for a lensing field κ,
respectively. In the top, the inset figure represents the 100
cosmological models considered in the present study. The de-
pendence of cosmological models is highlighted by the color
difference. In the bottom, we show the difference of the PDF
from our fiducial cosmological model (the WMAP9 cosmology
[58]) normalized by the statistical uncertainty. For reference,
the gray filled region in the bottom shows a ±1σ-level differ-
ence.
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FIG. 6. Similar to Figure 5, but for the lensing PDF without
our denoising process.

alizations of noisy lensing maps for each of 100 different
cosmological models. For a given cosmology, we input a
noisy map to our GANs, obtain the denoised map, and
then compute the one-point PDF from the denoised map.
We repeat this process for 50 realizations per each cos-
mological model and estimate the average PDF.

Figure 5 summarizes the cosmological dependence on
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FIG. 7. The log-likelihood function by the lensing PDF with
the marginalization over Ωm0. The figure shows the difference
of −2 logL from the minimum value for the mock input data.
The black line shows the result by the noisy PDF, while the
red line stands for that by the denoised PDF. The vertical
dashed line shows the best-fitted value given by our likelihood
analysis. Note that the true input S8 is 0.801 for our mock
data.

the denoised PDF for the HSC S16A. We find a clear de-
pendence of the cosmological model and expect some of
the models can be ruled out with the denoised PDF with
a high confidence level (e.g. for a high S8). The results
in Figure 5 can be compared with the PDFs for noisy
input maps. The cosmological dependence of the lens-
ing PDFs without our denoising is shown in Figure 6,
illustrating that the cosmological dependence is signifi-
cantly weak compared to the statistical error of the PDF
when one works on the original noisy lensing map. Note
that the denoised PDFs are less sensitive to the cosmo-
logical parameters than the noiseless counterparts (see
Appendix B).

To demonstrate the possibility of improving the cosmo-
logical constraints by the lensing PDF with our denois-
ing method, we perform likelihood analysis as outlined in
Sec. IV B. We assume that the true PDF in the observed
region is identical to the average PDF for our fiducial
cosmological model and adopt the cosmology-varied sim-
ulations as the model prediction. The values of −2 logL
at the 100 cosmological parameter sets are then interpo-
lated by the GP regression as described in Sec. IV B. This
analysis allows us to set the expected confidence level of
the cosmological constraint with the observed noisy PDF
as well as the denoised counterpart for our observational
setup. Figure 7 shows the log-likelihood marginalized
over Ωm0 when the input PDF is set to the average PDF
for our fiducial cosmology. We can set the expected 1σ
constraint by the difference between the best-fitted pa-
rameter and its 1σ upper limit. We find the statisti-
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cal uncertainty of S8 to be 0.104 for the original noisy
PDF, while it decreases to 0.051 for the denoised PDF.
The improvement of the statistical error by our denois-
ing method is a factor of 0.104/0.051 ' 2. It is worth
noting that our denoising plays a critical role in testing
models with low S8 with the lensing PDF. In models
with lower-S8, the overall density fluctuations and high
peaks in the lensing mass map are less prominent. Since
small fluctuations in a lensing map tend to be buried in
the observational noises, then denoising is important to
improve the sensitivity to a wider range of S8.

C. Accounting for systematic uncertainties

1. Interpolation errors by Gaussian process

Our likelihood analysis relies on the GP regression
based on 100 training data sets. The interpolation error
by the GP can be estimated by the difference between the
best-fit parameter inferred from the log-likelihood and its
true counterpart when we input the lensing PDF with a
known cosmological model. The vertical dashed lines in
Figure 7 show the best-fit parameters when we input the
average PDF for our fiducial cosmological model (with
S8 = 0.801). Note that our fiducial cosmology is not
included in the training sets for the GP regression. We
find the best-fit S8 by our likelihood analysis to be 0.794
and 0.819 for the noisy and denoised PDFs, respectively.
Hence, we evaluate the systematic uncertainty by the in-
terpolation error by the GP to be 0.007 and 0.018 for the
noisy and the denoised PDF.

It is worth noting that the above systematic uncer-
tainties will be affected by the sample variance effect in
the training data for the GP model. The data points
of −2 logL in the construction of the GP will have the
sample variance because those are evaluated by a finite
number of mock realizations. In the fiducial analysis, we
use 50 mock realizations to evaluate −2 logL for a given
cosmological model. If we change the number of mocks
to be 40, the interpolation errors are found to be 0.017
and 0.013 for the noisy and the denoised PDF, respec-
tively. Hence, the sample variance in the training sets in
our GP can be a source of the systematic uncertainties
in our cosmological inference when we work on the noisy
PDF. To be conservative, we set the interpolation error
to be 0.017 for the noisy PDF.

2. Photometric redshifts

In our likelihood analysis, we assume the source red-
shift estimation by the specific method mlz, while other
methods predict the different redshift distributions ac-
cordingly (see Figure 1). To assess the systematic uncer-
tainty due to imperfect photo-z estimates, we perform a
likelihood analysis when setting the input PDF to be the
averaged PDF over 100 realizations of the mock catalogs
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FIG. 8. The impact of photo-z uncertainties on the denoised
lensing PDF. The upper panel shows the PDFs assuming the
photo-z estimate by three different methods. In the bottom,
we show the difference of the lensing PDF from our baseline
case divided by the statistical uncertainty. For a reference,
the magenta lines in the bottom represent ±0.5σ levels.

with different photo-z information (Sec III B 2). Figure 8
highlights the impact of photo-z uncertainties on the de-
noised PDF. We find the photo-z estimate by different
methods can induce the bias in the lensing PDFs with
a ∼ 0.3 − 0.4σ level over a wide range of pixel values.
These differences can induce the systematic uncertainty
of the 1σ-level upper limit of S8 by 0.02 and 0.036 for
the noisy and the denoised PDFs, respectively.

3. Multiplicative biases

Besides, we assume the multiplicative bias defined by
Eq. (8) is perfectly calibrated, but it can be misestimated
with a level of 0.01. To test this systematic effect, we
input the average PDF obtained from the mock catalogs
as described in Sec III B 3 in our likelihood analysis. We
find that a 1%-level error in the multiplicative bias can
induce the shift of the 1σ upper limit of S8 by 0.024 and
0.012 for the noisy and the denoised PDFs, respectively.

4. Baryonic physics and Intrinsic alignments

All the analyses in this paper assume the baryonic
effects on the cosmic mass density can be negligible.
Refs. [79, 80] examined the baryonic effects on the lens-
ing PDF with hydrodynamical simulations and found the
most prominent effect would appear in high-σ tails in the
PDF. This is because the baryonic effects such as cooling,
star formation, and feedback from active galactic nuclei
commonly play a critical role in high-mass-density envi-
ronments in the universe. In our likelihood analysis, we
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remove such high-density regions by setting the range of
pixel values to be |κ− µ|/σ <∼ 2.

Besides, we ignore possible correlations between the
lensing shear and the shape noises. An example caus-
ing such correlations is the intrinsic alignment (IA) [81].
Although this IA effect can potentially cause the biased
parameter estimation in future surveys [83], we expect it
would be less important for our analysis because we do
not employ clustering analyses of galaxy shapes. Accord-
ing to the observational facts, the IA effect is expected to
be more prominent for redder galaxies (e.g. see Ref. [84]).
Since redder galaxies preferentially reside in denser envi-
ronments such as galaxy clusters, we would mitigate the
impact of the IA effect on our analysis when removing
the high-σ information from our analysis.

D. Cosmological constraint by the denoised map

We then perform the likelihood analysis with the ob-
served PDFs in the real HSC S16A and provide a con-
straint on the cosmological parameter S8. Figure 9 shows
the log-likelihood functions marginalized over Ωm0 for
both of the noisy and denoised PDFs. We find the best-
fit parameter is found to be S8 = 0.492 for the noisy
PDF, while the denoised PDF prefers a larger value of
S8 = 0.52. In Appendix C, we infer the best model within
our 100 different models (see Figure 2) by finding the
smallest log-likelihood value. We confirm that the best
model can fit the observed PDF for the noisy map as
well as for the denoised counterpart. The goodness-of-fit
is found to be 1.2-1.4. In Appendix D, we also study the
probability distribution function of the best-fit S8 with
1000 mock realizations assuming the true S8 is set to
0.801. We find there are 21.8% and 5.7% chances to find
the best-fit S8 to be smaller than 0.5 for the noisy and de-
noised PDFs, respectively. This indicates that the small
best-fit value of S8 from our likelihood analysis may be
explained by 2σ-level statistical fluctuations.

We provide the 2σ upper limits of S8 from the observed
lensing PDFs. The constraint for the noisy PDF is given
by

S8 < 0.777 (stat.) + 0.017 (sys,GP)

+0.040 (sys,photo−z) + 0.048 (sys,mb)

= 0.882, (22)

while this reduces to

S8 < 0.663 (stat.) + 0.018 (sys,GP)

+0.072 (sys,photo−z) + 0.024 (sys,mb)

= 0.777, (23)

for the denoised PDF. Even including the systematic un-
certainties, we can improve the upper limit of S8 with a
level of ∼ 0.10 by our denoising without increasing the
survey area. Our limits are consistent with the current
constraints by other weak-lensing analyses [55, 63–65].
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FIG. 9. Similar to Figure 7, but for the real data.

VI. CONCLUSION AND DISCUSSION

We have developed a novel method for noise reduction
in cosmic mass density maps obtained from weak lens-
ing surveys. We improve over our previous analysis [35]
by incorporating more realistic properties in the train-
ing data sets and by performing an ensemble learning for
conditional GANs. Our denoising method with GANs
produces 100 estimates of the underlying noise fields for
a given input (observation), allowing us to reduce gen-
eralization errors in the denoising process by taking the
median value over 100 predictions by our networks.

We have applied our method to the real observational
data by using a part of the Subaru Hyper-Suprime Cam
(HSC) first-year shape catalog [49]. We confirm that the
one-point PDF for the denoised map shows a stronger
cosmological dependence than the original noisy coun-
terpart. The likelihood analysis with mock observational
data shows that the denoising can tighten the statis-
tical error of a primary cosmological parameter S8 =
σ8

√
Ωm0/0.3 by a factor of ∼ 2 with the lensing PDF.

The reduction of the sample covariance of the PDF mea-
surements by ∼ 4, or the increase in the survey area by
the same factor, would be required to realize this im-
provement without denoising. We then performed the
likelihood analyses with the noisy and denoised PDFs
from the HSC data and provided the 2σ upper limits of
S8 < 0.777 (stat) + 0.105 (sys) for the noisy PDF and
S8 < 0.663 (stat) + 0.114 (sys) for the denoised PDF. We
confirmed the small best-fit S8 in our analysis can hap-
pen by a ∼ 5 − 20% chance when the underlying true
S8 is 0.801 due to the limited sky coverage and the large
sample covariance. Accounting for the systematic un-
certainties and possible statistical fluctuations, we con-
cluded that our limits are consistent with the current
constraints by other lensing analyses as in Refs [55, 63–



13

65].

For the first time, we show that generative adversarial
networks (GANs) can be applied to precision cosmology.
The framework developed in this paper can be easily
generalized to other large-scale cosmological data sets.
Since the observable information is limited by the cos-
mic variance, future cosmological analyses would need
to extract some hidden information behind observational
noises within a limited data size. Sophisticated model-
ing of cosmic large-scale structures with supercomput-
ers can open a new window to produce mock observable
“universes” as many as possible, leading to redesign cos-
mological analyses to defy conventional wisdom. Con-
ditional GANs can be one of the most innovative ap-
proaches for next-generation cosmological analyses. To
gain full benefits from machine learning methods in the
future cosmological analyses, we have to solve some prob-
lems of large-scale computing for deep learning networks
and fast and accurate modeling of the cosmic structures
in multi-dimensional parameter space. Tight collabora-
tions of astrophysics with machine learning are required
to confront these challenges. Our results in this paper
would be the first step toward the enhancement of the
science returns by machine learning methods in future
astronomical surveys.
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Appendix A: Properties of denoised maps

In this appendix, we summarize the statistical prop-
erties of weak lensing maps denoised by our conditional
generative adversarial networks (GANs). Our training
strategy for conditional GANs is provided in Sec. II B.
Here, we show the validation results of the outputs from
our networks by using 1000 test data sets. These test sets
are based on the fiducial mock catalogs as in Sec. III B 1,
while we do not use them in the training process. In the
following, the lensing map is normalized so as to have
zero mean and unit variance.

1. Visual comparisons

First of all, we make a visual comparison of weak lens-
ing maps and highlight how our GAN-based denoising
can work for noisy input images. Figure 10 compares the
maps for a given realization in 1000 test data. In the
figure, the left and right panels show an input noisy and
the true noiseless counterpart, respectively. The medium
represents the denoised map by our conditional GANs.
In each panel, redder regions show a higher mass density,
while bluer one is for a lower density. As can be seen in
the figure, the image after denoising remains a similar
pattern in the density contrast over a few degrees to the
ground truth. Note that Figure 10 concentrates on the
pixel values in the range of −2.5σ to +2.5σ, where the
noises are usually dominated. Although it is not perfect,
the denoised image contains some small-scale informa-
tion (e.g., positive peaks) correlated with the noiseless
counterparts.

2. One-point probability distributions

The one-point probability distribution function (PDF)
is a simple summary statistic of the weak lensing map.
Our previous study has shown that the denoised image
follows a similar PDF to the noiseless true counterpart if
the lensing field is properly normalized [35]. We update
the previous analysis by including various observational
effects such as a complex survey geometry, inhomoge-
neous galaxy distributions on a sky, wide redshift distri-
butions of source galaxies, and variations of the weights
in the analysis. Figure 11 shows the comparisons of PDFs
averaged over 1000 realizations of lensing fields. The
noiseless PDFs are significantly skewed compared to the
observed noisy counterparts. Our denoising is efficient
to reproduce a large skewness in the noiseless PDFs from
the noisy input images. The typical bias in the recon-
struction is found to range from a 0.5 − 1σ level over a
wide range of pixel values.

3. Clustering amplitudes

To study the correlation between the denoised and the
noiseless (true) fields, we perform a two-point correlation
analysis. For a given set of two random fields on a sky,
we define the correlation function as

ξXY (θ) = 〈X(φ)Y (φ+ θ)〉, (A1)

where X and Y are the two-dimensional random fields of
interest. We evaluate the two-point correlation functions
for the noiseless and denoised fields by using a public code
TreeCorr [15]. We perform the linear-spaced binning in
the angular separations from 3 to 60 arcmins. Figure 12
shows the averages of the two-point correlation functions
over 1000 realizations.
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FIG. 10. An example of image-to-image translation by our networks. The left panel shows an input noisy lensing map, while
the right stands for the true (noiseless) counterpart. The medium represents the reconstructed map by our conditional GANs.
For the reconstructed map, we first obtain the underlying noise field from 100 bootstrap realizations of the generators in our
GANs and then derive the convergence map by the residual between the input noisy map and the predicted noise. In this
figure, the hatched region shows the masked area due to the presence of bright stars and inhomogeneous angular distributions
of galaxies in our survey window. In the legend, µ and σ denote the spatial average and the root-mean-square of lensing fields,
respectively.
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FIG. 11. The comparison of the lensing PDF among noisy,
noiseless and denoised fields. The solid line in the top panel
shows the averaged PDF over 1000 realizations of the noiseless
lensing maps, while the dashed line is for the noisy (observed)
one. The red points in the top panel show the averaged PDF
for the denoised maps by our GANs. In the bottom, we show
the difference between the noiseless and denoised PDFs in
the unit of the sample variance of the noiseless PDFs. For a
reference, we highlight ±0.5σ-level differences by the magenta
lines at the bottom.
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noiseless and denoised fields. The bottom panel represents
the cross-correlation coefficient in the two-point clustering.
At the angular scales larger than ∼ 30 arcmins, the denoised
fields are almost perfectly correlated with the noiseless coun-
terparts.
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FIG. 13. The number density of the matched dark matter halos to the peaks on the lensing peaks. From the left to the right,
we show the number density of the dark matter halos as a function of halo masses M200b at three different redshift ranges,
0.2 ≤ z < 0.4, 0.4 ≤ z < 0.6, and 0.6 ≤ z < 0.8. The gray histogram shows the results for the true (noiseless) lensing fields,
while the red points are for the denoised fields. The red points broadly follow the gray histogram except for the difference in
amplitudes. For a reference, the dashed line in each panel represents the noiseless results with a multiplicative factor of 0.5.

We find that the cross-correlation function between the
noiseless and denoised fields is offset from the true au-
tocorrelation function, showing the denoised fields are
biased for the ground truth. Apart from the bias, the
cross-correlation coefficient (CCC) is a measure of the
correlation degree in the two-point correlation analysis.
In our case, the CCC is defined as

r =
ξtrue,denoised√
ξtrue ξdenoised

, (A2)

where ξtrue,denoised is the cross-correlation function be-
tween the noiseless and denoised fields, while ξtrue is the
autocorrelation function of the noiseless field and so on.
The bottom panel in Figure 12 shows that the CCC ap-
proaches unity as the angular separation increases. On
the large scales (θ >∼ 30 arcmins), the denoised fields are
found to tightly correlate with the noiseless counterparts.

4. Peak-halo matching

To study small-scale information on a denoised lensing
field, we examine the correspondence between dark mat-
ter halos and the local maxima in lensing maps. Since our
mock HSC catalogs are originally based on cosmological
N -body simulations, we can generate the light-cone halo
catalogs with the same sky coverage as the mock HSC
catalogs. The light-cone catalogs are produced from the
inherent full-sky halo catalogs in Ref. [59]. The dark
matter halos in the full-sky catalogs are identified by a
phase-space temporal halo finder Rockstar [85]. In the

following analysis, we use the dark matter halos with
their masses11 greater than 1014 h−1M� at their redshift
less than 1. This mass and redshift selection roughly cor-
responds to the real galaxy cluster catalog based on the
photometric data in the HSC S16A [51].

On a given lensing map, we first identify local maxi-
mum with their peak height greater than 5σ. We then
search for matched dark matter halos around the peak
with a search radius of 5 arcmins [44]. When we find
several halos in the search radius, we regard the matched
halo as the closest halo from the position of the peak.
Over 1000 realizations in our survey window, we find
41292 peaks and identify 77.9% of the peaks have the
matched dark matter halos for the noiseless fields. After
denoising, the number of peaks is found to be 15593 and
the matching rate changes to 44.3%.

Furthermore, to validate the halo-peak matching, we
study the number density of the matched dark matter
halos as a function of halo masses and redshifts. Fig-
ure 13 shows the number density of the matched halos
to the noiseless and the denoised peaks. As shown in the
figure, the shape of the number density looks similar be-
tween two cases, indicating that the peak-halo matching
for the denoised fields is not a coincidence.

11 We define the halo mass as the spherical-overdensity mass with
respect to 200 times mean overdensity.
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FIG. 14. Similar to Figure 5, but for the lensing PDF in the
absence of shape noises.

Appendix B: Cosmological dependence of noiseless
lensing PDFs

For a reference, we here show the cosmological depen-
dence of the noiseless lensing PDFs. Figure 14 shows the
dependence and illustrates that our denoising can not
recover the expected cosmological dependence perfectly.
Nevertheless, a trend of the cosmological dependence is
similar between the noiseless and the denoised PDFs.

Appendix C: Comparison with observed lensing
PDFs and simulated counterparts

Here we compare the observed lensing PDF with our
model predictions based on numerical simulations. Since
we have the model predictions of lensing PDFs for 100
different cosmological models as in Figure 2, we can infer
the best cosmological model over the 100 models to find
the smallest value of the log-likelihood (see Eq. [20]). Fig-
ure 15 and 16 summarize the comparison and show that
the model based on our numerical simulations can give
an acceptable fit to the observed lensing PDF for either
of the noisy and denoised maps.

Appendix D: Probability distribution of the
best-fitted cosmological parameter

In Sec. V D, the best-fit cosmological parameter S8 =
σ8

√
Ωrm0/0.3 by our likelihood analysis is found to be

∼ 0.5 and this is significantly small compared to the
expectation from other cosmological measurements, e.g.,
cosmic microwave background analysis [2, 58]. To evalu-
ate the statistical significance of our results, we study the
probability distribution of the best-fit value of S8 using
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FIG. 15. The comparison of the observed lensing PDF
with our simulation-based prediction. In the upper panel,
the red points show the observed PDF without denoising and
the black line represents the best model over 100 cosmologi-
cal models in Figure 2. In the bottom, we show the residual
between the observed PDF and the best model in the unit
of the statistical error. The gray shaded region in the bot-
tom infers the data points not used in the comparison. The
smallest log-likelihood value (−2 logL) is found to be 15.61
at the cosmological model with (Ωm0, S8) = (0.281, 0.591) for
15 data points.
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FIG. 16. Similar to Figure 15, but for the denoised PDF. The
smallest log-likelihood value (−2 logL) is found to be 16.55
at the cosmological model with (Ωm0, S8) = (0.269, 0.538) for
14 data points.

measurements of mock lensing PDFs. For each of 1000
mock catalogs in Sec. III B 1, we produce a noisy lens-
ing map (Sec. II B), and then denoise the map with our
conditional GANs (Sec. IV A 3). Then, we compute the
lensing PDFs for both of the noisy and denoised maps.
We perform likelihood analysis to find the best-fit param-
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FIG. 17. The probability distribution function of the best-
fit parameter S8 = σ8

√
Ωm0/0.3 assuming the true value is

S8 = 0.801. For this figure, we perform the likelihood analysis
using the lensing PDFs taken from 1000 mock realizations as
described in Sec. III B 1. The black open histogram shows the
results for the noisy PDF, while the red filled one is for the
denoised PDF. Note that we adopt the prior information of
0.45 ≤ S8 ≤ 1.05 in the likelihood analysis.

eter S8 (Sec. IV B). We repeat this process 1000 times
and estimate the probability distribution of S8 with our
observational setup.

Figure 17 shows the probability distribution from our
1000 mock likelihood analyses. Note that the mock cat-
alogs are based on the cosmological model with S8 =
0.801. Because the noisy PDF has a weak sensitivity
to S8 compared to its statistical uncertainty, the best-
fit parameter would follow a wide distribution around
the input value. After denoising, we expect the width
of the distribution can become narrower, but a long tail
toward higher and lower S8 exists. For instance, we find
that 21.8% of the best-fit values in our mock analyses are
smaller than 0.5 for the noisy PDFs,while this fraction
reduces to 5.7% after we denoise the data. Hence, we con-
clude the small best-fit values of S8 in our analysis with
real HSC data can be caused by statistical fluctuations
within a ∼ 2σ level, even if the true S8 is 0.801.
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