Lecture 2: Gamma-ray Astrophysics

Dmitry Semikoz APC (Paris)

Overview:

- Cherenkov radiation
- Detection technics
- Present and future experiments
- Galactic gamma-ray sources and diffused background
- Extragalactic sources and backgrounds
- Study of intergalactic magnetic fields
- Indirect detection of Dark Matter
- Conclusions

MEPHI, Lecture: Gamma-ray astronomy

Cherenkov radiation

Cherenkov radiation

Discovery 1934 Nobel prize 1958

Cherenkov radiation

 $V > V_m = c / n$

n is refractive index of medium

n = 1.008 air n = 1.33 waterThe charged particles polarize the molecules, which then turn back rapidly to their ground state, emitting prompt radiation Cherenkov light is emitted under a constant Cherenkov angle with the particle trajectory, given by $\cos \delta = \frac{V_m}{V} = \frac{c}{nV} = \frac{1}{\beta n}$

•Minimal energy of charge particle

$$\gamma_{\min} = \frac{n}{\sqrt{n^2 - 1}}$$

Main processes used in gamma-ray astrophysics $\gamma + \gamma_R \Longrightarrow e^- + e^+$ $e^{\pm} + \gamma_{R} \Longrightarrow e^{\pm} + \gamma$ $e^{\pm} + B \Longrightarrow e^{\pm} + \gamma_{synch}$ $e^{\pm} + A_{R} \Longrightarrow e^{\pm} + A_{R} + \gamma_{hrems}$ $P + \gamma_{R} \Longrightarrow N + \pi$ $P + P_B \Longrightarrow N + N + \sum \pi$ $\pi^0 \Rightarrow 2\gamma$

Detection technics

Fermi Large Area Telescope (LAT)

•ACD

- •scintillator
- •89 tiles

•Tracker

- •Si strip detectors
- •Tungsten foil converters
- •pitch = 228 um
- $\bullet 8.8 \times 10^5$ channels
- •18 planes

•Calorimeter

- •CsI crystals
- hodoscopic array
- •6.1x10³ channels
- •8 layers

Large Field of View >2.4 sr Broad Energy Range 20 MeV - >300 GeV

Cherenkov telescopes Very high energies, above 50 GeV

- Crab nebula: flux(E > 1 TeV) = 2 x 10⁻¹¹ cm⁻² s⁻¹
- Large effective detection areas (>30 000 m²) needed
- -> Back to the ground
- Use the atmosphere as a
- huge calorimeter and
- detect γ-ray-induced
- atmospheric showers
- through Cherenkov light
- ٠

Experimental challenges

Reduce the energy threshold as much as possible

Try to get some overlap region with space observations

- Increase flux sensitivity
- Remove the huge background of showers induced by charged particles (cosmic ray protons, ions and electrons)

MEPHI, Lecture: Gamma-ray astronomy

From W.Hofman

MEPHI, Lecture: Gamma-ray astronomy Hardonic rejection

Image shape:

Electromagnetic showers:

elongated, quasi-elliptic shape Hadronic showers:

more irregular shape

Image direction:

Electromagnetic showers:

point to the source (the center of the field of view)

Hadronic showers:

randomly oriented in the focal plane

Image light profiles

 (longitudinal and transverse)
 help finding the source position

Stereoscopic measurement (e.g. HEGRA, H.E.S.S. VERITAS, MAGIC)

- Direct measurement of the γ-ray origin in the field of view (important for extended sources)
- Direct measurement of the impact on the ground (important for energy measurement)
- Better hadronic rejection
- Much better angular resolution

Detection Technique of the EAS Arrays

- The particle detectors can be tanks full of water. Particles from the shower pass through the water and induce Cherenkov light detected by PMTs.
- Gamma/hadron can be discriminated based on the event footprint on the detector. Although is one of the challenges of this kind of detectors.

F. Salesa Greus - HAWC

7-Dec-2015

Gamma/Hadron Separation

- Main background is hadronic CR, e.g. 400 γ /day from the Crab vs 15k CR/s.
- In gamma-ray showers, most of the signal at ground level is located near the shower axis.
- In charged cosmic rays tend to "break apart", much messier signals at ground level.

Pass 4 Preview: Crab Data

• Reconstruction and calibration improvements.

Angular resolution (68% containment): 0.24° for large event, achieving proposed resolution. Gamma/Hadron separation:

Reject >99.9% of hadronic background for large events while retaining >50% of gamma rays.

MEPHI, Lecture: Gamma-ray astronomy

Fermi LAT gamma-rays 20 MeV-300 GeV

Fermi LAT

Differential sensitivity: P7REP_SOURCE_V15, 4 years, min 10 photons per bin

TeV telescopes 50 GeV-20 TeV

Cherenkov telescopes today

MEPHI, Lecture: Gamma-ray astronomy • HESS

•European Collaboration; M.P.I (Heidelberg)•4 x 12 m Telescopes

Completed in Dec. 2003; located in NAMIBIA

H.E.S.S. Sensitivity

• HEGRA

5% of Crab flux in 100 hours

H.E.S.S.

- 5% of Crab in 1 hour
- 0.5% in 100 hours
 1 v

EAS Detectors

- Several EAS arrays have been operational using different detection techniques.
- It is time for second generation experiments like HAWC.

7-Dec-2015

F. Salesa Greus - HAWC

HAWC Inauguration

HAWC Designed Sensitivity

Pass 4 Preview: Crab Data

- Recovers the designed sensitivity.
- Already running online: presently getting $>5\sigma$ per day on the Crab.

PRELIMINARY

Future TeV telescopes

Wish list

Higher sensitivity at TeV energies (x 10)

□ more sources

Lower threshold (some 10 GeV)

□ pulsars, distant AGN, source mechanisms

- Higher energy reach (PeV and beyond)
 cutoff region of Galactic accelerators
- Wide field of view

□ extended sources, surveys

Improved angular resolution

□ structure of extended sources

Higher detection rates

□ transient phenomena

MEPHI, Lecture: Gamma-ray astronomy

The Next Generation: The Cherenkov Telescope Array

North \sim 0.4 km² 4 LST 15 MST South \sim 4 km² 4 LST 24 MST and 72 SST

The LHAASO experiment

- 1 km² array, including 4941 scintillator detectors 1 m² each, with 15 m spacing.
- An overlapping <u>1 km² array</u> of 1146, underground water Cherenkov tanks 36 m² each, with 30 m spacing, for <u>muon detection</u> (total sensitive area ≈ <u>42,000</u> m²).

- A close-packed, surface water Cherenkov detector facility with a total area of 80,000 m².
- 18 wide field-of-view air Cherenkov (and fluorescence) telescopes.

Status of LHAASO

- LHAASO is finally approved and funded for detectors and infrastructures
- Construction of infrastructures started in July 2015.
- Installation of detectors started in September 2015 for tests.
- Spring 2016: Start of construction of the first water pond.
- ★ 2018: commissioning first pond and the first 25% of KM2A.
- ★ 2021: conclusion of installation of main components.

Construction of muon detectors

Sensitivity future detectors

Overview of TeV gamma-ray Science

- I. Astronomy and Astrophysics
 - A. Galactic sources

•Shell-type Supernova Remnants

- Pulsar wind nebula
- Binary systems
- Microquasars
- Central black hole
- Galactic Diffuse Emission
- Galactic Cosmic Ray Origin
- Dark sources

Overview of gamma-ray Science

B. Extra Galactic sources

Radio galaxies

Blazars

- Extragalactic Background Light
- Gamma Ray Bursts
- Unidentified Sources

Ultra-High Energy Cosmic Ray Origin
Overview of gamma-ray Science

Cosmology

- •Extragalactic Background Light
- Primordial magnetic field

• Distant Gamma Ray Bursts (GeV)

Particle physics

Dark Matter

Lorentz symmetry violation

Gamma-ray sky

The VHE γ ray sky

2005

The VHE γ ray sky Dec 2015 176 sources

Source Counts

Source Type*	1995	2005	2015
Pulsar Wind Nebula (e.g. Crab, MSH 15-52 …)	1	5	37
Supernova Remnants (e.g. Cas-A, RXJ 1713)	0	4	15
Binary systems (B1259-63 etc)	0	1	6
X-ray binary Galactic Center	0 0	0 1	4 1
Superbubble	0	1	2
Star clusters	0	0	4
Molecular clouds	0	0	2
BL LACs (e.g. Mkn 421, PKS 2155 …)	2	9	55
FSRQ	0	0	5
AGNs (M87, Cen A	0	1	4
Unidentified	0	6	42
	•	••	

Fermi LAT 5 years all sky 1GeV

Fermi LAT source catalog: 3000 sources

MEPHI, Lecture: Gamma-ray astronomy

Galactic sources

Galactic Plane Survey

•we are here

A. Garlick / space-art.co.uk

H.E.S.S Galactic Plane Survey

HAWC GP Survey

HAWC-111

10 sources/candidates are $>3\sigma$ post-trial: 3 firm detections ($>5\sigma$) and 7 candidates ($<5\sigma$). ٠ F. Salesa Greus - HAWC 7-Dec-2015 31

Geminga

- Detected in HAWC (Pass 3) at ${\sim}6\sigma$ using a 3 deg search.
- Looks harder than the Crab.
- Analysis in progress.
- F. Salesa Greus HAWC

Old SNRs & interacting SNRs

Radio/IR image
W28 remnant @ 2-3 kpc
35 – 150 kyr age

•H II regions

•Brogan et al. 2006 •20/90 cm VLA •MSX 8 micron

MEPHI, Lecture: Gamma-ray astronomy

1.5 A CTA¹ 0.5 field⁰ -0.5 of view⁻¹ -1.5

- •SNR models •using DAV 9 •n = 1 • ϵ = 0.1
- •(consistent
- •with HESS
- •plane scan)

•assuming

•N44 Superbubble in LMC •Gemini Obs., AURA, NSF

•No. of SNR detectable in (proton-induced) γ-rays

Max. Age	3 kyr	30 kyr	10 00
Density			100
n = 0.1/cm ³	5	6	ALL LAN
n = 1/cm ³	37	370	

RCW 49: Stellar Winds as Cosmic Accelerators

HESS J1023-575

Pulsar Wind Nebulae

Extended γ-ray sources

Morphology of PWN: HESS J1825-137

Binaries

"Dark" sources: Objects which only shine in gamma rays !

•The age of real VHE gamma ray astronomy has started

Extra-galactic gamma-ray sources and extragalactic background light

1000 sources in GeV and 60 in TeV

Diffuse backgrounds

Extrag. Background Light

Cosmological radiation from star formation and evolution. Spectral signature from gg absorption for Eg ~ 50-2000 GeV. Use measured AGN spectra to constrain EBL.

- The EBL is the accumulated diffuse light produced by star formation processes and accreting black holes over the history of the Univere from the UV to the far-IR.
- It contains fundamental information about galaxy evolution, cosmology, and it is essential for the full energy balance of the Universe.

Cosmic y-ray Horizon: Results

Extra-galactic sources and determination of magnetic field

MEPHI, Lecture: Gamma-ray astronomy

A.Neronov, D.S., PRD 2009, arXiv:0910.1920

•Magnetic fields might be generated via "battery" effects during phase transitions in the Early Universe.

•In principle, the initial magnetic field energy density might provide non-negligible contribution to the overall energy density of the Universe.

•Magnetic field correlation length could not exceed the size of cosmological horizon; strength of magnetic field averaged over large distance scales could not exceed the "causality" limit

•Damping processes remove small-scale magnetic fields in the course of cosmological evolution.

Imaging of cascade: 3-d cascade needed

•3-d cascade in turbulent EGMF

•A.Neronov, D.S., M.Kachelriess, S.Ostapchenko and A.Elyev, 2009

MEPHI, Lecture: Gamma-ray astronomy •Imaging of cascade: EGMF Øjet Øobs Øext Øobs Øext

•Imaging: cascade component forms an extended emission around initially point source.

• on

> the telesope PSF and on the scale of angular deflections of e+e- pairs (i.e. on the strength of EGMF)

- detectability depends

MEPHI, Lecture: Gamma-ray astronomy

Search for the time-delayed cascade emission

•The flare occurred during the multiwavelength campaing, including HE and VHE observations.

•Fermi data indicate that the flare lasted 30-50 days, but the VHE observations cover only the first three days of the flare.

•Fermi data indicate a peculiar hardening of the spectrum above ~10 GeV during the flare. One possibility for the explanation of the hard component is the cascade emission suppressed at low energies by too-large time

EGMF from 1ES 0229+200

Diffuse gamma-ray background

Derivation of the isotropic gamma-ray background

- > Sum of the intensities of IGRB and the resolved high-latitude sources.
- > Contribution of high-latitude Galactic sources << 5%.
- > Spectrum can be parametrized by **power-law with exponential cutoff**.
- > Spectral index ~ 2.3, cutoff energy ~ 350 GeV.

BL Lacs give main contribution to diffuse gamma-ray flux

A.Neronov, D.S. Astrophys.J. 757 (2012) 61

BL Lacs give main contribution to high energy part of diffuse gamma-ray flux

•M. Di Mauro et al, arXiv:1311.5708

Fermi confirmed resolution of BL Lac sources above 50 GeV

cm \sim s⁻). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S_b , in the range $[8 \times 10^{-12}, 1.5 \times 10^{-11}]$ ph cm⁻² s⁻¹ and power-law indices below and above the break of $\alpha_2 \in [1.60, 1.75]$ and $\alpha_1 = 2.49 \pm 0.12$ respectively. Integration of dN/dS shows that point sources account for at least $86^{+16}_{-14}\%$ of the total extragalactic γ -ray background. The simple form of the derived source count distribution is consistent with a single population (i.e. blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources

Fermi collaboration, arXiv:1511.00693

Dark matter signatures

Indirect Detection of Dark Matter

Neutrinos

in the core of the Sun

Gamma Rays from annihilations in the galactic halo, near the

galactic center, in dwarf galaxies, etc.

- **Positrons/Antiprotons** from annihilations throughout the galactic halo
- Synchrotron Radiation from electron/

positron interactions with the magnetic fields of the inner

galaxy

•From Dan Hooper

Rotation Curves of galaxies

Red Region: X Ray

Blue Region: Gravitational lensing

Large Scale Structure

The N-body Simulation of Dark Matter Universe Structure: Core, Filament and Cosmic Void.

What we know about DM particles so

• neutral far ? ELEMENTARY

cold (part of it can be warm

 weak interaction (with itself and with ordinary matter) ? Maybe!

• profile (around us $\rho_{\chi} \approx 0.3 \text{GeV/cm}^3 \text{ V} \approx 220 \text{ km/s})$

Detection of particle dark matter

The detection of dark matter

- Direct detection : PandaX, CDEX, Xenon, CDMS, DAMA, COGENT and so on
- Indirect detection : Pamela ,ATIC, Fermi, HESS, AMS02, DAMPE and so on
- Collider: LHC

Cosmic Ray Propagation

•Fermi gamma-rays can provide good test of the DM models •Credit: NASA/DOE/Fermi collaboration

- Galactic center
- Galactic halo
- Dwarf galaxies

- Clusters
- Extra-galactic diffuse
- Line search

The gamma ray sky map produced by dark matter annihilation in our Galaxy

•The J-Factor of different dark matter profile models.

•The Galaxy center is the best region to detect dark matter.

Diffuse Galactic y-ray Emission: Origin

The GeV Excess

•Daylan et al. 2015

The GeV Excess

•Fermi collaboration 2015

MEPHI, Lecture: Gamma-ray astronomy

GeV excess in Fermi Pass 8 data

TABLE I: DES2 dSph Candidates and the Estimated J-factors

Name	$(l,b)^{a}$	Distance ^b	log ₁₀ (Est.J) ^c
	(deg)	(kpc)	$\log 10(\text{GeV}^2\text{cm}^{-5})$
DES J2204-4626	(351.15,-51.94)	53 ± 5	18.8
DES J2356-5935	(315.38, -56.19)	25 ± 2	19.5
DES J0531-2801	(231.62,-28.88)	182 ± 18	17.8
DES J0002-6051	(313.29,-55.29)	48 ± 4	18.9
DES J0345-6026	(273.88, -45.65)	92 ± 13	18.3
DES J2337-6316	(316.31,-51.89)	55 ± 9	18.8
DES J2038-4609	(353.99,-37.40)	214 ± 16	17.6
DES J0117-1725	(156.48, -78.53)	30 ± 3	19.3

•Shang Li 1511.09252

GeV Excess in the Dwarf Galaxies?

•(Li, S. et al. 2016)

Evidence for Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum 2

Alex Geringer-Sameth^{*} and Matthew G. Walker[†] McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Savvas M. Koushiappas[‡] Department of Physics, Brown University, Providence, RI 02912, USA

Sergey E. Koposov, Vasily Belokurov, Gabriel Torrealba, and N. Wyn Evans Institute of Astronomy, University of Cambridge, CB3 0HA, UK (Dated: March 10, 2015)

Comment on positron and antiproton excess

Positron to (electron + positron) ratio by PAMELA, Fermi, AMS-2

Anti-protons by AMS-2

Dipole anisotropy of cosmic rays

G.Di Sciascio and R. luppa, arXiv: 1407.2144

Anisotropy and flux from 2 Myr SN

•A=3/2 R/T

• V.Savchenko, M.Kachelriess, and D.Semikoz, arXiv:1505.02720

Grammage to create secondaries

Positron to (electron + positron) ratio

Positron flux PAMELA/AMS-II

• M.Kachelriess, A. Neronov and D.Semikoz, arXiv:1504.06472

Antriprotons

Nearby SN from Fe60 in ocean crust

•Knie et al. '99, '04, Fry et al. '15

Conclusions:

- Gamma-ray astronomy works
- Will help to understand hadronic component in different kind of astrophysical sources
- helps to establish extragalactic IR/O backgrounds
- Diffuse gamma-ray background dominated by unresolved sources
- Will allow to study magnetic field in the voids of large scale structure: primordial magn. field!
- One more constraint/signature on Dark Matter