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Abstract

We present a new version 3.1 of the LanHEP software package. New features

of the program include tools for the models with extra dimensions, implementa-

tion of the particle classes for FeynArts output and using templates with LanHEP

statements.

Introduction

The LanHEP program [1] is developed for Feynman rules generation from the Lagrangian.
It reads the Lagrangian written in a compact form, close to the one used in publications. It
means that Lagrangian terms can be written with summation over indices of broken sym-
metries and using special symbols for complicated expressions, such as covariant derivative
and strength tensor for gauge fields. Supersymmetric theories can be described using the
superpotential formalism and the 2-component fermion notation. The output is Feynman
rules in terms of physical fields and independent parameters in the form of CompHEP [2]
or CaclHEP [3] model files, which allows one to start calculations of processes in the new
physical model. Alternatively, Feynman rules can be generated in FeynArts [4] format or
as LaTeX table. The program can also generate one-loop counterterms in the FeynArts
format. This note describes new features of the version 3.1 of the LanHEP package, in-
cluding tools for the models with extra dimensions, implementation of the particle classes
for FeynArts output and using templates with LanHEP statements.

1 Models with extra dimensions

A new feature in LanHEP helps to generate Kaluza-Klein modes for particles in models
with additional dimensions. In case of the Minimal Universal Extra Dimension Model [5],
the photon field in 5 dimensions can be projected into 4-dimensional space
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LanHEP allows to expand the 4-dimensional field Aµ(x
µ) into the sum A(0)

µ
(x) and

Kaluza-Klein modes A(n)
µ

(x) as in the right-hand part of the equation above, by the
statement

transform A -> A + (A1*cos(1) + A2*cos(2))*Sqrt2.
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Here sin(N), cos(N) correspond to KK-mode number N , and these function will be
integrated out using orthogonality relation after constructing the Lagrangian. We have
introduced two KK modes in this example, but one can write only one or add more. Sim-
ilar prescription can be written for scalars and spinors. The transform statements allows
to expand with KK modes particles in the existing LanHEP model without modifying the
statements which describe Lagrangian terms.

One also can define the scalar field corresponding to the fifth component of the photon:

let A5 = (s1*sin(1) + s2*sin(2))*Sqrt2.

Here s1, s2 are scalar fields which should be declared as particles before. One can write
the interactions of the 5th components of vector fields explicitly, using symbols like A5

defined above and the symbol deriv5 for ∂5. Note that deriv5 differentiate only sin and
cos functions, and multiply it by the mode number, so the scale factor should be written
explicitly next to deriv5.

LanHEP can generate the interaction of 5th components automatically, by adding the
product of the 5th components to each convolution of vector indices. To do this, one
should use the ued 5th statement to define the 5th components of vectors:

ued 5th deriv -> deriv5/R, A -> A5.

Here R is the scale parameter. One also can specify the scale parameter in the second
argument of sin or cos function, like cos(1,invR), where invR is defined as 1/R. In this
case, one should write deriv->deriv5 in the ued 5th statement.

2 Classes in FeynArts output

FeynArts allows to combine particles with similar properties into classes. By default,
LanHEP generates the model where each particle has its own class. It is possible to
combine several particles into a class by the class statement. For example

class lpc=[e,m,l].

joins the electron, muon and tau-lepton into the class lpc (charged lepton). So, the
vertices with these three particles will be joined to describe generic lepton interaction
with other fields. This feature allows to decrease the number of vertices and speeds up
calculations. The particles in the class must have the same spin and color, however it is
possible to combine into a class particles with different electric charge, or scalars that are
CP-even and CP-odd scalars.

3 Using templates

A model description often includes several statements with the same structure. For ex-
ample, the declaration of the parameters which are elements of some mixing matrix,
evaluated by external function reads

parameter Zn11=MixMatr(neu,1,1), Zn12=MixMatr(neu,1,2), ...
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where ’...’ stands for all other definitions for this matrix. The declaration of these
parameters can be written in a simplier form:

x=1-4, y=1-4 in parameter Zn x y=MixMatr(neu, x, y).

Here the parameter statement will be invoked several times for all possible combinations
of values for symbols like x, making the substitution when x appears into one of values,
and creating names Zn11, Zn12, ... from template Zn x y. These symbols must have
one letter. The values can be set as x=1-4 or x=[1,2,3,4]. The latter form is useful
when substitution values are not sequential numbers, for example values can be particle
names. The prefix with keyword ’in’ can be applied to any LanHEP statement.

Another way to execute a statement several times with different names of parameters
is to use the keyword ’where’. This feature was already used in earlier versions in the
lagrangian terms. For example

lterm anti(psi)*gamma*(1+g5)/2*(i*deriv - Y*g1*B1)*psi where

psi=e, Y= -1; psi=m, Y= -1; psi=l, Y= -1;

psi=u, Y= 2/3; psi=c, Y= 2/3; psi=t, Y= 2/3;

psi=d, Y= -1/3; psi=s, Y= -1/3; psi=b, Y= -1/3.

describes the gauge interaction for quarks and leptons, Y is hypercharge. Now the sub-
stitution with the keywors ’where’ can be applied as postfix to any LanHEP statement,
and the description of substitutions can be made in a shorter form:

lterm ... where psi=[e,m,l,u,c,t,d,s,b], Y=[-1,-1,-1,2/3,2/3,2/3,-1/3,

-1/3,-1/3].

The lists of the values for names of substitutions must be the same length, and this length
is the number of times the statement is executed. At each execution the next values from
the lists are used for substitution symbols.

When it is necessary to execute the statement with all combinations of substitutions in
two (or more) list, one can use nested keywords ’where’. For example, deriving Yukawa
terms from the superpotential may read

(lterm -df(superW,Ai,Aj)*Fi*Fj/2 + AddHermConj

where Ai=[h1,h2],Fi=[fh1,fh2] ) where Aj=[h1,h2],Fj=[fh1,fh2].

Both ’in’ and ’where’ keywords can be used if it is necessary to combine templates
for names like Zn i j and substitutions for group of symbols. The construction will look:

x=name in statement where name= values, ... .

In this example the keyword ’where’ will substitute name with given values, which then
will be used by keyword ’in’ to substitute symbol ’ x’ in the statement. If the keyword
’in’ is needed to make substitutions before ’where’, brackets can be used:

x=[u,d,c,s,t,b] in ( statement where mass=M x, ...) .

In general, any construction with ’in’ or ’where’ can be included in brackets and next
’in’ or ’where’ appended. The outermost keyword makes its substitution first.
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[4] J. Küblbeck, M. Böhm, and A. Denner, Comp. Phys. Commun. 60 (1990) 165;
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