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Abstract

Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of sys-
tems with long-range interaction and long-term memory function, we consider two different applications of the action prin-
ciple: generalized Noether’s theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the
form of continuity equations that consist of fractional time–space derivatives. Among applications of these results, we con-
sider a chain of coupled oscillators with a power-wise memory function and power-wise interaction between oscillators. In
the second case, we consider an example of fractional differential action 1-form and find the corresponding Hamiltonian
type equations from the closed condition of the form.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Different physical phenomena such as anomalous transport or random walk with infinite moments [1,2],
dynamics of porous media [3,4], continuous time random walk [5–7], chaotic dynamics [8] (see also reviews
[9,10]) can be described by equations with fractional integro-differentiation. Despite of fairly deep and com-
prehensive results in fractional calculus (see [11–14]) a possibility of their applications to physics needs to
develop specific physical tools such as extension of fractional calculus to the areas as multi-dimension
[11,17], multi-scaling [15,16], variational principles [18,19].

In this paper, we concentrate on two problems important for numerous physical applications: conservation
laws and Hamiltonian type equations, both obtained from the corresponding fractional action principles.
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In Section 2, we derive the Noether’s theorem for a Lagrangian that includes non-local space–time densities.
The Noether’s theorem was also discussed in [23,24]. Our new derivation shows in an explicit way how frac-
tional derivative in time emerges from the specific type of the memory function, and how fractional derivative
in space is related to a specific long-distance potential of interaction (Section 3.) In Section 4, these results are
applied to a chain of nonlinear oscillators that is a subject of great interest in statistics and dynamics [25,26].
Finally, at Section 5, we derive a specific case of fractional Hamilton’s equations. Different steps in this direc-
tion were performed in [29–31]. We consider the Lagrangian density as a functional without fractional deriv-
atives but, instead, the differential 1-form has fractional differentials. Some examples are given for this type of
systems.

The main feature of this paper is the consideration of fractional type differentials or derivatives in both
space–time coordinates.

2. Noether’s theorem for long-range interaction and memory

2.1. Action and Lagrangian functionals

Let us consider the action functional
S½u� ¼
Z

R
d2x
Z

R
d2yLðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ; ð1Þ
where x ¼ ðt; rÞ, t is time, r is coordinate, and y ¼ ðt0; r0Þ, ouðxÞ ¼ ðotuðt; rÞ; oruðt; rÞÞ. The integration is carried
out over a region R of the two-dimensional space R2 to which x belong. The field u(x) is defined in the region R

of R2. We assume that u(x) has partial derivatives
o0uðxÞ ¼ ouðt; rÞ
ot

; o1uðxÞ ¼ ouðt; rÞ
or

;

which are smooth functions with respect to time and coordinate. Here LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ is generalized
density of Lagrangian. If
LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ ¼LðuðxÞ; ouðxÞÞdðx� yÞ; ð2Þ
then we have the usual action functional
S½u� ¼
Z

R
d2xLðuðxÞ; ouðxÞÞ:
The variation of the action (1) is
dS½u; h� ¼
Z

R
d2x
Z

R
d2y

oL

ouðxÞ hðxÞ þ
oL

oðoluðxÞÞ olhðxÞ þ oL

ouðyÞ hðyÞ þ
oL

oðoluðyÞÞ olhðyÞ
� �

; ð3Þ
where l = 0,1, ol = o/oxl and
L ¼LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ
and h(x) = du(x) is the variation of the field u. The variation (3) can be presented as
dS½u; h� ¼
Z

R
d2x
Z

R
d2y

oLs

ouðxÞ hðxÞ þ
oLs

oðoluðxÞÞ olhðxÞ
� �

; ð4Þ
where
Ls ¼LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ þLðuðyÞ; uðxÞ; ouðyÞ; ouðxÞÞ:
We can define the functional
L½x; u; ou� ¼ 1

2

Z
R

d2yLs; ð5Þ
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which will be called the Lagrangian functional. For (2), the functional (5) is equal to the usual Lagrangian
density Lðu; ouÞ.

Using notations
dL½x; u; ou�
duðxÞ ¼

Z
R

d2y
oLs

ouðxÞ ;
dL½x; u; ou�
dðoluðxÞÞ ¼

Z
R

d2y
oLs

oðoluðxÞÞ ; ð6Þ
the variation (4) is
dS½u; h� ¼
Z

R
d2x

dL½x; u; ou�
duðxÞ hðxÞ þ dL½x; u; ou�

dðoluðxÞÞ olhðxÞ
� �

: ð7Þ
The structure of (7) is non-local, i.e., it includes, through (5) and Ls a possibility of the long-term memory and
long-range interaction. Let us derive the generalization of the Noether’s theorem for this case in the way ana-
logical to the local case (2).

2.2. Equations of motion

First, we separate the variation that is linked in the variation of coordinates
xl ! x0l ¼ xl þ dxl; ð8Þ

and the variation caused by a change of the form of u,
uðxÞ ! u0ðxÞ ¼ uðxÞ þ duðxÞ:

The variation h(x) = du(x) of u(x) that is not due to the variation in coordinates is called local. The total var-
iation is
DuðxÞ ¼ u0ðx0Þ � uðxÞ ¼ duðxÞ þ ðou=oxlÞdxl ð9Þ

in the first approximation with respect to dx. Let us consider the variation of (1) as
dS½u; h� ¼
Z

R
d2x0L½x0; u0; o0u0� �

Z
R

d2xL½x; u; ou�: ð10Þ
The elements of the two-dimensional volume in new and old coordinates are related through the formula
d2x0 ¼ Jðx0=xÞd2x;
where J(x 0/x) = detjox 0l/oxmj is the Jacobian of the transformation. Using the well-known relation
det A ¼ exp Tr ln A; ð11Þ

and the linear approximation
oxl0

oxm
¼ dl

m þ omðdxlÞ;
we get
Jðx0=xÞ ¼ 1þ olðdxlÞ:
Here dl
m is the Kronecker symbol.

For the variation (10), we get
dS½u; h� ¼
Z

R
d2xðdLþ LolðdxlÞÞ ¼

Z
R

d2x
dL
du

duþ dL
dðoluÞ dðoluÞ þ olðLdxlÞ

� �
; ð12Þ
where the variations of L are defined in (6). Using d(olu) = ol(du), and
dL
dðoluÞ oldu ¼ ol

dL
dðoluÞ du
� �

� ol
dL

dðoluÞ

� �
du;
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we can rewrite (12) as
dS½u; h� ¼
Z

R
d2x

dL
du
� ol

dL
dðoluÞ

� �
duþ

Z
R

d2xol Ldxl þ dL
dðoluÞ du

� �
: ð13Þ
The Gauss theorem gives
Z
R

d2xol Ldxl þ dL
dðoluÞ du

� �
¼
Z

oR
dSl Ldxl þ dL

dðoluÞ du
� �

: ð14Þ
We assume that at the boundary of the domain of integration the function u(x) is selected in a definite man-
ner (the boundary condition). Then stationary (a minimum or a saddle point) values of S[u] from variational
equations dS½u; h� ¼ 0 with
½du�oR ¼ 0; ½dx�oR ¼ 0
at the boundary oR of the domain of integration, constitutes the necessary and sufficient condition for the real
evolution of the field, that is, that u = u(x) represents the true dynamics under the given boundary conditions.
The stationary action principle gives
dL½x; u; ou�
duðxÞ � ol

dL½x; u; ou�
dðoluðxÞÞ ¼ 0; ð15Þ
where the variations of L are defined in (6). This equation is the Euler–Lagrange equation for Lagrangian
functional L½x; u; ou�.

Let us consider three special cases of Eq. (15).

(1) The absence of the memory and long-range interaction means that
LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ ¼LðuðxÞ; ouðxÞÞdðx� yÞ:
Then (15) gives the usual Euler–Lagrange equation
oLðu; ouÞ
ouðxÞ � ol

oLðu; ouÞ
oðoluðxÞÞ ¼ 0: ð16Þ
(2) If the generalized Lagrangian density is
LðuðxÞ; uðyÞ; ouðxÞ; ouðyÞÞ ¼LðuðxÞ; ouðxÞÞc1ðD; rÞdðx� yÞ;
where
c1ðD; rÞ ¼
jrjD�1

CðDÞ ð0 < D < 1Þ
for a medium distributed on R1 with the fractional Hausdorff dimension D, then Eq. (15) has the form
c1ðD; rÞ
oLðu; ouÞ

ouðxÞ � ol c1ðD; rÞ
oLðu; ouÞ
oðoluðxÞÞ

� �
¼ 0: ð17Þ
This is Euler–Lagrange equation for the field uðxÞ ¼ uðt; rÞ in fractal medium. Examples of the field (wave)
equations for fractal medium string and fractional hydrodynamics are considered in [33]. For example,
LðuðxÞ; ouðxÞÞ ¼ 1

2
ðotuðt; rÞÞ2 �

1

2
v2ðoruðt; rÞÞ2;
leads to the equation
c1ðD; rÞo2
t uðt; rÞ � v2orðc1ðD; rÞoruðt; rÞÞ ¼ 0;
that describes the propagation waves in fractal medium.
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(3) Consider the action functional
S½u� ¼
Z

R
d2x
Z

R
d2y

1

2
otuðxÞg0ðx; yÞot0uðyÞ �

1

2
oruðxÞg1ðx; yÞor0uðyÞ � V ðuðxÞ; uðyÞÞ

� �
; ð18Þ
where the kernels g0ðx; yÞ and g1ðx; yÞ are responsible for non-local time-coordinates dynamics and V is
non-local interaction potential. Then the Lagrangian functional (5) is
L½x; u; otu; oru� ¼
Z

R
d2y

1

2
otuðxÞK0ðx; yÞot0uðyÞ �

1

2
oruðxÞK1ðx; yÞor0uðyÞ � UðuðxÞ; uðyÞÞ

� �
; ð19Þ
where
K0ðx; yÞ ¼
1

2
½g0ðx; yÞ þ g0ðy; xÞ�;

K1ðx; yÞ ¼
1

2
½g1ðx; yÞ þ g1ðy; xÞ�;

UðuðxÞ; uðyÞÞ ¼ V ðuðxÞ; uðyÞÞ þ V ðuðyÞ; uðxÞÞ:

ð20Þ
Assume that
UðuðxÞ; uðyÞÞ ¼ UðuðxÞÞdðx� yÞ:

In this case, the Euler–Lagrange functional Eq. (15) has the form (see also [22])
Z

R
d2yotK0ðx; yÞot0uðyÞ �

Z
R

d2yorK1ðx; yÞor0uðyÞ þ
oUðuðxÞÞ

ouðxÞ ¼ 0: ð21Þ
It is an integro-differential equation, which allows us to derive field equations for different cases of the kernels
K0ðx; yÞ and K1ðx; yÞ.

In the absence of memory and for local interaction the kernels (20) are defined at the only instant t and
point r, i.e.,
K0ðx; yÞ ¼ g0dðx� yÞ; K1ðx; yÞ ¼ g1dðx� yÞ

with some constants g0 and g1. Then Eq. (21) gives
g0o
2
t uðt; rÞ � g1o

2
r uðt; rÞ þ oUðuðt; rÞÞ

ouðt; rÞ ¼ 0:
For example g0 = g1 = 1, when
Uðuðt; rÞÞ ¼ � cos uðt; rÞ;

we get the sine-Gordon equation
o
2
t uðt; rÞ � o

2
r uðt; rÞ þ sin uðt; rÞ ¼ 0: ð22Þ
2.3. Noether’s current

Let us derive the Noether’s current by using the action variation (13).
The second integral of (13) can be presented as
Z

R
d2xol Ldxl þ dL

dðoluÞ du
� �

¼
Z

R
d2xol

dL
dðoluÞ ½duþ ðomuÞdxm� � dL

dðoluÞ ðomuÞ � dl
m L

� �
dxm

� �
: ð23Þ
Using the total variation (9), Eq. (23), and the energy–momentum tensor
hl
m ¼

dL
dðoluÞ ðomuÞ � dl

m L; ð24Þ
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the variation (13) yields
dS½u; h� ¼
Z

R
d2x

dL
du
� ol

dL
dðoluÞ

� �
duþ

Z
R

d2xol
dL

dðoluÞDu� hl
mdxm

� �
: ð25Þ
Let us consider a continuous (topological) group of coordinate transformation x! x0 ¼ x0ðx; aÞ, and let the
field function u = u(x) admits the representation of this group:
x! x0; uðxÞ ! u0ðx0Þ: ð26Þ
The invariance of functional S[u] with respect to (26) means that
Z
R

d2x0L½x0; u0; ou0=ox0� ¼
Z

R
d2xL½x; u; ou=ox�:
The transformation (26) constitutes a group. Therefore, infinitesimal forms of transformations (26) are
Dxm ¼ X m
sdas; Du ¼ Y sdas ðm ¼ 0; 1; s ¼ 1; . . . ;mÞ; ð27Þ
where X m
s and Ys are the generators of the group of transformation correspondingly in the coordinate and the

field representations. The index s ¼ 1; . . . ;m is defined by the representation of the group.
For simple examples of transformation of the coordinate, time or scalar field, we have
Dxm ¼ X mda ðm ¼ 0; 1Þ; ð28Þ
Du ¼ Y da: ð29Þ
Noether’s theorem states that every continuous transformation of coordinate (28) and field function (29),
which ensures that the variation of the action is zero admits a conservation law in the form of a continuity
equation [27,28]. Substitution of (28), (29), and (15) into (25) gives
dS½u; h� ¼
Z

R
d2xol

dL
dðoluÞ Y � hl

m X m

� �
da: ð30Þ
In view of the fact that the variation of the parameter, da, is arbitrary, from (30) we get the conservation law
olJl ¼ 0; ð31Þ
where
Jl ¼ dL
dðoluÞ Y � hl

m X m ð32Þ
is the Noether’s currents and hl
m is defined in (24). Eq. (31) means that there exists conservation law. Non-triv-

iality of Eqs. (31) and (32) is that L and hl
m have non-local interaction and memory.

3. Application of the Noether’s theorem for long-range interaction and long-term memory

3.1. Lagrangian functional and energy–momentum tensor

For l ¼ 0; 1, x0 = t, and x1 = r, the Euler–Lagrange functional Eq. (15) is
dL½x; u; otu; oru�
duðxÞ � o

ot
dL½x; u; otu; oru�

dðotuðxÞÞ
� o

or
dL½x; u; ou�
dðoruðxÞÞ

¼ 0: ð33Þ
The time and space variables in action can be separated to consider the field with power-law memory and
long-range interaction. Let K0ðx; yÞ and K1ðx; yÞ have the form
K0ðx; yÞ ¼ dðr � r0ÞK0ðt; t0Þ; ð34Þ
K1ðx; yÞ ¼ dðt � t0ÞK1ðr; r0Þ; ð35Þ
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and
UðuðxÞ; uðyÞÞ ¼ UðuðxÞÞdðx� yÞ; ð36Þ

where x ¼ ðt; rÞ, and y ¼ ðt0; r0Þ. Then the Lagrangian functional is
L½x; u; otu; oru� ¼
1

2

Z
dt0K0ðt; t0Þotuot0u�

1

2

Z
dr0K1ðr; r0Þoruor0u� UðuÞ: ð37Þ
To present the long-term memory and long-range interaction, consider the kernels K0ðt; t0Þ and K1ðr; r0Þ in
the power-law forms
K1ðr; r0Þ ¼K1ðjr � r0jÞ ¼ �g
cosðpa=2ÞCð2� aÞ

1

jr � r0ja�1
ð1 < a < 2Þ; ð38Þ
and
K0ðt; t0Þ ¼
Mðt � t0Þ; 0 < t0 < t;

0; t0 > t; t0 < 0;

�
ð39Þ
with
Mðt � t0Þ ¼ 1

Cð1� bÞ
1

ðt � t0Þb
ð0 < b < 1Þ: ð40Þ
Then the variational derivatives of Lagrangian functional are
dL
du
¼ � oUðuðt; rÞÞ

ouðt; rÞ ; ð41Þ

dL
dðotuÞ

¼ C
0 Db

t uðt; rÞ ð0 < b < 1Þ; ð42Þ

dL
dðoruÞ

¼ �g
o

a�1

ojrja�1
uðt; rÞ ð1 < a < 2Þ; ð43Þ
where C
0 Db

t is Caputo derivative [14,12] defined by
C
0 Db

t uðt; rÞ ¼ 1

Cðn� bÞ

Z t

0

ds

ðt � sÞb�nþ1

onuðs; rÞ
osn

ðn� 1 < b < nÞ:
Substitution of (41)–(43) into (33) gives the fractional field Euler–Lagrange equation
C
0 Dbþ1

t uðt; rÞ � g
o

a

ojrja uðt; rÞ þ oUðuðt; rÞÞ
ouðt; rÞ ¼ 0 ð1 < a < 2; 0 < b < 1Þ: ð44Þ
For a = 2 and b = 1, Eq. (44) is the usual field equation
o2
t uðt; rÞ � go2

r uðt; rÞ þ oUðuðt; rÞÞ
ouðt; rÞ ¼ 0: ð45Þ
For the potential Uðuðt; rÞÞ ¼ � cos uðt; rÞ, Eq. (45) gives the sine-Gordon equation,
o2
t uðt; rÞ � o2

r uðt; rÞ þ sin uðt; rÞ ¼ 0; ð46Þ
and Eq. (44) is a spatio-temporal fractional sine-Gordon equation
ob
t u� oa

jrjuþ sin u ¼ 0; ð47Þ
where we used for abbreviation simplified notation for fractional derivatives. For the case b = 2, the equation
was obtained in [20].

The energy–momentum tensor hl
m , can be presented in the form
hl
m ¼ hdlm þ sl

m ; ð48Þ
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where the first term is the diagonal part
h ¼ h0
0 þ h1

1 ¼
dL

dðotuÞ
ðotuÞ þ

dL
dðoruÞ

ðoruÞ � 2L ¼ Uðuðt; rÞÞ: ð49Þ
This represents a pressure-like quantity. The second term in the right hand side of (48) is a non-diagonal of hl
m :
sl
m ¼

dL
dðoluÞ ðomuÞ �

dL
dðojuÞ ðojuÞdl

m ; ð50Þ
where
s0
0 ¼ s1

1 ¼ 0; ð51Þ

s0
1 ¼

dL
dðotuÞ

ðoruÞ ¼ C
0 Db

t uðt; rÞ
� �

oruðt; rÞ; ð52Þ

s1
0 ¼

dL
dðoruÞ

ðotuÞ ¼ �g
oa�1

ojrja�1
uðt; rÞ

" #
otuðt; rÞ: ð53Þ
For r 2 R3 the spatial components of sl
m , represent shear stress tensor. The value h represents a pressure-like

quantity, normal stress.

3.2. Homogeneity in time

The homogeneity in time means invariance of action with respect to the transformation
t! t0 ¼ t þ a; r ! r; u! u: ð54Þ

Then the infinitesimal transformations are
Dxl ¼ dl
0da; Du ¼ 0 ðl ¼ 0; 1Þ ð55Þ
with the generators
X l ¼ dl
0 ; Y ¼ 0 ðl ¼ 0; 1Þ: ð56Þ
The Noether’s current has two components
Jl ¼ �hl
0 ¼ �

dL
dðoluÞ otu� dl

0L
� �

ðl ¼ 0; 1Þ: ð57Þ
Using x0 = t, and x1 = r, we get the continuity equation
otJ 0 þ orJ 1 ¼ 0; ð58Þ

where
J 0 ¼ � dL
dðotuÞ

ðotuÞ � L
� �

¼ � otuðt; rÞC0 Db
t uðt; rÞ � L

	 


¼ � 1

2
otuðt; rÞC0 Db

t uðt; rÞ þ 1

2
goruðt; rÞ

oa�1

ojrja�1
uðt; rÞ þ U

 !
; ð59Þ
and
J 1 ¼ � dL
dðoruÞ

ðotuÞ ¼ gotuðt; rÞ
oa�1

ojrja�1
uðt; rÞ: ð60Þ
As a result, the continuity equation is
ot
1

2
otuC

0 Db
t uþ g

1

2
oru

oa�1

ojrja�1
uþ U

 !
� or gotu

oa�1

ojrja�1
u

 !
¼ 0; ð61Þ
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where u ¼ uðt; rÞ. Here
H ¼ 1

2
otuC

0 Db
t uþ 1

2
goru

oa�1

ojrja�1
uþ U ð62Þ
is a fractional generalization of density of energy (density of Hamiltonian), and
P ¼ �gotu
o

a�1

ojrja�1
u ð63Þ
is a fractional generalization of density of momentum. For the case a = 2 and b = 1, we obtain the well-known
relations [28]:
H ¼ 1

2
ðotuÞ2 þ

1

2
gðoruÞ2 þ U ; P ¼ �gotuoru: ð64Þ
The continuity Eq. (61) can be presented in an usual form of the conservation of energy
otHþ orP ¼ 0 ð65Þ

with the fractional generalizations of the energy and momentum given by (62) and (63).

3.3. Homogeneity of space

The homogeneity of space means invariance of action with respect to transformations
r! r0 ¼ r þ a; t! t; u! u: ð66Þ

The corresponding infinitesimal transformations are presented by
Dxl ¼ dl
1da; Du ¼ 0 ð67Þ
with the generators
X l ¼ dl
1 ; Y ¼ 0: ð68Þ
Then the Noether’s current has the following two components
Jl ¼ �hl
1 ¼ �

dL
dðoluÞ ðoruÞ � dl

1L
� �

ðl ¼ 0; 1Þ: ð69Þ
Using x0 = t, and x1 = r, we get the continuity equation that corresponds to the homogeneity of one-dimen-
sional space
otJ 0 þ orJ 1 ¼ 0; ð70Þ

where
J 0 ¼ � dL
dðotuÞ

ðoruÞ ¼ �oruðt; rÞC0 Db
t uðt; rÞ; ð71Þ
and
J 1 ¼ � dL
dðoruÞ

ðoruÞ þ L ¼ goruðt; rÞ
o

a�1

ojrja�1
uðt; rÞ þ L

¼ 1

2
otuðt; rÞC0 Db

t uðt; rÞ þ 1

2
goruðt; rÞ

oa�1

ojrja�1
uðt; rÞ � U : ð72Þ
As a result, the continuity Eq. (70) is
�ot oruC
0 Db

t u
	 


þ or
1

2
otuC

0 Db
t uþ 1

2
goru

oa�1

ojrja�1
u� U

 !
¼ 0 ð73Þ
that can be interpreted as the momentum conservation law in the case of fractional dynamics.
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For b = 1 and a = 2, Eq. (73) gives
�ot oruotuð Þ þ or
1

2
ðotuÞ2 þ

1

2
gðoruÞ2 � U

� �
¼ 0: ð74Þ
Note that, in general, for integer and fractional values of a and b, J 0
1 6¼ J 1

0, and the energy–momentum tensor
hl

m is not a symmetric with respect to l and m.

3.4. Field translation invariance

For the case U(u) = 0, the action (18) is invariant with respect to transformations
xl ! x0l ¼ xl; u! uþ a: ð75Þ
The infinitesimal transformations are presented as
Dxl ¼ 0; Du ¼ da ð76Þ
with the generators
X l ¼ 0; Y ¼ 1: ð77Þ

The Noether’s current
Jl ¼ dL
dðoluÞ ðl ¼ 1; 2Þ ð78Þ
has components
J 0 ¼ dL
dðotuÞ

¼ C
0 Db

t uðt; rÞ ð0 < b < 1Þ; ð79Þ

J 1 ¼ dL
dðoruÞ

¼ �g
o

a�1

ojrja�1
uðt; rÞ ð1 < a < 2Þ: ð80Þ
As a result, the continuity equation
olJl ¼ otJ 0 þ orJ 1 ¼ 0
has the form
ot
C
0 Db

t uðt; rÞ � gor
oa�1

ojrja�1
uðt; rÞ ¼ 0 ð1 < a < 2; 0 < b < 1Þ: ð81Þ
For a = 2 and b = 1, we get
o2
t uðt; rÞ � go2

r uðt; rÞ ¼ 0; ð82Þ

which is the usual field Eq. (45) for U(u) = 0.

Note that [14]
ot
C
0 Db

t uðt; rÞ ¼ C
0 D1þb

t uðt; rÞ þ t�b

Cð1� bÞ otuð0; rÞ: ð83Þ
To have the relation ot
C
0 Db

t uðt; rÞ ¼ C
0 D1þb

t uðt; rÞ, the initial conditions otuð0; rÞ ¼ 0 should be applied. In gen-
eral, Eq. (81) cannot be presented as
C
0 D1þb

t uðt; rÞ � g
oa

ojrja uðt; rÞ ¼ 0 ð1 < a < 2; 0 < b < 1Þ; ð84Þ
which is the fractional field Eq. (44) for U(u) = 0.
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This shows that the conservation law (81), in general, does not coincide with the field equation as it is hap-
pened for integer derivatives, unless, we use special boundary and initial conditions.

4. Chain with long-range interaction

It was shown in [20,21] how the long-range interaction between different oscillators can be described by the
fractional differential equations in the continuous medium limit. In this section, the Noether’s theorem will be
applied to such kind of systems.

4.1. Equation of motion and Noether’s currents

Let us define the action as
S½un� ¼
Z þ1

�1
dt

Xþ1
n¼�1

1

2
_u2

nðtÞ � V ðunðtÞÞ
� �

�
Xþ1

n;m¼�1
m 6¼n

UðunðtÞ; umðtÞÞ

0
B@

1
CA; ð85Þ
where un is displacement of the nth oscillator from the equilibrium,
UðunðtÞÞ ¼
1

4
g0J aðjn� mjÞðunðtÞ � umðtÞÞ2; ð86Þ
and
J aðjn� mjÞ ¼ 1

jn� mjaþ1
ða > 0Þ: ð87Þ
The Lagrangian of the chain is
L ¼
Xþ1

n¼�1

1

2
_u2

nðtÞ � V ðunðtÞÞ
� �

� 1

4
g0

Xþ1
n;m¼�1

m6¼n

J aðjn� mjÞðunðtÞ � umðtÞÞ2: ð88Þ
The equation of motion
oL

ounðtÞ
� d

dt
oL

o _unðtÞ
¼ 0 ð89Þ
for Lagrangian (88) has the form
d2

dt2
unðtÞ þ

oV ðunÞ
ounðtÞ

þ g0

Xþ1
n;m¼�1

m6¼n

J aðjn� mjÞ½umðtÞ � unðtÞ� ¼ 0: ð90Þ
A continuous limit of Eq. (90) can be defined by a transform operation from un(t) to uðx; tÞ [20,21]. First, define
un(t) as Fourier coefficients of some function ûðk; tÞ, k 2 ½�K=2;K=2�, i.e.
ûðt; kÞ ¼
Xþ1

n¼�1
unðtÞe�ikxn ¼FDfunðtÞg; ð91Þ
where xn = nDx, and Dx = 2p/K is a distance between nearest particles in the chain, and
unðtÞ ¼
1

K

Z þK=2

�K=2

dk ûðt; kÞeikxn ¼F�1
D fûðt; kÞg: ð92Þ
Secondly, in the limit Dx! 0 (K!1) replace unðtÞ ¼ ð2p=KÞuðxn; tÞ ! uðx; tÞdx, and xn = nDx = 2pn/K! x.
In this limit, Eqs. (91), (92) are transformed into the integrals
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~uðt; kÞ ¼
Z þ1

�1
dxe�ikxuðt; xÞ ¼Ffuðt; xÞg ¼ lim

Dx!0
FDfunðtÞg; ð93Þ

uðt; xÞ ¼ 1

2p

Z þ1

�1
dkeikx~uðt; kÞ ¼F�1f~uðt; kÞg ¼ lim

Dx!0
F�1

D fûðt; kÞg: ð94Þ
Applying (91) to (90) and performing the limit (93), we obtain
o2uðt; xÞ
ot2

þ ga

oauðt; xÞ
ojxja þ oV ðuÞ

ouðt; xÞ ¼ 0 ð0 < b < 2; 1 < a < 2Þ; ð95Þ
where
ga ¼ 2g0ðDxÞaCð�aÞ cos
pa
2

� �
ð96Þ
is the renormalized constant. Eq. (95) were considered in [20,21].
Consider a continuous transformation of time and field
t! t0; unðtÞ ! u0nðt0Þ; ð97Þ
which form a continuous group with generators X and Yn such that the infinitesimal transformations are
Dt ¼ Xda; Dun ¼ Y nda: ð98Þ
The corresponding Noether’s current is
J ¼
Xþ1

n¼�1

oL

o _unðtÞ
Y n � hX ; ð99Þ
where
h ¼
Xþ1

n¼�1

oL

o _unðtÞ
_unðtÞ �L
is the energy. Then
J ¼
Xþ1

n¼�1

oL

o _unðtÞ
½Y n � X _unðtÞ� þLX : ð100Þ
The equation of conservation law is
d

dt
J ¼ 0: ð101Þ
In the next subsections, we consider examples of the conservation laws.

4.2. Homogeneity of time

The homogeneity of time means the invariance of action with respect to the transformation (compare to
(54))
t! t þ a; un ! un: ð102Þ
Its infinitesimal form is
Dt ¼ da; Dun ¼ 0 ð103Þ
with generators
X ¼ 1; Y n ¼ 0: ð104Þ
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Then the Noether’s current is
J t ¼ �h ¼ �
Xþ1

n¼�1

oL

o _unðtÞ
_unðtÞ þL ¼ �

Xþ1
n¼�1

_u2
nðtÞ þL

¼ �
Xþ1

n¼�1

1

2
_u2

nðtÞ �
Xþ1

n¼�1
V ðunðtÞÞ �

1

4
g0

Xþ1
n;m¼�1

m 6¼n

J aðjn� mjÞðunðtÞ � umðtÞÞ2 � �H ;
where H is the Hamiltonian. The conservation law dH/dt = 0 is in the continuous limit gives the equation
d

dt

Z 1

�1
dr

1

2
½otuðt; rÞ�2 þ V ðuðt; rÞÞ þ 1

2
ga; uðt; rÞ

oa

ojrja uðt; rÞ
� �

¼ d

dt

Z þ1

�1
drH ¼ 0; ð105Þ
where 1 < a < 2, and the density H of Hamiltonian (62) is introduced.
One can compare this equation with Eq. (65) for b = 1. Both results coincide if the boundary conditions
lim
r!�1

P ¼ 0 ð106Þ
is applied.

4.3. Translation invariance

For V(un) = 0, the action (85) is invariant with respect to the transformations
t! t; un ! un þ a; ð107Þ

or in the infinitesimal form
Dt ¼ 0; Dun ¼ da; ð108Þ

with the generators
X ¼ 0; Y n ¼ 1: ð109Þ

Then the Noether’s current is
J r ¼
Xþ1

n¼�1

oL

o _unðtÞ
¼
Xþ1

n¼�1
_unðtÞ � P ; ð110Þ
where P is the total momentum. The conservation law is dP/dt = 0.
The continuous limit of this conservation law gives the equation
d

dt

Z þ1

�1
drotuðt; rÞ ¼ 0: ð111Þ
Let us compare this equation with Eq. (81) that is derived for scalar field uðt; rÞ. Integration of (81) with
respect to coordinate r gives
ot

Z þ1

�1
drC

0 Db
t uðt; rÞ � ga

Z þ1

�1
dror

oa�1

ojrja�1
uðt; rÞ ¼ 0 ð1 < a < 2; 0 < b < 1Þ: ð112Þ
Then
ot

Z þ1

�1
drC

0 Db
t uðt; rÞ � ga

oa�1

ojrja�1
uðt; rÞ

 !þ1
�1

¼ 0: ð113Þ
As a result, Eq. (81) coincides with (111), for b = 1, if we use the boundary conditions
lim
r!�1

o
a�1

ojrja�1
uðt; rÞ ¼ 0: ð114Þ
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5. Fractional Hamilton’s equations

5.1. De Donder–Weyl Hamiltonian

The idea of variation of fields based on a manifestly covariant version of the Hamiltonian formalism in field
theory known in the calculus of variation of multiple integrals [36,37] has been proposed by Born and Weyl
[38]. The mathematical study of geometrical structures underlying the related aspects of the calculus of vari-
ations and classical field theory has been undertaken recently by many authors (see for example [37,39,40]).

The De Donder–Weyl Hamiltonian form of the field equations [36] are
oluðxÞ ¼ oH

opl
; olp

lðxÞ ¼ � oH

ou
; ð115Þ
where
pl ¼ oL

oðoluÞ ð116Þ
is called the multi-momenta, and
Hðu; plÞ ¼ ðoluÞpl �L ð117Þ
is called the De Donder–Weyl Hamiltonian density function, L ¼Lðu; oluÞ is Lagrangian density. These
equations are known to be equivalent to the Euler–Lagrange field equations if L is regular in the sense that
det
o

2L

oðoluÞoðoluÞ

� �
6¼ 0: ð118Þ
5.2. Hamilton’s equations of integer order

Let us consider Hamiltonian systems in the extended phase space of coordinates ðxl; u; plÞ. The evolution of
fields is defined by stationary states of the action functional
S½u; p� ¼
Z
½plolu�Hðu; pÞ�d2x; ð119Þ
where the Hamiltonian density H is defined by (117), both u and p are assumed to be independent functions of
x ¼ ðt; rÞ. In classical field theory, the evolution of the field u(x) is derived by finding the condition for which
the action integral (119) is stationary (a minimum or a saddle point). The action functional (119) can be rewrit-
ten as
S½u; p� ¼
Z

xl; ð120Þ
where
xl ¼ pldu�Hðu; pÞdxl: ð121Þ
is the Poincare–Cartan 1-form or the action 1-form.
The stationary action condition dS = 0 leads to
dxl ¼ 0: ð122Þ
Here the exterior derivative is
d ¼ ðdxmÞDxm þ ðduÞDu þ ðdpmÞDpm ; ð123Þ
where we put new notation for the derivatives
Dxm ¼ o

oxm
; Du ¼

o

ou
; Dpm ¼ o

opm
: ð124Þ
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The De Donder–Weyl Hamiltonian form of field equations in (122) can be obtained from the condition that
the derivative is exterior one. This condition is equivalent to the stationary action principle dS½u; p� ¼ 0. Then
Eq. (121) gives
dxl ¼ dðplduÞ � dðHdxlÞ
¼ ðDxmplÞdxm ^ duþ ðDup

lÞdu ^ duþ ðDpmplÞdpm ^ du� ðDxmHÞdxm ^ dxl � ðDuHÞdu ^ dxl

� ðDpmHÞdpm ^ dxl: ð125Þ
Using dp ^ dx = �dx ^ dp, and ðDxmHÞ, Dup = 0, we get
dx ¼ ðDxpþDuHÞdx ^ du� ðDppdu�DpHdxÞ ^ dp; ð126Þ
where the matrix form of the equation is used. The relation Dp p = 1 gives
dx ¼ ðDxpþDuHÞdx ^ du� ðDu�DpHdxÞ ^ dp: ð127Þ
From (122), we have
du�DpHdx ¼ 0; Dxp ¼ �DuH: ð128Þ
As the result, we obtain
ou
oxl
¼ DplH;

opl

oxl
¼ �DuH; ð129Þ
which are the well-known De Donder–Weyl Hamilton’s equations (115).

5.3. Fractional Hamilton’s equations

The fractional generalization of the form (121) can be defined [34,32] by
xðaÞ ¼ pDa
s u�Hðu; pÞda

s x: ð130Þ
It will be called the fractional Poincare–Cartan 1-form or simply the fractional action 1-form. We can consider
the fractional exterior derivative of the form (130), and use
daxðaÞ ¼ 0 ð131Þ
to obtain the fractional field equations. Here the fractional exterior derivative is
da ¼ da
s xmDa

xm þ da
s uDa

u þ da
s p

mDa
pm ; da

s x ¼ C�1ðaþ 1Þdaxa; ð132Þ
where Da
xm , Da

u, Da
pm can be fractional derivatives of different types [14]. For example, for xl 2 R2, such that

x ¼ ðt; rÞ, we use
Da
x ¼ ðCt0

Da0
t ;D

a1
r Þ;
where t0
CDa0

t is Caputo fractional derivative, and Da1
r is the Riesz derivative. Fractional differential forms have

been suggested in [34] and it is used to describe dynamical systems [32,35].
Then, by some transformations (see Appendix), one can obtain
daxðaÞ ¼ Da
xpþDa

uH
� �

da
s x ^ da

s u� p1�a

Cð2� aÞ d
a
s u�Da

pHda
s x

� �
^ da

s p: ð133Þ
Using (133) and (131), we get
p1�a

Cð2� aÞ d
a
s u�Da

pHda
s x ¼ 0; Da

xp ¼ �Da
uH: ð134Þ
For the case u = u(x),
da
s u ¼ da

s xDa
xu: ð135Þ
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As the result, we obtain
Da
xlu ¼ ðplÞa�1Cð2� aÞDa

plH; Da
xlpl ¼ �Da

uH: ð136Þ
These equations are the fractional generalization of De Donder–Weyl Hamilton’s equations (129).
As an example, we can consider
Hðu; pÞ ¼ 2� a
2
ðp0Þ2 � 2� a

2
ðp1Þ2 þ UðuÞ: ð137Þ
Using
Da
pmðplÞb ¼ Cðbþ 1Þ

Cðbþ 1� aÞ ðp
lÞb�adl

m ; ð138Þ
and C(z + 1) = zC(z), Eq. (136) gives
Da0
t u ¼ p0; Da1

r u ¼ �p1; ð139Þ
Da0

t p0 þDa1
t p1 ¼ �Dau

u UðuÞ: ð140Þ
After substitution of (139) into (140), we obtain
ðDa0
t Þ

2uðt; rÞ � ðDa1
r Þ

2uðt; rÞ þDau
u UðuÞ ¼ 0: ð141Þ
For a0 = a1 = au = 1, Eq. (141) is the usual wave equation
o2
t uðt; rÞ � o2

r uðt; rÞ þ oUðuÞ
ouðt; rÞ ¼ 0:
For U(u) = 0, Eq. (141) has the form
ðDa0
t Þ

2uðt; rÞ � ðDa1
r Þ

2uðt; rÞ ¼ 0: ð142Þ
The solution uðt; rÞ of this equation is a linear combination of the solutions u1ðt; rÞ and u2ðt; rÞ of the equations
Da0
t u1ðt; rÞ �Da1

r u1ðt; rÞ ¼ 0; Da0
t u2ðt; rÞ þDa1

r u2ðt; rÞ ¼ 0: ð143Þ
For a1 = 1, there exists a relation between the Dirac solutions and the fractional extension of D’Alembert
expression that is considered in [41].

Using the property
Da
xDa

xu ¼ D2a
x u; ð144Þ
and we get the fractional equation
D2a0
t u�D2a1

r uþDau
u UðuÞ ¼ 0: ð145Þ
For a special case,
UðuÞ ¼ m2 Cð2Þ
Cð2þ auÞ

u1þau : ð146Þ
Eq. (145) gives
D2a0
t uðt; rÞ �D2a1

r uðt; rÞ þ m2uðt; rÞ ¼ 0: ð147Þ
This is a fractional generalization of Klein–Gordon equation (see also [20,30]). Note that Eq. (147) is not Lor-
entz invariant equations. To obtain fractional relativistic equations, the fractional power of D’Alembertian
should be used [42] (see also Section 28 of [11]). The causality principle [28,43] also should be taken into ac-
count. For
UðuÞ ¼ sinðuðt; rÞÞ; ð148Þ
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Eq. (145) gives
D2a0
t u�D2a1

r uþ sinðuþ aup=2Þ ¼ 0: ð149Þ
This equation is fractional sine-Gordon equation that was considered in [20] for a0 = 1 and au = 2.

6. Conclusion

Exploiting a variational principle to obtain fractional dynamics seems to be a fairly powerful tool that per-
mits a universal consideration of situations with fractal time and space. In this paper, we have demonstrate it
by deriving different equations of using generalized Noether’s theorem. Such equations are similar to the reg-
ular conservation laws, although the presence of fractional time derivatives reflects a dissipation. Similar var-
iation of action can be used to derive Hamiltonian type equations although the situation here is not uniquely
defined and some freedom of choosing the differential action 1-form leaves different possibilities.

In fact the introduction of Hamiltonian type Eqs. (136) needs a more transparent discussion. It is known
that Hamiltonian description of systems can be constructed even for the case of presence of dissipation if one
use fractional derivatives (see for example [29,30] and references therein) or interaction of the system with ran-
dom forces (environment [44] or stochastic processes [31,45]). Nevertheless, such unusual construction of gen-
eralized Hamiltonian type equations doesn’t mean the existence of usual preserving variables. Instead, one
arrive to some generalized ‘‘conservation laws’’ in the form
otqþ divJ ¼ 0; ð150Þ
where q and J are defined through the equations with long-range interaction and long-term memory. Eq. (150)
has a meaning of conservation of some flow, but it does not imply a unique interpretation depending on the
type of the problem, boundary–initial conditions, performed limits in its derivations, etc. The same can be
mentioned about the generalized Hamiltonian type Eq. (136). We consider them more as a possible formal
tool since no specific application is introduced.
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Appendix

To prove the proposition (133), we use the rule
Da
xðfgÞ ¼

X1
s¼0

a

s

� �
ðDa�s

x f Þ o
sg

oxs
;

and the relation [14]
o
s

oxs
½da

s x� ¼ 0 ðs P 1Þ
for integer s, where
a

k

� �
¼ ð�1Þk�1aCðk � aÞ

Cð1� aÞCðk þ 1Þ :
For example, we have
da Alda
s xl

� �
¼
X1
s¼0

da
s xm ^

a

s

� �
ðDa�s

xm AlÞ
o

s

oðxmÞs da
s xl ¼ da

s xm ^ da
s xl a

0

� �
ðDa

xmAlÞ ¼ Da
xmAl

	 

da

s xm ^ da
s xl:
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As a result,
daxðaÞ ¼ daðpda
s uÞ � daðHda

s xÞ
¼ ðDa

xpÞd
a
s x ^ da

s uþ ðDa
upÞd

a
s u ^ da

s uþ ðDa
ppÞd

a
s p ^ da

s u� ðDa
xHÞd

a
s x ^ da

s x� ðDa
uHÞd

a
s u ^ da

s x

� ðDa
pHÞd

a
s p ^ da

s x: ð151Þ
Here Da
x0 ¼ C

t0
Da0

t is Caputo fractional derivative, and Da
x1 ¼ o

a=ojrja is the Riesz fractional derivative [14]. Using
da
s p ^ da

s x ¼ �da
s x ^ da

s p
and DxHðu; pÞ ¼ 0, Da
up ¼ 0 for Riesz and Caputo derivatives, we can rewrite Eq. (151) in the form
daxðaÞ ¼ Da
xpþDa

uH
� �

da
s x ^ da

s u� ðDa
ppÞd

a
s u� ðDa

pHÞd
a
s x

� �
^ da

s p: ð152Þ
Substitution of
Da
pp ¼

p1�a

Cð2� aÞ ; ð153Þ
into Eq. (152) gives (133).
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