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Abstract

Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of sys-
tems with long-range interaction and long-term memory function, we consider two different applications of the action prin-
ciple: generalized Noether’s theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the
form of continuity equations that consist of fractional time-space derivatives. Among applications of these results, we con-
sider a chain of coupled oscillators with a power-wise memory function and power-wise interaction between oscillators. In
the second case, we consider an example of fractional differential action 1-form and find the corresponding Hamiltonian
type equations from the closed condition of the form.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Different physical phenomena such as anomalous transport or random walk with infinite moments [1,2],
dynamics of porous media [3,4], continuous time random walk [5-7], chaotic dynamics [8] (see also reviews
[9,10]) can be described by equations with fractional integro-differentiation. Despite of fairly deep and com-
prehensive results in fractional calculus (see [11-14]) a possibility of their applications to physics needs to
develop specific physical tools such as extension of fractional calculus to the areas as multi-dimension
[11,17], multi-scaling [15,16], variational principles [18,19].

In this paper, we concentrate on two problems important for numerous physical applications: conservation
laws and Hamiltonian type equations, both obtained from the corresponding fractional action principles.
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In Section 2, we derive the Noether’s theorem for a Lagrangian that includes non-local space—time densities.
The Noether’s theorem was also discussed in [23,24]. Our new derivation shows in an explicit way how frac-
tional derivative in time emerges from the specific type of the memory function, and how fractional derivative
in space is related to a specific long-distance potential of interaction (Section 3.) In Section 4, these results are
applied to a chain of nonlinear oscillators that is a subject of great interest in statistics and dynamics [25,26].
Finally, at Section 5, we derive a specific case of fractional Hamilton’s equations. Different steps in this direc-
tion were performed in [29-31]. We consider the Lagrangian density as a functional without fractional deriv-
atives but, instead, the differential 1-form has fractional differentials. Some examples are given for this type of
systems.

The main feature of this paper is the consideration of fractional type differentials or derivatives in both
space—time coordinates.

2. Noether’s theorem for long-range interaction and memory
2.1. Action and Lagrangian functionals

Let us consider the action functional
= [ & [ Eruto), ut),eute) 2ulr), (1)
R R

where x = (¢,7), t is time, r is coordinate, and y = (¢,7), Ou(x) = (Qu(¢,7),0,u(t,r)). The integration is carried
out over a region R of the two-dimensional space R? to which x belong. The field u(x) is defined in the region R
of R?. We assume that u(x) has partial derivatives

Qu(t,r) Qu(t,r)
o 0 =T

which are smooth functions with respect to time and coordinate. Here % (u(x), u(y), 0u(x), 0u(y)) is generalized
density of Lagrangian. If

2 (u(x), u(y), 0u(x), 0u(y)) = & (u(x), du(x))8(x - y), (2)

then we have the usual action functional
= / d*x.% (u(x), du(x)).
R

The variation of the action (1) is

S[u, k] = /R & /R d@(aii )h(x)+%6uh(x)+ oL hiy 4+ 2L auh(y)>, 3)

where u=0,1, 9, = 0/0x" and
L = L(u(x),u(y), du(x), ou(y))

and A(x) = du(x) is the variation of the field u. The variation (3) can be presented as

S[u, ] = /d2 /d2 ( ) + %aﬂh(x)), (4)
where

Zs = Z(u(x),u(y), 0u(x),0u(y)) + L (u(y), u(x), du(y), du(x)).

We can define the functional

Lix,u,0u] = /dzygs, (5)

Oou(x) =
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which will be called the Lagrangian functional. For (2), the functional (5) is equal to the usual Lagrangian
density % (u, Ou).
Using notations

OL[x,u,0u] , 0% OL[x,u,0u] , 0%
Su(x) / dy ulx)’ d(0u) / dy 0@u(x))’ (6)

the variation (4) is

3Su, h] —/Rd ( e h(x) + 50,u() 0,h( )). (7)

The structure of (7) is non-local, i.e., it includes, through (5) and & a possibility of the long-term memory and
long-range interaction. Let us derive the generalization of the Noether’s theorem for this case in the way ana-
logical to the local case (2).

2.2. Equations of motion

First, we separate the variation that is linked in the variation of coordinates
X — XM= x4 (8)
and the variation caused by a change of the form of u,
u(x) — o' (x) = u(x) + du(x).
The variation A(x) = du(x) of u(x) that is not due to the variation in coordinates is called local. The total var-
iation is
Au(x) = v/ (x') — u(x) = du(x) + (Ou/0x")dx" 9)

in the first approximation with respect to ox. Let us consider the variation of (1) as
SS[u,h]:/d2 'LIx' ', d'u /dexu@u (10)
R

The elements of the two-dimensional volume in new and old coordinates are related through the formula
&’ = J(x /x)d*x,

where J(x'/x) = det|0x'#/0x"| is the Jacobian of the transformation. Using the well-known relation
det4 =exp Trin4, (11)

and the linear approximation
OxH
a v

we get
J(x'/x) = 14 0,(8x").

Here &/ is the Kronecker symbol.
For the variation (10), we get

= 8! +0,(8x"),

dL SL
8 = [ d®x(8L + L3, (8x" ? Su G 0, (L3x" 12
Sl = [ Ex(6L +10,(600) = [ (Gt 52500 0,15 ). (12)
where the variations of L are defined in (6). Using 6(0,u) = 0,(6u), and

oL oL oL
——0,0u =0, ———0u ) —0 du,
a(au”) ! ! (S(au”) ) H(S(a# ))
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we can rewrite (12) as

oL dL dL
_ 2 (98 2 Lx* .
3S[u, h] /Rdx<6u 6#6(auu)>8u+/}3dx6,,< ox +8(6Hu)8u> (13)
The Gauss theorem gives
SL OL
d*x0 (LSx” + 5u> = / ds <L6x" + 8u>. 14
/R ! S(auu) OR . 8<aﬂu) ( )

We assume that at the boundary of the domain of integration the function u(x) is selected in a definite man-
ner (the boundary condition). Then stationary (a minimum or a saddle point) values of S[u] from variational
equations 0S[u, h] = 0 with

[Sulpp = 0, [Ox]o, =0

at the boundary OR of the domain of integration, constitutes the necessary and sufficient condition for the real
evolution of the field, that is, that u = u(x) represents the true dynamics under the given boundary conditions.
The stationary action principle gives

OL[x, u, Ou] OL[x, u, Oul

u) B (15)

where the variations of L are defined in (6). This equation is the Euler-Lagrange equation for Lagrangian
functional L[x, u, Ou].
Let us consider three special cases of Eq. (15).

(1) The absence of the memory and long-range interaction means that
Z(u(x),u(y), u(x), du(y)) = £ (u(x), 0u(x))8(x — y).
Then (15) gives the usual Euler-Lagrange equation

0% (u, 0u) 0% (u, Ou)

e O B@al) (16)

(2) If the generalized Lagrangian density is
2 (u(x), u(y), 0u(x), du(y)) = £ (u(x), du(x))er (D, r)d(x — y),

where

(D, r) I (0<D<1

V) =
1 ) F(D)
for a medium distributed on R' with the fractional Hausdorff dimension D, then Eq. (15) has the form
0% (u, Ou) 0% (u, 0u)

D,r)————-—-120 D,r)———=] =0. 1

o0 5 =040 S "

This is Euler-Lagrange equation for the field u(x) = u(z, ») in fractal medium. Examples of the field (wave)
equations for fractal medium string and fractional hydrodynamics are considered in [33]. For example,

ZL(u(x),0u(x)) = %(G,u(t, r))2 - %Uz(aru(t, r))z,

leads to the equation
c1(D, 1) u(t, r) — v°0,(c1 (D, r)d,u(t,r)) = 0,

that describes the propagation waves in fractal medium.
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(3) Consider the action functional

u] = /R dzx/R d2y<é6tu(x)go(x,y)ayu(J’) - %@u(x)gl (x,y)@,./u(y) — V(u(x)7u(y))>’ (18)

where the kernels g,(x,y) and g, (x,y) are responsible for non-local time-coordinates dynamics and V is
non-local interaction potential. Then the Lagrangian functional (5) is

Ll 0,00 = | &y (FO0K5.0)8005) = S8 (0 )03) — Ulula) ) ), (19)

where

Ko(x,y) = 5180(x, ) + & (v, X)),

KI(X,)/) = (20)

U (u(x), u(y

[g1(x,¥) + & (v, %)],
) = V(ux),u(y) +V(uy),u(x)).

| = N =

~

Assume that
U(u(x),u(y)) = Ulu(x))8(x — y).
In this case, the Euler—Lagrange functional Eq. (15) has the form (see also [22])

[ vkt ot - [ @agipa) + G <o o)

It is an integro-differential equation, which allows us to derive field equations for different cases of the kernels
Ko(x,y) and K (x,y).

In the absence of memory and for local interaction the kernels (20) are defined at the only instant 7 and
point 7, i.e.,

Ko(x,y) = go8(x — ), Ki(x,y) =g8(x—y)
with some constants gy and g;. Then Eq. (21) gives

oU (u(t,r))
2 2 ’ —
gOatu(tvr) glaru(tvr)+ Gu(nr) =0

For example gy = g; = 1, when
U(u(t,r)) = —cosu(t,r),
we get the sine-Gordon equation

O%u(t,r) — cu(t, r) + sinu(t,r) = 0. (22)

2.3. Noether’s current

Let us derive the Noether’s current by using the action variation (13).
The second integral of (13) can be presented as

oL
/ d’x0, <L8x“ 8u> / dzxéﬂ( [su + (0,u)dx"] — (0yu) — Sﬁ‘L} 8x"). (23)
X 8(0,u)
Using the total variation (9), Eq. (23), and the energy-momentum tensor
L
0 = 0 (0yu) — O''L, (24)

3(0,u)
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the variation (13) yields

2 (3L 8L /2 S
Slu, h] = /d (u 0, 5@, )8 + [ dx0, S(GHu)Au 0ox" |. (25)

Let us consider a continuous (topological) group of coordinate transformation x — x’ = x'(x,a), and let the
field function u = u(x) admits the representation of this group:

x—x, ulx) —dX). (26)
The invariance of functional S[u] with respect to (26) means that

/dzx’L[x',u’,au’/ax'] = /dzxL[x,u,au/ax].
R R

The transformation (26) constitutes a group. Therefore, infinitesimal forms of transformations (26) are

Ax' =X18a’, Au=7Y0a" (v=0,1, s=1,...,m), (27)
where X} and Y are the generators of the group of transformation correspondingly in the coordinate and the
field representations. The index s = 1,...,m is defined by the representation of the group.

For simple examples of transformation of the coordinate, time or scalar field, we have
Ax' =X"8a (v=0,1), (28)
Au = Yéa. (29)

Noether’s theorem states that every continuous transformation of coordinate (28) and field function (29),
which ensures that the variation of the action is zero admits a conservation law in the form of a continuity
equation [27,28]. Substitution of (28), (29), and (15) into (25) gives

S[u, h] = / d*x0 ( Y — 95X"> Sa. (30)
3(0,u)
In view of the fact that the variation of the parameter, da, is arbitrary, from (30) we get the conservation law
0,J" =0, (31)
where
= (Ziu) Y — 0 (32)

is the Noether’s currents and 6/ is defined in (24). Eq. (31) means that there exists conservation law. Non-triv-
iality of Eqs. (31) and (32) is that L and ¢/ have non-local interaction and memory.

3. Application of the Noether’s theorem for long-range interaction and long-term memory
3.1. Lagrangian functional and energy—momentum tensor

For 1 =0,1, x° =1, and x' = r, the Euler—Lagrange functional Eq. (15) is

OL[x,u,0u,du] O SL[x,u,du,du] 3 SL[x,u au]

u) o s@a() o 5(6u) (33)

The time and space variables in action can be separated to consider the field with power-law memory and
long-range interaction. Let Ky(x,y) and K;(x,y) have the form

Ko(x,y) = 6(r — ) A o(2,7), (34)
Ki(x,y) =08(t = 1) A 1 (r, 1), (35)
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and
Ulu(x),u(y)) = Ulu(x))d(x — »), (36)

where x = (¢,r), and y = (¢,#). Then the Lagrangian functional is
1 1
Llx,u, 0,u,0,u] = 3 /dt/,%fo(t, )0udyu — 3 /dr'%l(r, ¥)0,udpu — U(u). (37)

To present the long-term memory and long-range interaction, consider the kernels #"y(¢,7) and ", (r,7’) in
the power-law forms

/ / —& 1
A = \(r—7|) = 1 2
1) (=D cos(na/2)I'(2 = a) | — | (I <o<2) (38)
and
M(t—1), 0<t <t
Ho(t, 1) = 39
o(t,) {O, >t <0, (39)
with
M(A—1) = ! ! 0<p<l (40)
/ r(=g) -y '
Then the variational derivatives of Lagrangian functional are
oL oU (u(t,r))
Dl i\ A2 41
du du(t,r) ’ (41)
oL _ CDPu(e,r) (0<p<1) (42)
S(Qu) 0T ’
3L GA
——=—g——u(t,r) (l<a<?2), 43
S = Sa e | ) #3)
where {DF is Caputo derivative [14,12] defined by
1 ! de "u(z,r)
CDﬁ t = / ’ -1 .
0 tu( 7r) I—v(n _ ﬂ) 0 (t _ _C)ﬂ*th ot (}’l < ﬁ < n)
Substitution of (41)—(43) into (33) gives the fractional field Euler-Lagrange equation
0" U (u(t,r))
cphrt —g=— ——=0 (1 2,0 1). 44
0=t M(t,l") ga|r|o¢u(t7r)+ Gu(t,r) ( <a<az, <ﬁ< ) ( )
For . =2 and f =1, Eq. (44) is the usual field equation
oU (u(t,r))
GR — g0’ —2=0. 4
cu(t,r) — gou(t,r) + But, ) 0 (45)
For the potential U(u(t,7)) = —cosu(t,r), Eq. (45) gives the sine-Gordon equation,
Su(t,r) — Qou(t,r) +sinu(t,r) = 0, (46)
and Eq. (44) is a spatio-temporal fractional sine-Gordon equation
olu — Opu+sinu =0, (47)

where we used for abbreviation simplified notation for fractional derivatives. For the case § = 2, the equation
was obtained in [20].
The energy—-momentum tensor ¢, can be presented in the form

0 = 05,, + 4, (48)
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where the first term is the diagonal part

dL oL
0=0)+0 =<~ (0 d 2L = : 49
b+ 08 = gy ) + gy (00 2L = Ulu(tr) (49)
This represents a pressure-like quantity. The second term in the right hand side of (48) is a non-diagonal of ¢/
dL dL
M= Ou) — —— (0,u)d, 50
% = 5.0 O ~ 5. 20 (50)
where
=1, =0, (51)
= oL ©u) = [[Dlu(t,r)]d,ult,r) (52)
1 S(atu) r 0t B r ) )
5L o
b= 0 ———u(t,r) | Qu(t,r). 53
TO 5(6,1/{)( fu) 8 a‘rlz,lu( ,V)‘| tu( ,I”) ( )

For r € R? the spatial components of 7#
quantity, normal stress.

represent shear stress tensor. The value 0 represents a pressure-like

Vo

3.2. Homogeneity in time

The homogeneity in time means invariance of action with respect to the transformation
t—t=t+a, r—r, u—u (54)

Then the infinitesimal transformations are

Ax* =8jda, Au=0 (u=0,1) (55)
with the generators
Xt=8), Y=0 (u=0,1). (56)
The Noether’s current has two components
T (%!Lu)au - 5gL> (L=0,1), (57)
Using x” =7, and x' = r, we get the continuity equation
0" +0,J' =0, (58)
where
J' =~ (5 oL (Ou) —L> = —Qu(t,r)Dlu(t,r) — L)
(Oru)
- 1@ o !
=— <§ w(t, r)o Dlu(t,r) + 2g6 u(t,r) —— e cu(t,r) + U) (59)
and
o1
Ji=— % (Ous) = gou(t,r) GTrI“ u(t, ). (60)

As a result, the continuity equation is

1 aoﬁ—l a%—l
s _
6,(26,u0D u+g26 ua| = u+U> 0, (g@,ua| = : ) =0, (61)
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where u = u(t r). Here
o—1

H = 6tu0Dﬂu += ga u——u+U (62)

‘ |<x 1
is a fractional generalization of density of energy (density of Hamiltonian), and
o—1
P = —gOu———u (63)
0lrf
is a fractional generalization of density of momentum. For the case « = 2 and = 1, we obtain the well-known
relations [28]:

1 1
A= ()’ + 5 g@u)}’ +U, 2P =—gdudu. (64)
The continuity Eq. (61) can be presented in an usual form of the conservation of energy
O, H +0,2=0 (65)

with the fractional generalizations of the energy and momentum given by (62) and (63).
3.3. Homogeneity of space

The homogeneity of space means invariance of action with respect to transformations
r—r=r+a t—t u—u (66)

The corresponding infinitesimal transformations are presented by

Ax' = 8da, Au=0 (67)
with the generators
Xt=3' Y =0. (68)
Then the Noether’s current has the following two components
- < OL (o) - 6’1‘L> (=0,1). (69)
S(Gﬂ“)

Using x° = 7, and x' = r, we get the continuity equation that corresponds to the homogeneity of one-dimen-
sional space

0J° +0,.J' =0, (70)
where
J'=— oL (0,u) = —,u(t,r)SDPu(t,r) (71)
6(6[14) r r b 0 t ’ )
and
8L !
Jh=— Ou)+L=g0u(t,r)——u(t,r)+L
o () + L = 0l ) ()
1 o—1
= Eé,u(t,r)ngu(t, r)+ ga u(t,r) o —u(t,r) - U. (72)
r
As a result, the continuity Eq. (70) is
1 1 G
—0,(8,u§ Dl'u) + 9, s 0uS D'u + zgdu——u—U | =0 (73)
2 2 olr*

that can be interpreted as the momentum conservation law in the case of fractional dynamics.
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For =1 and o =2, Eq. (73) gives

Note that, in general, for integer and fractional values of o and f3, J¢ # J, and the energy-momentum tensor
0" is not a symmetric with respect to u and v.

3.4. Field translation invariance

For the case U(u) =0, the action (18) is invariant with respect to transformations

L

ot =xt u—u+ta. (75)

The infinitesimal transformations are presented as

Axt =0, Au=da (76)
with the generators
Xt=0, Y=1. (77)
The Noether’s current
SL
Jt=_—_—""_ =1.2 78
s H=12) (78)
has components
oo Dlu(t,r) (0<p<1) (79)
d(Qu) T ’
SL o'
J' = = u(t,r) (1<a<?2). (80)

3(0,u) _ga\r|“*‘
As a result, the continuity equation
0" =0J° +0.J' =0

has the form

o—1

oS DPu(t,r) fgarwu(t,r) =0 (l<a<2, 0<f<]). (81)
r

For =2 and =1, we get
O%u(t,r) — gdu(t,r) = 0, (82)

which is the usual field Eq. (45) for U(u) = 0.
Note that [14]
0 CD/f ¢ — CD1+/)’ ¢ -
1 tu(7r) 0t M(,V)+F(1_ﬁ)
To have the relation d,$ D'u(t,r) = §D}"Pu(t,r), the initial conditions d,u(0,r) = 0 should be applied. In gen-
eral, Eq. (81) cannot be presented as

ou(0,r). (83)

o

SD}*ﬁu(t,r)—gaa_rF‘u(m)zo (I<a<2, 0<p<l), (54

which is the fractional field Eq. (44) for U(u) = 0.
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This shows that the conservation law (81), in general, does not coincide with the field equation as it is hap-
pened for integer derivatives, unless, we use special boundary and initial conditions.

4. Chain with long-range interaction

It was shown in [20,21] how the long-range interaction between different oscillators can be described by the
fractional differential equations in the continuous medium limit. In this section, the Noether’s theorem will be
applied to such kind of systems.

4.1. Equation of motion and Noether’s currents

Let us define the action as

Sl = [ e 3 50 - v = > vl | (55)
m#n

where u,, is displacement of the nth oscillator from the equilibrium,

Ul(uy(t) = %goJaﬂ" — m|) (u, () — un (1)), (86)
and
o(ln = m]) _W (2> 0). (87)

The Lagrangian of the chain is

+00 1 ) 1 +00
7= 3 [0 - V)] - o0 3 Sln =m0 - w0 (59)
e Yi’n;éi’l
The equation of motion
0¥ d o0&
Ou,(r)  dr di, (1) 0 (89)
for Lagrangian (88) has the form
d’ or( u,,
@ , (1) + + 8o Z — m|)[un(t) — u,(2)] = 0. (90)
m#n

A continuous limit of Eq. (90) can be defined by a transform operation from u,(¢) to u(x, t) [20,21]. First, define
u,(t) as Fourier coefficients of some function u(k,t), k € [-K/2,K /2], i.e.

+00

it k) = > uy ()™ = Fa{u, (1)}, (91)

n=—00

where x,, = nAx, and Ax = 2n/K is a distance between nearest particles in the chain, and

1 +K/2 )
un(t) = o / dk it K)ek = 73 {a(t, k) (92)
K J_kp
Secondly, in the limit Ax — 0 (K — oo) replace u,(¢t) = (2n/K)u(x,,t) — u(x,¢)dx, and x,, = nAx = 2an/K — x.
In this limit, Egs. (91), (92) are transformed into the integrals
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ﬁ@k%z/iwdm“%UJ):QWMLM}:gg%ﬁ@@Aﬁh (93)
u(t,x) = % / - dke®au(t, k) = 7 Yau(t,k)} = Jim F Mt k)} (94)

Applying (91) to (90) and performing the limit (93), we obtain
o ult Tult oV
u(tx) | Qultx) | V()

=0 (0 2,1 2 95
o2 & ToN T u(t) 0<p<2 1<a<2), ©3)
where
o oL
g = 28(A%)"T (—) cos () (9)

is the renormalized constant. Eq. (95) were considered in [20,21].
Consider a continuous transformation of time and field

t—t, u(t) = u(t), (97)
which form a continuous group with generators X and Y,, such that the infinitesimal transformations are
At = X8a, Au,=Y,da. (98)

The corresponding Noether’s current is

+00 ag
J = — Y, —0X, 99
2 w0 (99)
where
+00 ag
0= 2 iy
is the energy. Then
+00 ag
J = —— Y, — X, (¢ FX. 100
g;%mﬂ it (1)] + (100)
The equation of conservation law is
d
—J =0. 101
i (101)

In the next subsections, we consider examples of the conservation laws.
4.2. Homogeneity of time

The homogeneity of time means the invariance of action with respect to the transformation (compare to
(54))
t—t+a, u, — u,. (102)

Its infinitesimal form is

At =da, Au,=0 (103)
with generators

X=1 Y,=0. (104)
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Then the Noether’s current is

+00 ag ) +00 >

. O (t =
== i %”5(0 - i V(ua(1)) — %go i J(ln = m)) (un(t) — un(6))* = —H,
n=—00 n=—00 n,n;;é;oo

where H is the Hamiltonian. The conservation law dH/dz = 0 is in the continuous limit gives the equation

% /Oo dr B [Q.ul(t, r)]2 + V(u(t,r)) + %gz,u( )6?7 } = / dro# =0, (105)

—00

where 1 <o <2, and the density # of Hamiltonian (62) is introduced.
One can compare this equation with Eq. (65) for = 1. Both results coincide if the boundary conditions

lim 2 =0 (106)

r—+oo

is applied.
4.3. Translation invariance

For V(u,) =0, the action (895) is invariant with respect to the transformations
t—t, u, —u,+a, (107)
or in the infinitesimal form
At =0, Au, = da, (108)
with the generators
X=0, Y,=1 (109)
Then the Noether’s current is

J,,:;Z%: S i) =P, (110)

n=—00

where P is the total momentum. The conservation law is dP/d¢ = 0.
The continuous limit of this conservation law gives the equation

d +00
@ / drou(t,r) = 0. (111)

Let us compare this equation with Eq. (81) that is derived for scalar field u(z,7). Integration of (81) with
respect to coordinate r gives

6/ dr§DPu(t,r) / dro, ——=u(t,r) =0 (1<a<2,0<p<1). (112)

Then
+00

+00 a—1
) / Dbt r) — g, (%u(t,r)) _o. (113)
- r

o0
—00

As a result, Eq. (81) coincides with (111), for =1, if we use the boundary conditions

o—1

u(t,r) =0. (114)

m U
r—+oo a|r‘
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5. Fractional Hamilton’s equations
5.1. De Donder—Weyl Hamiltonian

The idea of variation of fields based on a manifestly covariant version of the Hamiltonian formalism in field
theory known in the calculus of variation of multiple integrals [36,37] has been proposed by Born and Weyl
[38]. The mathematical study of geometrical structures underlying the related aspects of the calculus of vari-
ations and classical field theory has been undertaken recently by many authors (see for example [37,39,40]).

The De Donder—-Weyl Hamiltonian form of the field equations [36] are

oH , oH

@Hu(x) = @, aHTCI (x) = —a, (1 15)

where
0¥
n_ 11

™ = @) (16)
1s called the multi-momenta, and

H(u, ") = Qu)n* — & (117)

is called the De Donder—Weyl Hamiltonian density function, ¥ = % (u,0,u) is Lagrangian density. These
equations are known to be equivalent to the Euler-Lagrange field equations if % is regular in the sense that

A
det [m} #0. (118)

5.2. Hamilton’s equations of integer order

Let us consider Hamiltonian systems in the extended phase space of coordinates (x*, u, 7). The evolution of
fields is defined by stationary states of the action functional

Slu,n) = /[n“aﬂu — A (u,m)|d%x, (119)

where the Hamiltonian density . is defined by (117), both u and = are assumed to be independent functions of
x = (t,r). In classical field theory, the evolution of the field u(x) is derived by finding the condition for which
the action integral (119) is stationary (a minimum or a saddle point). The action functional (119) can be rewrit-
ten as

Sl = [ o, (120)
where
w, = n'du — A (u, 7)dx*. (121)

is the Poincare—Cartan 1-form or the action 1-form.
The stationary action condition S = 0 leads to

dw, =0. (122)
Here the exterior derivative is
d = (d&x")Dy + (du)D, + (dn")Dy, (123)
where we put new notation for the derivatives
0 0 0
Dx" = < Du = < Dn“ = . 124
Ox" Ou on (124)
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The De Donder—Weyl Hamiltonian form of field equations in (122) can be obtained from the condition that
the derivative is exterior one. This condition is equivalent to the stationary action principle 8S[u, 7] = 0. Then
Eq. (121) gives

dw, = d(n*du) — d(#dx")
= (Dpn")dx’ A du + (D,7*)du A du + (Dpn*)dn” A du — (D )dx" A dx* — (D, #)du A dx*
— (DpA)dr" A dxt. (125)

Using dn A dx = —dx A dz, and (D#), D,n =0, we get

dow = (D,n+ D, #)dx A du — (D,ndu — D, #dx) A dr, (126)
where the matrix form of the equation is used. The relation D, = =1 gives
dw = (D + D, #)dx A du — (Du — D, #dx) A dx. (127)
From (122), we have
du—D,#dx=0, Dm=-D,#. (128)
As the result, we obtain
Ou on*
a—xﬂ—Dnu%7 6_)(”_ —Du%7 (129)

which are the well-known De Donder—Weyl Hamilton’s equations (115).
5.3. Fractional Hamilton's equations

The fractional generalization of the form (121) can be defined [34,32] by
o(a) = nDu — A (u, m)d}x. (130)

It will be called the fractional Poincare—Cartan 1-form or simply the fractional action 1-form. We can consider
the fractional exterior derivative of the form (130), and use

d*w(x) =0 (131)
to obtain the fractional field equations. Here the fractional exterior derivative is

d* =d’x'D?, + duD! + d*n'D%,  dix =T""(a+ 1)d*x?, (132)
where D?,, D2, D’, can be fractional derivatives of different types [14]. For example, for x* € R?, such that

x = (t,r), we use
D} = (, D, D),
where ,,“D?® is Caputo fractional derivative, and D is the Riesz derivative. Fractional differential forms have

been suggested in [34] and it is used to describe dynamical systems [32,35].
Then, by some transformations (see Appendix), one can obtain

1—o

do(2) = [Din + DiA ] d% A diu — ﬁdﬁu — D d%| Ad'm. (133)
Using (133) and (131), we get
nl—a
—d'u —D*#d’x = Din = -D*7#. 134
F(z _ OC) dsu T dsx 0’ xTE u ( 3 )

For the case u = u(x),
diu = dxDlu. (135)
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As the result, we obtain

D%u = () 'I'(2 — 0)D%#, Dnt = —D'A. (136)

xH

These equations are the fractional generalization of De Donder—Weyl Hamilton’s equations (129).
As an example, we can consider

2—u 2—u

A (u, 1) = = (n°)* — 5 (n')* + U(u). (137)
Using
‘ r(p+1) -
D%, (n* B _ wyf—osp 1
and I'(z+ 1) =zI'(z), Eq. (136) gives
D*u=7’, D'u=-n', (139)
Dny + Df'ny = —D*U(u). (140)

After substitution of (139) into (140), we obtain
(D*)?u(t,r) — (D*)’u(t,r) + D*U(u) = 0. (141)

For a9 =0a; = o, =1, Eq. (141) is the usual wave equation
oU (u)
2 —_— 2 =
O,u(t,r) — QLu(t,r) + ) 0

For U(u) =0, Eq. (141) has the form

(D}")u(t,r) = (D) u(t,r) = 0. (142)
The solution u(¢, r) of this equation is a linear combination of the solutions u, (¢, ) and u, (¢, r) of the equations
D?uy(t,r) — DM uy(t,r) =0, Dfuy(t,r) + DXuy(t,r) = 0. (143)

For o; =1, there exists a relation between the Dirac solutions and the fractional extension of D’Alembert
expression that is considered in [41].
Using the property

D{Dju = D{u, (144)
and we get the fractional equation

D*u — D?u + D™ U(u) = 0. (145)
For a special case,
r(2)

2 140y,
Uu) =m 7]“(2—}—0(,,)” . (146)
Eq. (145) gives
Du(t,r) — D u(t,r) + m*u(t,r) = 0. (147)

This is a fractional generalization of Klein—-Gordon equation (see also [20,30]). Note that Eq. (147) is not Lor-
entz invariant equations. To obtain fractional relativistic equations, the fractional power of D’Alembertian
should be used [42] (see also Section 28 of [11]). The causality principle [28,43] also should be taken into ac-
count. For

U(u) = sin(u(t,r)), (148)
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Eq. (145) gives
Dy — Dy + sin(u + o,m/2) = 0. (149)

This equation is fractional sine-Gordon equation that was considered in [20] for a9 =1 and o,, = 2.
6. Conclusion

Exploiting a variational principle to obtain fractional dynamics seems to be a fairly powerful tool that per-
mits a universal consideration of situations with fractal time and space. In this paper, we have demonstrate it
by deriving different equations of using generalized Noether’s theorem. Such equations are similar to the reg-
ular conservation laws, although the presence of fractional time derivatives reflects a dissipation. Similar var-
iation of action can be used to derive Hamiltonian type equations although the situation here is not uniquely
defined and some freedom of choosing the differential action 1-form leaves different possibilities.

In fact the introduction of Hamiltonian type Eqs. (136) needs a more transparent discussion. It is known
that Hamiltonian description of systems can be constructed even for the case of presence of dissipation if one
use fractional derivatives (see for example [29,30] and references therein) or interaction of the system with ran-
dom forces (environment [44] or stochastic processes [31,45]). Nevertheless, such unusual construction of gen-
eralized Hamiltonian type equations doesn’t mean the existence of usual preserving variables. Instead, one
arrive to some generalized “‘conservation laws” in the form

0,p +div] =0, (150)

where p and J are defined through the equations with long-range interaction and long-term memory. Eq. (150)
has a meaning of conservation of some flow, but it does not imply a unique interpretation depending on the
type of the problem, boundary-initial conditions, performed limits in its derivations, etc. The same can be
mentioned about the generalized Hamiltonian type Eq. (136). We consider them more as a possible formal
tool since no specific application is introduced.
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Appendix

To prove the proposition (133), we use the rule
) o0 o a\g
Dl — DO( s
e =3 ()N gs,
and the relation [14]
aé
x*
for integer s, where

<oc> B (=)'l (k — a)
k) T(—o)l(k+1)

\Y

[dix] =0 (s = 1)

For example, we have

S

“[4,d%x"] Zd“x‘ A ( > (D% 4,) 5 (iv)s It = d% A djx“(g)(Dj\‘A,l) — (DAA,)d%" A d2x.
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As a result,
d*w(a) = d*(ndju) — d*(#d}x)
= (DIn)dix Adiu+ (Din)diu A diu+ (Din)din A diu — (DIA)dix Adix — (Dl )dju A dix
— (D2A)din A d}x. (151)
Here D}, =  D;* is Caputo fractional derivative, and D}, = 0" /0|r|" is the Riesz fractional derivative [14]. Using
dimAdix = —dixNdin

and D, (u,n) = 0, Dn = 0 for Riesz and Caputo derivatives, we can rewrite Eq. (151) in the form

d*w(a) = [Din+ DiA |d%x A d2u — [(Din)diu — (DZA)d2x] A dim. (152)
Substitution of
1—o
. 0T
D"niil"(z—a)’ (153)

into Eq. (152) gives (133).
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