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Lattice model with long-range interaction of power-law type that is connected with differ-
ence of non-integer order is suggested. The continuous limit maps the equations of motion
of lattice particles into continuum equations with fractional Griinwald-Letnikov-Riesz
derivatives. The suggested continuum equations describe fractional generalizations of
the gradient and integral elasticity. The proposed type of long-range interaction allows
us to have united approach to describe of lattice models for the fractional gradient and
fractional integral elasticity. Additional important advantages of this approach are the
following: (1) It is possible to use this model of long-range interaction in numerical simu-
lations since this type of interactions and the Griinwald-Letnikov derivatives are defined
by generalized finite difference; (2) The suggested model of long-range interaction leads
to an equation containing the sum of the Griinwald-Letnikov derivatives, which is equal
the Riesz's derivative. This fact allows us to get particular analytical solutions of fractional
elasticity equations.
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1. Introduction

Discrete system of long-range interacting particles
serve as a model for numerous applications in mechanics
and physics (Dyson, 1969, 1971; Frohlich et al., 1978;
Nakano and Takahashi, 1994, 1995; Sousa, 2005; Campa
et al., 2009; Tarasov, 2006b; Tarasov and Zaslavsky,
2006; Laskin and Zaslavsky, 2006; Zaslavsky et al., 2007).
Long-range interactions are important type of interactions
for complex media with non-local properties (see refer-
ences in Tarasov, 2011a).

Using the fractional calculus (Samko et al., 1987; Kilbas
et al., 2006), we consider long-range interaction of a spe-
cial type to describe a fractional generalization of elasticity
theory. We transform the set of equations of motion of
coupled individual lattice particles into the equation of
non-local continuum that contains spatial derivatives of
non-integer orders. It allows us to consider different lattice
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models for generalization of elasticity theory by applying
methods of fractional calculus. The theory of fractional
derivatives and integrals has wide applications (Carpinteri
and Mainardi, 1997; Hilfer, 2000; Luo and Afraimovich,
2010; Klafter et al, 2011; Mainardi, 2010; Tarasov,
2011b; Uchaikin et al., 2013; Tarasov, 2011a, 2013) and
it is a powerful tool for the analysis of different nonlocal
continuum models with nonlocality of power-law type.
Non-local continuum mechanics has been treated with
two different approaches: the gradient models (weak
non-locality) and the integral models (strong non-locality).
The correspondent constitutive relations have the form

2
0j = Cyu(en £ [ Len),

where Gy is the elasticity tensor, &; and oy are the strain
and stress tensors, respectively. The additional parameter
I; is an internal length scale that can be defined by lattice
constant. The operator £ is the integral or differential
operator of integer order (Eringen and Edelen, 1972; Askes
et al., 2002, 2008; Askes and Sluys, 2002; Askes and Aifantis,
2011). Recently, the problems of non-local continuum are
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described by means of fractional calculus. Fractional mod-
els of integral non-local elasticity are considered in Lazo-
poulos (2006), Carpinteri et al. (2009, 2011), Sapora et al.
(2013), Cottone et al. (2009,) and Cornetti et al. In
fractional elasticity models, the operator £ is the integral
or differential operator of non-integer order. To generalize
continuum equations by using fractional calculus, we
should represent these equation through the dimension-
less coordinate variables. Therefore the coordinates
X, ¥, z, the vector r, the value r = |r|, and the parameter
ls2 are dimensionless in the suggested fractional models.

In this paper we consider one-dimensional lattice model
with long-range interactions of Griinwald-Letnikov-Riesz
type (Tarasov, 2011a). A feature of suggested long-range
interactions is that the interactions terms have the form
of fractional differences of non-integer orders. The first
advantage of this approach is based on the properties of
the Griinwald-Letnikov fractional derivative (Samko
et al., 1987; Kilbas et al., 2006). The suggested type of
long-range interaction of lattice particles allows us to have
united description of lattice models for the fractional gra-
dient and fractional integral elasticity that is characterized
by the non-locality of power-law type. The second
important advantage of suggested approach is the ability
to directly use the model of long-range interaction in
numerical simulations since this type of interactions and
the Griinwald-Letnikov derivatives are defined by general-
ized difference of non-integer order. We assume that the
suggested form of long-range interaction can be used for
different scheme of simulations in fractional gradient and
integral elasticity models.

There are some problems with application of the Griin-
wald-Letnikov derivatives, since there are currently very
limited number of analytical solutions for differential
equations with fractional Griinwald-Letnikov derivatives
in contrast to the equations with derivatives of Riemann-
Liouville, Caputo and Riesz types (Kilbas et al., 2006). We
note that the suggested model of long-range interaction
leads to an equation containing the sum of the Griin-
wald-Letnikov derivatives, which is equal the Riesz deriv-
ative. Using this connection, we derive some particular
analytical solutions (Kilbas et al., 2006) for fractional elas-
ticity equations with the Riesz derivatives of non-integer
orders.

2. Griinwald-Letnikov fractional derivatives and
integrals

2.1. Fractional differences of non-integer orders

The Griinwald-Letnikov derivatives have been intro-
duced by Griinwald in 1867 and independently by Letnikov
in 1868. Definition of the Griinwald-Letnikov fractional
derivatives are based on a generalization of the usual differ-
entiation of a function f(x) of integer order n of the forms

DIy ) = tim 4/

h—0

DIy ) = im Y/

h—0

where A} and V} are forward and backward finite differ-
ences of order n of a function f(x) with a step h and cen-
tered at the point x. The nth-order forward and backward
differences are respectively given by

g0 = Y- )t (n = ko) 0
k=0

Vi) = S (™) fix - k), 2

100 = 31 () ek 2

Note that

M) = (19" ) o

The difference of a fractional order « > 0 is defined by the
infinite series (see Section 20 in Samko et al., 1987)

Vif () kz:; < ) (x — kh), (4)

where the binomial coefficients are

oy I'(e+1)

k) Tk+1DT(a—k+1)
For h > 0, the difference (4) is called left-sided fractional dif-
ference, and for h < 0 it is called a right-sided fractional dif-
ference. We note that the series in (4) converges absolutely

and uniformly for every bounded function f(x) and o > 0.
For the fractional difference, the semigroup property

Vivif(x) = Vif(x),

(>0, §>0) (5)

is valid for any bounded function f(x) (see Property 2.29 in
Kilbas et al., 2006 page 121).

The Fourier transform of the fractional difference is gi-
ven by

F{Vif ()} (k) =

for any function f(x) € L;(R) (see Property in Kilbas et al.,
2006 page 121).

(1 — exp{ikh})*F{f(x)

2.2. Griinwald-Letnikov fractional derivatives

The definitions (1) and (2) are used to define the Griin-
wald-Letnikov fractional derivatives by replacing n € N in
by o > 0. The value h" is replaced by h*, while the finite dif-
ference V} is replaced by the difference V}, of a fractional
order o.

The left- and right-sided Griinwald-Letnikov deriva-
tives of order o > 0 are defined by

D2 f ) = Jim Y. ©)

Note that the Griinwald-Letnikov derivatives for integer
orders x =n € N is

“Di.f(x) = (-1)"Dy. (7)

We also note that these derivatives coincide with the
Marchaud fractional derivatives of order o > 0 for f(x) €
L,(R), 1<p<oo (see Theorem 20.4 in Samko et al,
1987). The properties of the Griinwald-Letnikov fractional
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derivatives is described in Section 20 of the book (Samko
et al.,, 1987). Then (6) can be represented by the Marchaud
fractional derivatives

/ f) - fxx2)
1_0( Zoz+l ’

if f(x) € L,(R), where 1 <p<1/exand 0 < a < 1.

DL f

2.3. Griinwald-Letnikov fractional integral

It is interesting that series (4) can be used for o < 0 (see
Section 20 in Samko et al., 1987) and Eq. (6) defines the
Griinwald-Letnikov fractional integral if

el <c@+Ix)", > lal. )

The existence of the Griinwald-Letnikov fractional inte-
gral means that we have a united definition of fractional
derivatives and integrals. It allows us to have a united ap-
proach to the fractional gradient and integral elasticity.

2.4. Commutativity and associativity of Griinwald-Letnikov
derivatives

In Ortigueira et al. (2012) has been showed that, for
analytic functions, the fractional derivatives of the Griin-
wald-Letnikov type have some nice and useful properties
and a semi-group structure. It is connected with the fact
that differences of fractional order satisfy the semigroup
property (5). Using the semi-group property

D, Dy, = Dy, (2>0, §>0). )

Ortigueira, Rivero, Trujillo proved (Ortigueira et al.,
2012) that the Griinwald-Letnikov derivatives are commu-
tative and associative operators. These properties are very
important to application in mechanics, but only a few
types of fractional derivatives have them. These properties
allow us to represent a single fractional derivative, which
appears in the equation of the lattice model, as a product
of derivatives, and thus get the fractional gradient and
integral elastic constitutive relations.

2.5. Griinwald-Letnikov-Riesz fractional derivative

We can define a fractional derivative of order o > 0 by

o Vif(x) + V% f(x)
D) = 2 cos(am/2) h—0+ ’ |h|* ' (19

This derivative coincide (see Section 20.1 in Samko
et al., 1987) with the Riesz fractional derivative *D of or-
der oo >0if o 1,2,3,..., i.e. we have the relation

SUDYf (x) = "DLf(x), (11)
where
"Df(x) = i

S 2T(1 oc)cos(om/Z)

A (12)

Therefore the fractional derivative (10) is called the
Griinwald-Letnikov-Riesz derivatives of order o >0
(¢#1,2,3,...)in Samko et al. (1987).

3. Lattice with linear nearest-neighbor interaction

Let us consider equations of motion for particles with
the nearest-neighbor interaction of the form
2

M S u(0) = KAfu(©) + Fa(0), (13)
where
A?um(t) = m:](f‘l)m+1 (un+m(t) + un—m(t))-

m=0
For these equations we can give the well-known state-

ment regarding the nearest-neighbor interaction (see for
example Maslov, 1976; Tarasov, 2006a,b).

Proposition 1. In the continuous limit the lattice equations
of motion (13) maps into the continuum equation

Fux,t)  , dux,t) 1
th - Ce Ox2 + Ef(xv t)7 (14)

with the mass density p = M/Ah, the Young’s modulus
E = Kh/A, the force density f(x,t) = F(x,t)/Ah, the cross-sec-
tion area of the medium A and the inter-particle distance h,
where

, E KR
Ce_E_W (15)

is a finite parameter.

Proof. To derive the equation for the field ii(k, t), we mul-
tiply Eq. (13) by exp(—iknAx), where Ax = h and summing
over n from —oo to +oo. Then

M Z oiknAx aau” K Z e"knAX[u 11— 2Up + Up_q]

n=—o0 n=-o00
+ Z e knAxE(q 1), (16)
n=—o00
The first term on the right-hand side of (16) is

Z e—lknAx

n=—o0

+00
_ 1knAx ) —1knAx —iknAx 5
Z e T Z e ;m S T

n=—o00
2 Z e—iknAxun

_ eikAx Z e—ikmAxum _

m=-—o0 n=—-oc

Up1 — zun + un—l)

+ e—1kAx Z e—tksAxus

1I<Ax (k t) 2u(k f) +e lkAX (k t)
= [e"‘A" + e % _1a(k, t) = 2(cos (kAx) — 1)i(k, t)

— _4sin’ ("g") (k, t).

Here we use the definition of ii(k, t) on [—ko/2, ko /2] by the
equation

+00

(k,t)y =" up(t) e™n = Fy{un(t)} (17)

n=—o0o
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and x, = nh, where h = 271/ky is distance between equilib-
rium positions of the lattice particles.
As a result, we have

v 32L(')(t’§ D _ K, (k) ik, £) + Fa{Fa(0)}, (18)
where
1, (kAw) — _dsin? (l%AX> (19)

For h = Ax — 0, the asymptotic behavior of the sine is
sin(kAx/2) ~ kAx/2. Then (19) can be represented by

Ja(kAX) ~ —(kAx)?.

Using the finite parameter C2 = Kh*/M, after division by
the cross-section area of the medium A and the inter-par-
ticle distance h, the transition to the limit h = Ax — 0 in
Eq. (18) gives

o*u(k,t)

T —C2 KTk, t) + %f{f(x, )}, (20)

where we use 0 < |C?| < oo. The inverse Fourier transform
F~1 of (20) has the form

PF Mk, t)}

- 1
— _c2r1q1? K a )
o Cr{kutk )+ f(x.0)

Then we can use the connection between second deriva-
tive and its Fourier transform in the form k* — —8%/9x2.
As a result, we obtain the continuum Eq. (14). O

As a result, we prove that Eq. (13) give the continuum
equation with derivatives of second order only.

4. Lattice with Griitnwald-Letnikov-Riesz long-range
interaction

In this section we describe the type of long-range inter-
action that is suggested in Tarasov (2011a, see Sec-
tion 8.19). Let us consider a lattice system of interacting
particles, whose displacements from the equilibrium are
un(t), where n € Z. We assume that the system is described
by the equations of motion

82
o
where g is the coupling constant for long-range interaction
that have the form

M — Un(t) + g B} (0)um(t) = Fa(t) = O, (21)

By (0)um(t) = D _ba(m) (Unim(t) + Un-m(t)) (22)

and the function b,(m) is

[N p— @3)
* I'm+)T(a-m+1)

This type of long-range interaction has been called the

Griinwald-Letnikov-Riesz interaction (see Section 8.19 in

Tarasov, 2011a). Let us give the main statement regarding

this interaction.

Proposition 2. In the limit h — 0 lattice equations (21) and
(22) with (23) give the continuum equation

P*u(x,t) 1
0[’2 + C(OC) GLRD?“(X'V t) - Ef(x-, t) = O)
(keR, o# £1,4£3,4£5,...), (24)
where
_ 2cos(am/2)gh”

N NCES I (25)

is a finite parameter, and

1
GLRpy» __ GL o GLy»
D= 2 cos(am/2) ("Dyy +Dy) (26)

is the Griinwald-Letnikov-Riesz fractional derivative of order
o, and u(x,t) is a smooth function such that u(nh,t) = u,(t).

Proof. We define smooth functions u(x, t) and F(x, t) such
that

u(nh,t) = un(t), F(nh,t) = Fy(t).
Then Eqgs. (21) and (22) with (23) can be represented as
ou(x,t) gh* =

10 8h mzob“(m)%(u(x+mh,t) + u(x— mh, 1))
1
- iFxn=o. (27)

After division by the cross-section area of the medium A
and the inter-particle distance h it is found that

2*u(x, t) C(o) o3 (-D)"T(a+1)
ot? * 2 cos(am/2) mzl"(oc -m+1HI'(m+1)

=0

Xu@+mh0;”@*mmﬂ—%ﬂ&ﬁ:0 (28)

with the mass density p = M/Ah, the force density
f(x,t) = F(x,t)/Ah, and C(«) is defined by (25). Using the
definitions of the left-sided and right-sided fractional dif-
ferences and the limit h — 0+, we obtain

o*u(x, t) N C() im Viu(x, t) + V¥ u(x, t)
ot? 2 cos(am/2) h-o |h|*

- % f(x,t) =0. (29)

Using the Griinwald-Letnikov-Riesz derivative (10), Eq.
(29) can be rewritten in the form (24). O

5. Fractional gradient and integral elasticity of
Griinwald-Letnikov-Riesz type

Let us consider a system of interacting particles, whose
displacements from the equilibrium are u,(t), where n € Z.
We assume that the system is described by the equations
of motion

O uy(b)

M
ot?

— KATUp(t) + gBM(@)un(t) — Fa(t) = 0. (30)

In the limit h — 0 Eq. (30) gives the continuous medium
equation
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ux,t) 5 dPu(x,t) Rz 1 B
6t2 - Ce X2 + C(“) Dx U(X, t) - Ef(& t) - 07
31)
where C? is defined by (15), C(«) is defined by (25), and
veR, a7 £1,4£3,4£5,....

Let us consider Eq. (31) for two cases: « > 2 and
O<a<?2.

For o > 2, we can use @D}, = +D}, and the semi-group
property (9), to represent the Griinwald-Letnikov deriva-
tives in the form

D}, =D, “D;*Dy (x> 2). (32)
Therefore, we have
D, + D} = D (%D}, + D) D). (33)
As a result, we can use
GLRDOC — D] GLRDOHZ D1 (34)
X X X X
in order to rewrite Eq. (31) in the form
2
% — C2D%u(x,t) + C(0) D SRD* 2 Dlu(x, t)
-l =0, 35)

The correspondent constitutive relation for the continuum
equation (35) can be derived by the momentum balance
equation

ou(x,t
p 28D~ blot) + fix.t (36)
and the strain-displacement relation for small
deformations
&(x) = Dlu(x). (37)

The commutative and associative properties of fractional
Griinwald-Letnikov derivative and relation (32) allow us
to represent a single fractional derivative in Eq. (24), as a
product of derivatives, and thus get the fractional gradient
constitutive relations.

Using (36) and (37), Eq. (35) gives the fractional consti-
tutive relation in the following form

o(x,t) =E (a(x, £) F (o) "D? 2g(x, t)> (00> 2), (38)

where E is the Young’s modulus, *D?? is the Riesz frac-
tional derivative of order o« — 2, which is equivalent by
(11) to the Griinwald-Letnikov-Riesz fractional derivative
GIRD*-2_ As a result, we can state that Eq. (31) with « > 2
describes a fractional gradient elasticity. In Eq. (38), we use

_IC)lp _2|glh** |cos(am/2)|
E K T(o+1)

(@) (39)
is the scale parameter of fractional elasticity. Sign in front
of this scale parameter lsz(oc) in Eq. (38) is determined by
the sign of the expression g cos(xm/2), i.e. the sign of the
coupling constant g of lattice vibrations and the value of
the order o of long-rang interactions. If g cos(am/2) > 0,
then we get the minus in front of lsz(oc) in (39). For the case

o =4 and g > 0, we derive the constitutive relations for the
gradient elasticity model with the minus in front of 132. We
get the equations for phenomenological gradient elasticity
model from the lattice model equations. Note that nor-
mally it is considered a phenomenological model does
not have a corresponding microscopic model (Askes and
Aifantis, 2011).

For the case 0 < o < 2, we cannot use the properties
(32) and (34) because semi-group relation (9) holds for po-
sitive orders. For 0 < o < 2, we can use the relation (11)
and the Riesz’s analytic continuation (see Eq. (17) in Riesz,
1949) of fractional integrals of order « to negative values of
orders o > —p in the form

P = (—1)P R AP, (40)
where p € N and RI**? is the Riesz fractional integral of or-
der o + 2p. Using Eqs. (17), (21) and (22) from the Riesz’s
review paper Riesz, 1949, we get

kDY = —RP*A = AR A (41)

= —

. . 2
For one-dimensional case, we have A = (D})", and we can
use the relation

D} = ARI**A =D} 2 Dy, (42)

where J2°* is the fractional integral operator of order
(2 — o) that is defined by

=Dy "D, (43)

As a result, Eq. (31) with o < 2 describes a fractional inte-
gral elasticity. Using (36), (37) and (42), Eq. (31) gives the
fractional constitutive relation in the following form

o(x,t) = E(e(6.0) 7 £ (@) B ex,0)) (0<a<2), (44)

where J>* is the fractional integral (43) of order
0<2-a<2and lf(oc) is defined by (39). Sign in front of
this scale parameter lf(oc) in Eq. (44) is also determined
by the sign of the expression g cos(am/2).

Let us give a remark about the scale parameter (o). Eq.
(39) can lead to incorrect conclusion about the behavior of
the parameter lsz(oc) for h — 0 in the case 0 < o < 2. Using
(15), the dimensionless parameter (39) can be written as

() 21811 cos(om/2)
T VI NCES

(45)

Because the value of C? if finite, then behavior of the
parameter lf(ac) for h — 0 has the identical type for o > 2
and 0 < o < 2, such that lf(oz) is proportion to h*.

As a result, Eqs. (38) and (44) describe the fractional
gradient and fractional integral elasticity of non-local
continuum. If 0 <o <2, we have a fractional integral
elasticity, and if « > 2, then equation describes fractional
gradient elasticity. It can call the fractional elasticity of
Griinwald-Letnikov-Riesz type.

6. Solutions of fractional elasticity equations

Let us consider more general lattice system of interact-
ing particles that is described by the equations of motion
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O un(t) N

M +I(Amum + BT (o4 )um (t) = Fp(t). 46
o 0+ Y 8By un(t) = Fat). (46)

The correspondent continuum equation for the fractional

elasticity of the Griinwald-Letnikov-Riesz type has the

form

Pu(x,t) N

> — G D3u(x, t) + > C(ow) "DFu(x) = 1 f(x). (47)
ot k=1 p

Here to get analytical solution of the fractional equations
of nonlocal elasticity, we use the equivalence (see Sec-
tion 20.1 in Samko et al., 1987) of the Griinwald-Letni-
kov-Riesz derivative ¢/®D} and the Riesz derivative ®D} in
the form

1

GLRDOC — GLDCX GLDd — RDa. 4

X 2 COS(O(TC/Z) ( X+ + X*) X ( 8)
Eq. (47) can be considered as a fractional generalization of
the higher-order strain-gradient models (Askes and Sluys,
2002) and the higher-order integral elasticity models. In
the static case (Dfu(x, t) = 0) the fractional elasticity Egs.
(47)is

Zc YRD%u(x

wherex e R, Ne Nand m# 1,C(o) € R, oy > ---01 >0
Egs. (47) and (49) involve the one-dimensional Riesz
fractional derivatives given by

1 * (Afu)(2)
= , 50
di (1, o) /_m 2| dz (50)
where o < I, k=1,2,...,m, and (A]f)(2) is a finite differ-

ence of order m of a function f(x) with a vector step z € R
and centered at the point x € R:

1

— CeDju(x) = ;f(X% (49)

Rp%eu(x)

(A)(2) = Y1) g e~ ko).

=0
The constant d,(m, «) is defined by

2 Am (o)

(M%) = S q L 52T (12 + 0)2) sin(m2)2)

where
m m
U j“
; I(m —j)!

Note that the hypersingular integral D}f(x) does not de-
pend on the choice of m > a.

Eq. (49) are solvable, and it particular solutions are gi-
ven (see Theorem 5.25 in Kilbas et al., 2006) by the formula

1 [+
:E/m G.(x—2)f(2)dz, (51)

where

m -1
Gy(x—2) :%/0 <ZC(OCI<)},“k +C§AZ) cos(Ajx|)dA

(52)

Let us consider one-dimensional Thomson (1848)
problem (Landau and Lifshitz, 1986). We determine the
deformation of an infinite elastic continuum, when a force
is applied to a small region in it. We consider one-
dimensional elastic media with power-law nonlocality that
is described by the equation

~C?D2u(x) + C(o)"Dlu(x) = %f(X) (53)

Note that Eq. (53) coincides with Eq. (31) for static case.
If we consider the deformation at positions x, which are
larger compare with the size of the region, where the force
is applied, we can suppose that the force is applied at a
point. In this case, we have

fX) = fod(x). (54)

Then the deformation, which is a particular solution of
Eq. (53), will be described by the equation

cos( }\x\
d).. 55
/ C272 4 C(a)2* 3)

If 0 < o < 2, the solution (55) corresponds to the frac-
tional integral elasticity, and if o > 2, then the solution
(55) corresponds to the fractional gradient elasticity.

We can consider more general model of lattice with
long-range interaction in R*, where all particles are dis-
placed from its equilibrium in one direction, and the dis-
placement of particles is described by a scalar field u(x),
where x = |r| and r € R®. The correspondent continuum
equation of the fractional elasticity model is

@)
2

—Au(x) + =5 (=8 u)(x) = 5—f(x). (56)
where (—A)*? is the fractional Laplacian (Kilbas et al.,
2006). The displacement vector u(x) of the point force

(54) has the following form

1 fo

ux) =—5—2.
) anClp X

Coal(x), (57)
where x = |r|, and

N 2 sin(/x) ,
Gal) =7 /0 7+ Car 8)

We note that the asymptotic behavior x = |r| — 0 of the
scalar field u(x) does not depend on the parameter o. Using
(see Eq. (1) of Section 2.3 in the book Bateman and Erdelyi,
1954), we obtain the asymptotic behavior (x — oo) for
Cy4(x) with o < 2 in the form

2 (™ Asin(x) ) 1
Cou(x) = = /0 W di =~ Ao(a) PR
+ZA’< X2 k+1 (59)
where

2
Ao(0r) = RZCC(;) I'(2 - o) sin (g @), (60)
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2 C2 k+1 o
- _“ e (2—0)(k+1)-1 &3
Ax(2) - (C(ac)) /0 z sin(z) dz. (61)

As a result, we have in the framework the fractional
elasticity, the displacement field of the point force in the
infinite media with non-locality of power-law type is given
by

Ao(@)  fo
anClp x*

u(x) ~ (0<o<2) (62)

for the long distance x > 1.

In Figs. 1-3 we present some plots of the factor
Cy0(x) = exp(—x) and factors Cp,(x) with C(x)/C2 =1 for
different orders of 0 < « < 2, i.e. for the fractional integral
elasticity. The values of the factors C,,(x) and Cy(x) are
plotted along the Y-axis, and the values of the position
x = |r| are plotted along the X-axis.

For the case o > 2, i.e. for the fractional gradient elastic-
ity, the asymptotic behavior x = |r| — oo of u(x) does not

Fig. 1. Plot of the function y = C,,(x) with oo = 0.7 is drawn with black
color and the factor y = C,0(x) = exp(—x) is drawn by gray color, where
x = |r| and C(a)/C? =1.

Fig. 2. Plot of the function y = C,,(x) with o = 1.1 is drawn with black
color and the factor y = C,0(x) = exp(—x) is drawn by gray color, where
x=|r| and C()/C2 = 1.

depend on the parameter «. The asymptotic behavior of
the displacement field u(|r|) for |r| — O is given by

AT -w)/2)
M)~ T e p Clo) T(/2)

X 2<a<3),  (63)

fo

u(x) v -
C*(ar) sin(3m/a)

13/2 , (x>3).  (64)

2map ()

Note that the function C,, for the fractional gradient
case (o > 2) has a maximum. If & =4 then we have the
well-known case of gradient elasticity (Askes and Aifantis,
2011).

In Figs. 4-6 we present some plots of the factor
C20(x) = exp(—x) and factors Cy,(x) with C(a)/C2 =1 for
different orders of 2 < o < 6, i.e. for the fractional gradient
elasticity. The values of the factors C,,(x) and C,(x) are
plotted along the Y-axis, and the values of the position
x = |r| are plotted along the X-axis.

Fig. 3. Plot of the function y = C,,(x) with a = 1.8 is drawn with black
color and the factor y = C,(x) = exp(—x) is drawn by gray color, where
x=|r| and C()/C2 = 1.

Fig. 4. Plot of the function y = C,,(x) with oo = 2.2 is drawn with black
color and the factor y = C,(x) = exp(—x) is drawn by gray color, where
x=|r| and C()/C2 = 1.
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Fig. 5. Plot of the function y = C,,(x) with o = 3.6 is drawn with black
color and the factor y = C(x) = exp(—x) is drawn by gray color, where
x = |r| and C(a)/C? =1.

Fig. 6. Plot of the function y = C,,(x) with o = 5.9 is drawn with black
color and the factor y = C(x) = exp(—x) is drawn by gray color, where
x=|r| and C(x)/C? =1.

7. Conclusion

A lattice model with long-range interaction of Griin-
wald-Letnikov-Riesz type is suggested. In the continuum
limit we derive continuum equations with spatial deriva-
tives of non-integer order o. The correspondent constitu-
tive relations describe fractional generalization of
gradient elasticity for « > 2 and fractional integral elastic-
ity for 0 < o < 2. The suggested lattice model is considered
as a microscopic model of the fractional non-local elastic
continuum. We can note that a fractional nonlocal contin-
uum model can be obtained from different microscopic or
lattice models. The benefits of suggested formulation of
fractional elasticity are following. Firstly, the Griinwald-
Letnikov-Riesz derivatives in the fractional continuum
equations are defined by fractional differences. It can be di-
rectly used in numerical simulations of fractional gradient
and fractional integral elasticity models. Secondly, the sug-
gested type of long-range interaction for lattice particles
allows us to have united lattice model for the fractional

gradient and fractional integral elasticity. We assume that
the suggested approach can be generalized for 3-dimen-
sional case, for finite strains and plasticity. An extension
of the suggested model for these cases can be realized by
the methods suggested in Tarasov (2011a, see Sections
8.2, 8.14, 8.15) with some modifications. In addition, we
note that the model of fractional gradient and integral elas-
tic continuum has an analog in the plasma-like dielectric
material with power-law spatial dispersion (Tarasov and
Trujillo, 2013; Tarasov, 2013). Fractional models of com-
plex material with power-law non-locality allows us to
predict unusual properties of materials that are character-
ized by long-range inter-particle interactions. These mate-
rials can demonstrate a common or universal behavior in
space by analogy with the universal behavior of low-loss
dielectrics in time (Jonscher, 1977, 1996; Tarasov, 2008,
2009).
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