<HTML>

<H2 CLASS=“western”>PAGE on RECONSTRUCTION ! </H2>

<HEAD>

<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8">
<TITLE>FULL LIST OF PUBLICATIONS </TITLE>
<META NAME="GENERATOR" CONTENT="LibreOffice 4.0.4.2 (Linux)">
<META NAME="CREATED" CONTENT="0;0">
<META NAME="CHANGEDBY" CONTENT="Vasily Tarasov">
<META NAME="CHANGED" CONTENT="20180122;13235400">
<META NAME="CHANGEDBY" CONTENT="Vasily Tarasov">
<STYLE TYPE="text/css">
<!--
	H2.cjk { font-family: "AR PL UMing HK" }
	H2.ctl { font-family: "Lohit Devanagari" }
	H3.cjk { font-family: "AR PL UMing HK" }
	H3.ctl { font-family: "Lohit Devanagari" }
-->
</STYLE>

</HEAD> <BODY LANG=“en-US” DIR=“LTR”> <H2 CLASS=“western”>VASILY E. TARASOV </H2> <H2 CLASS=“western”>LIST OF PUBLICATIONS </H2> <H3 CLASS=“western”>BOOKS </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>&quot;Fractional
Dynamics: Application of Fractional Calculus to Dynamics of
Particles, Fields and Media&quot;</B><BR>(Springer, HEP, 2011) 504
pages. See:<A HREF="http://www.springer.com/physics/complexity/book/978-3-642-14003-7">
Springer </A>and <A HREF="http://www.ozon.ru/context/detail/id/6005695/">Ozon
</A>(ISBN: 978-3-642-14002-0) <A HREF="http://www.springerlink.com/content/978-3-642-14003-7#section=938115&amp;page=1">Read
Online </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>&quot;Gravity,
Black Holes and Relativistic Mechanics&quot; </B><BR><A HREF="http://vuzkniga.ru/index.php?ex=shb&amp;t=vb&amp;id=420">(Vuzovskaya
kniga, Moscow, 2015) 206 pages [in Russian]</A> (ISBN:
978-5-9502-0618-4) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>&quot;Theoretical
Physics Models with Integro-Differentiation of Fractional Order&quot;
</B><BR>(IKI, RCD, 2011) 568 pages. See:<A HREF="http://www.ozon.ru/context/detail/id/8685654/">
ozon.ru </A>(ISBN: 978-5-4344-013-8) in Russian 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>&quot;Quantum
Mechanics of Non-Hamiltonian and Dissipative Systems&quot;
</B><BR>(Elsevier Science, 2008) 540 pages. See:<A HREF="http://www.elsevier.com/books/quantum-mechanics-of-non-hamiltonian-and-dissipative-systems/tarasov/978-0-444-53091-2#">
Elsevier </A>and <A HREF="http://www.amazon.ca/Quantum-Mechanics-Non-Hamiltonian-Dissipative-Systems/dp/0444530916">Amazon
</A>,<!--<A HREF="http://books.google.ru/books?id=pHK11tfdE3QC&printsec=frontcover&dq=Tarasov+Vasily+E."> Google Book </A>--><!--and <A HREF="http://gen.lib.rus.ec/search">Library Genesis</A>-->
<BR>(ISBN-13: 978-0-444-53091-2 ISBN-10: 0-444-53091-65-7035-2390-7)
<A HREF="http://books.google.ru/books?id=pHK11tfdE3QC&amp;printsec=frontcover&amp;dq=Quantum+Mechanics+of+Non-Hamiltonian+and+Dissipative+Systems&amp;hl=ru&amp;ei=Em1lTJj5EdCkOISu3MIN&amp;sa=X&amp;oi=book_result&amp;ct=result&amp;resnum=1&amp;ved=0CCgQ6AEwAA#v=onepage&amp;q&amp;f=false">Read
Online</A> 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>&quot;Quantum
Mechanics: Lectures on Foundations of the Theory&quot; </B><BR>(Vuzovskaya
kniga, Moscow, 2000) 326 pages. (ISBN: 5-89522-107-6) in Russian
<A HREF="http://gen.lib.rus.ec/book/index.php?md5=FAA3DD1C53E68BABFA8FCC138F8D2B60">DJVU</A><BR><A HREF="http://www.vuzkniga.ru/index2.php?ex=shb&amp;t=sell&amp;id=48">Second
Edition: Vuzovskaya kniga, Moscow, 2005. (ISBN: 5-9502016-5-5)</A>
in Russian 
</P>
<LI><P>V.E. Tarasov<BR><B>&quot;Mathematical Introduction to Quantum
Mechanics&quot; </B><BR>(MAI Publishing Co., Moscow, 2000) 332
pages. <BR>(ISBN: 5-7035-2390-7) in Russian <A HREF="http://www.urss.ru/cgi-bin/db.pl?lang=Ru&amp;blang=ru&amp;page=Book&amp;id=17652">in
Editorial URSS</A><!-- <LI> V.E. Tarasov <br> <em><b>

“Fractional Calculus and Physics on Fractals” </em></b><br /> in “Dynamical Chaos and Non-equilibrium Statistical Mechanics:<br /> From Rigorous Results to Applications in Nano-systems” Lecture Notes Series.<br /> (Singapore University Press and World Scientific Publishing Co., Singapore, 2009) to be published. </A> –></P> </UL>

<H3 CLASS=“western”>CHAPTERS in BOOKS </H3>

<UL> <LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>&quot; Continuum Mechanics of Fractal Media&quot; Chapter in {\it Encyclopedia of Continuum Mechanics}.&quot;</B></EM> <BR> Edited by H. Altenbach, A. Ochsner. Berlin, Heidelberg: Springer, 2018. pp. 1-8. </BR> ISBN: 978-3-662-53605-6 DOI: 10.1007/978-3-662-53605-6_69-1 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>&quot; Fractional deterministic factor analysis of economic processes with memory and nonlocality. &quot;</B></EM> <BR> Chapter 9. in {\it Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives}.</BR> Edited by M. Edelman, E. Macau, M.A.F. Sanjuan. New York: Springer International Publishing AG, 2018. pp. 173-189. <BR> DOI: 10.1007/978-3-319-68109-2_9 </BR></P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B>&quot; Discretely and continuously distributed dynamical systems with fractional nonlocality. &quot;</B></EM> <BR> In: {\it Fractional Dynamics} Edited by C. Cattani, H.M. Srivastava, X.-J. Yang.</BR> (De Gruyter Open, Warsaw, Berlin, 2015) Chapter 3. pp.s 31-49. DOI (Chapter): 10.1515/9783110472097-003</P>

<LI><P>V.E. Tarasov, <BR><EM><B>&quot; Fractional Dynamics of Open Quantum Systems&quot;</B></EM><BR> Chapter 19 (pages 447-480) in the book &quot;Fractional Dynamics in Physics: Recent Advances&quot; <BR> J. Klafter, S.C. Lim, R. Metzler (Eds.) (World Scientific, Singapore, 2012) (ISBN: 978-981-4304-58-8) <A HREF=“http://www.worldscibooks.com/physics/8087.html”>HTML</A> </P>

<LI><P>V.E. Tarasov, <BR><EM><B>&quot;Fractional Zaslavsky and Henon map&quot;</B></EM><BR>Chapter 1 (pages 1-26) in the book &quot;Long-range Interactions, Stochasticity and Fractional Dynamics&quot; <BR>A.C.J. Luo, V. Afraimovich (Eds.) (Springer and HEP, 2010) 275p. <A HREF=“http://www.springer.com/new+%26+forthcoming+titles+(defaut)/book/978-3-642-12342-9”>HTML</A>. <A HREF=“http://arxiv.org/abs/1107.5148”>(arXiv:1107.5148) </A> </P>

<LI><P>V.E. Tarasov, <BR><EM><B>&quot;Quantum Mechanics&quot;</B></EM> Chapter 2 (pages 60-124) in the book &quot;Quantum Physics&quot;<BR> Edited by G.G. Spirin (Aviaizdat, Moscow, 2002). 346 pages. in Russian <!–O.A. Gordeev, E.I. Konovalova, T.P. Martinenko, G.A. Odintsova, <br /> V.E. Tarasov, O.I. Tretiakova, E.P. Vaulin <br /> –>

	</P>

</UL>

<H3 CLASS=“western”>ARTICLES in refereed journals </H3>

<UL>

	<UL>
		<H3 CLASS="western">2018
		</H3>
	</UL>
</UL>

<UL> <LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Dynamic intersectoral models with power-law memory.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 54. P. 100-117.</BR> DOI: 10.1016/j.cnsns.2017.05.015 (arXiv:1712.09087) </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Concept of dynamic memory in economics.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. 2018. Vol.55. P.127-145.</BR> DOI: 10.1016/j.cnsns.2017.06.032 (arXiv:1712.09088)</P>

<UL>

	<UL>
		<H3 CLASS="western">2017
		</H3>
	</UL>
</UL>

<LI><P>V.E. Tarasov, <BR><EM><B> Fractional mechanics of elastic solids: Continuum aspects.</B></EM><BR> Journal of Engineering Mechanics. Vol.143. No.5. (2017) Article ID: D4016001. 8 pages. DOI: 10.1061/(ASCE)EM.1943-7889.0001074. </FONT> </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Exact discretization of fractional Laplacian. </B></EM><BR> Computers and Mathematics with Applications. 2017. Vol.73. No.5. P.855-863. DOI: 10.1016/j.camwa.2017.01.012 </P>

<LI><P>V.E. Tarasov, V.V. Tarasova, <BR><EM><B> Time-dependent fractional dynamics with memory in quantum and economic physics.</B></EM><BR> Annals of Physics. 2017. Vol. 383. P. 579-599. DOI: 10.1016/j.aop.2017.05.017 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. </B></EM><BR> Fundamenta Informaticae. Vol. 151. (2017) P.431-442. DOI: 10.3233/FI-2017-1502 </FONT> </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Logistic map with memory from economic model.</B></EM><BR> Chaos, Solitons and Fractals. 2017. Vol. 95. P.84-91. DOI: 10.1016/j.chaos.2016.12.012 (arXiv:1712.09092) </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Accelerators in macroeconomics: Comparison of discrete and continuous approaches.</B></EM><BR> American Journal of Economics and Business Administration. 2017. Vol. 9. No. 3. P. 47-55. DOI: 10.3844/ajebasp.2017.47.55 (arXiv:1712.09605) </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Exact discretization of economic accelerator and multiplier with memory.</B></EM><BR> Fractal and Fractional. 2017. Vol. 1. No. 1. Article ID: 6. DOI: 10.3390/fractalfract1010006 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Accelerator and multiplier for macroeconomic processes with memory. </B></EM><BR> IRA-International Journal of Management and Social Sciences. 2017. Vol. 9. No. 3. P. 86-125. DOI: 10.21013/jmss.v9.v3.p1 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Exact solution of T-difference radial Schrodinger equation. </B></EM><BR> International Journal of Applied and Computational Mathematics. <BR> 2017. Vol. 3. No. 4. P. 2779-2784. DOI: 10.1007/s40819-016-0270-8 https://link.springer.com/article/10.1007/s40819-016-0270-8 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Discrete wave equation with infinite differences. </B></EM><BR> Applied Mathematics and Information Sciences Letters. 2017. Vol.5. No.2. P.41-44. DOI: 10.18576/amisl/050201 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic growth model with constant pace and dynamic memory. </B></EM><BR> Problems of Modern Science and Education. 2017. No.2 (84). P.40-45.

DOI: 10.20861/2304-2338-2017-84-001 (arXiv:1701.06299)

</P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic interpretation of fractional derivatives. </B></EM><BR> Progress in Fractional Differentiation and Applications. 2017. Vol.3. No.1. P.1-7. DOI: 10.18576/pfda/030101 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Comments on the article Long and short memory in economics: fractional-order difference and differentiation. </B></EM><BR> Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2017. No.31 (113). P.26-28. <BR> DOI: 10.20861/2304-2338-2017-113-002 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Logistic map with memory from economic model. </B></EM><BR> Chaos, Solitons and Fractals. 2017. Vol. 95. P.84-91. DOI: 10.1016/j.chaos.2016.12.012 </P>

<LI><P>V.E. Tarasov <BR><EM><B> Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. </B></EM><BR> Fundamenta Informaticae. 2017. Vol.151. P.431-442. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/FI2017.pdf”>PDF</A> </P>

<LI><P>V.V.Tarasova, V.E. Tarasov <BR»<EM><B> Economic interpretation of fractional derivatives. </B></EM><BR> Progress in Fractional Differentiation and Applications. 2017. Vol.3. No.1. P.1-7. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/PFDA2017.pdf”>PDF</A></P>

<LI><P>V.V.Tarasova, V.E. Tarasov <BR><EM><B> Logistic map with memory from economic model. </B></EM><BR> Chaos, Soliton and Frcatls. Vol.95. (2017) 84-91. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/CSF2017.pdf”>PDF</A></FONT></P>

<LI><P>V.E. Tarasov <BR><EM><B> Exact discretization of fractional Laplacian. </B></EM><BR> Computer and Mathematics with Applications. 2017. Vol.73. No.5. P.855-863. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/CSF2017.pdf”>PDF</A></FONT></P>

<UL>

	<UL>
		<H3 CLASS="western">2016 
		</H3>
	</UL>
</UL>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discretization of Schrodinger equation.</B></EM><BR> Physics Letters A. Vol.380. No.1-2. (2016) 68-75. DOI: 10.1016/j.physleta.2015.10.039 </P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discretization by Fourier transforms.</B></EM><BR> Communications in Nonlinear Science and Numerical Simulation. Vol.37. (2016) 31-61. DOI: 10.1016/j.cnsns.2016.01.006 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> United lattice fractional integro-differentiation. </B></EM><BR> Fractional Calculus and Applied Analysis. Vol.19. No.3. (2016) 625-664. DOI: 10.1515/fca-2016-0034 </P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discrete analogs of canonical commutation and uncertainty relations. </B></EM><BR> Mathematics. Vol.4. No.3. (2016) Article ID 44. DOI: 10.3390/math4030044 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> What discrete model corresponds exactly to gradient elasticity equation? </B></EM><BR> Journal of Mechanics of Materials and Structures. Vol. 11. No. 4. (2016) 329-343 DOI: 10.2140/jomms.2016.11.329 < </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Some identities with generalized hypergeometric functions. </B></EM><BR> Applied Mathematics and Information Sciences. Vol.10. No.5. (2016) 1729-1734. DOI: 10.18576/amis/100511 </P>

<LI><P>V.E. Tarasov, </FONT> Geometric interpretation of fractional-order derivative. </B></EM><BR> Fractional Calculus and Applied Analysis. Vol.19. No.5. (2016) 1200-1221. DOI: 10.1515/fca-2016-0062 </FONT> </P>

<LI><P>V.E. Tarasov, <BR><EM><B>&quot; Electric field in media with power-law spatial dispersion. </B></EM><BR> Modern Physics Letters B. Vol.30. No.10. (2016) Article ID: 1650132 (11 pages) DOI: 10.1142/S0217984916501323 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>&quot; Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. </B></EM><BR> Nonlinear Dynamics. Vol.86. (2016) No.3. 1745-1759. DOI: 10.1007/s11071-016-2991-y </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Discrete model of dislocations in fractional nonlocal elasticity. </B></EM><BR> Journal of King Saud University - Science. Vol.28. No.1. (2016) 33-36. DOI 10.1016/j.jksus.2015.04.001 </P>

<LI><P>V.E. Tarasov, <BR><EM><B> Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. </B></EM><BR> Meccanica. Vol.51. No.1. (2016) 125-138. DOI: 10.1007/s11012-015-0190-4 </P>

<LI><P STYLE=“margin-bottom: 0in”>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Elasticity for economic processes with memory: fractional differential calculus approach. </B></EM><BR> Fractional Differential Calculus. 2016. Vol.6. No.2. P.219-232.DOI: 10.7153/fdc-06-14 </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic accelerator with memory: discrete time approach. </B></EM> <BR>Problems of Modern Science and Education. 2016. No. 36 (78). P. 37-42. DOI: 10.20861/2304-2338-2016-78-002 (arXiv:1612.07913) </P>

<LI><P>V.E. Tarasov, V.V. Tarasova, Long and short memory in economics: fractional-order difference and differentiation. </B></EM><BR> IRA-International Journal of Management and Social Sciences. 2016. Vol.5. No.2. P.327-334. DOI: 10.21013/jmss.v5.n2.p10 (arXiv:1612.07913) </P>

<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>&quot; Fractional dynamics of natural growth and memory effect in economics&quot;, </B></BR> European Research. 2016. No. 12 (23). P. 30-37. DOI: 10.20861/2410-2873-2016-23-004 (arXiv:1612.09060) </P>

<LI><P>V.E. Tarasov <BR><EM><B>&quot; Local fractional derivatives of differentiable functions are integer-order derivatives or zero&quot;,</B></EM> <BR>International Journal of Applied and Computational Mathematics. Vol.2. No.2. (2016) 195-201. DOI: 10.1007/s40819-015-0054-6 </P>

<LI><P>V.E. Tarasov <BR><EM><B>On chain rule for fractional derivatives.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. Vol.30. No.1-3. (2016) 1-4. DOI: 10.1016/j.cnsns.2015.06.007 </P>

<LI><P>V.E. Tarasov <BR><EM><B>&quot; Leibniz rule and fractional derivatives of power functions&quot;, </B></EM> <BR>Journal of Computational and Nonlinear Dynamics. Vol.11. No.3. (2016) 031014. DOI: 10.1115/1.4031364 </P>

<LI><P>V.E. Tarasov <BR><EM><B>&quot;Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives&quot;,</B></EM> <BR>Fractional Differential Calculus. Vol.6. No.1. (2016) 147-149. >DOI: 10.7153/fdc-06-10 </P>

<LI><P>V.E. Tarasov <BR><EM><B>&quot;Heat transfer in fractal materials&quot;, </B></EM> <BR>International Journal of Heat and Mass Transfer. Vol.93. (2016) 427-430. DOI: 10.1016/j.ijheatmasstransfer.2015.09.086 </P> <LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>&quot;Acoustic waves in fractal media: non-integer dimensional spaces approach&quot;,</B></EM> <BR>Wave Motion. Vol.63. (2016) 18-22. DOI: 10.1016/j.wavemoti.2016.01.003 </P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>&quot;Poiseuille equation for steady flow of fractal fluid&quot;, </B></EM> <BR>International Journal of Modern Physics B. Vol.30. No.22. (2016) 1650128. (13 pages) DOI: 10.1142/S0217979216501289 </P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM> <B>&quotExact discretization of Schroedinger equation&quot;,</B></EM> <BR>Physics Letters A. Vol.380. No.1-2. (2016) 68-75. <A HREF=“http://www.sciencedirect.com/science/article/pii/S0375960115009111”>HTML</A> <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/PLA2016.pdf”>PDF</A> </P>

<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>&quotExact discretization by Fouries transforms&quot;,</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.37. (2016) 31-61. <A HREF=“http://www.sciencedirect.com/science/article/pii/S1007570416000095”>HTML</A>

	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Geometric
interpretation of fractional-order derivative&quot;,</B></EM><BR>Fractional
Calculus and Applied Analysis. Vol.19. No.5. (2016) 120012214. <A HREF="http://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-3.xml">HTML</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;United
lattice fractional integro-differentiation&quot;,</B></EM><BR>Fractional
Calculus and Applied Analysis. Vol.19. No.3. (2016) 625-664. <A HREF="http://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml">HTML</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;On
chain rule for fractional derivatives&quot;,</B></EM><BR>Communications
in Nonlinear Science and Numerical Simulation. Vol.30. No.1-3.
(2016) 1-4. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570415002087">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;What
discrete model corresponds exactly to a gradient elasticity
equations?&quot;,</B></EM><BR>Journal of Mechanics of Materials and
Structures. Vol.11. No.4. (2016) 329-343. <A HREF="http://www.msp.org/jomms/2016/11-4/p01.xhtml">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JOMMS2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Leibniz
rule and fractional derivatives of power functions&quot;,</B></EM><BR>Journal
of Computational and Nonlinear Dynamics. Vol.11. No.3. (2016)
0310144. (4 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JCND2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Three-dimensional
lattice models with long-range interactions of Grunwald-Letnikov
type for fractional generalization of gradient
elasticity&quot;,</B></EM><BR>Meccanica. Vol.51. No.1. (2016)
125-138. <A HREF="http://link.springer.com/article/10.1007%2Fs11012-015-0190-4">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/M2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Partial
fractional derivatives of Riesz type and nonlinearity fractional
differential equations&quot;,</B></EM><BR>Nonlinear Dynamics.
Vol.86. (2016) 1745-1759. doi: 10.1007/s11071-016-2991-y <A HREF="http://link.springer.com/article/10.1007/s11071-016-2991-y">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.V. Tarasova, V.E. Tarasov
<BR><EM><B>&quot;Elasticity for economic processes with memory:
fractional differential calculus approach&quot;,</B></EM><BR>Fractional
Differential Calculus. Vol.6. No.2. (2016) 219-232. <A HREF="http://fdc.ele-math.com/forthcoming">HTML</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, V.V.Tarasova <BR><EM><B>&quot;Long
and short memory in economics: fractional-order difference and
differentiation&quot;,</B></EM><BR>IRA-International Journal of
Managment and Social Sciences. Vol.5. No.2. (2016) 327-334. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IRA2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.V. Tarasova, V.E. Tarasov
<BR><EM><B>&quot;Price Elasticity of Demand with Memory&quot; [in
Russian],</B></EM><BR>Economics, Sociology and Law. Vol.2016.
No.4-1. (2016) 98-106. <A HREF="http://naukaplus.ru/archive/2016/4/1/24">HTML</A>
<A HREF="http://elibrary.ru/item.asp?id=26093967&amp;">HTML</A> 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Remark
to history of fractional derivatives on complex plane:
Sonine-Letnikov and Nishimoto derivatives&quot;,</B></EM><BR>Fractional
Differential Calculus. Vol.6. No.1. (2016) 147-149. <A HREF="http://fdc.ele-math.com/forthcoming">HTML</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Poiseuille
equation for steady flow of fractal fluid&quot;,</B></EM><BR>Internationsl
Journal of Modern Physics B. Vol.30. No.22. (2016) 1650128 (13
pages). <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217979216501289">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Electric
field in media with power-law spatial dispersion&quot;,</B></EM><BR>Modern
Physics Letters B. Vol.30. No.10. (2016) 1650132 (11 pages). <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217984916501323">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Discrete
models of dislocations in fractional nonlocal elasticity&quot;,</B></EM><BR>Journal
of King Saud University - Science. Vol.28. No.1. (2016) 33-36. <A HREF="http://www.sciencedirect.com/science/article/pii/S1018364715000361">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JKSUS2016.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Heat
transfer in fractal materials&quot;,</B></EM><BR>International
Journal of Heat and Mass Transfer. Vol.93. (2016) 427-430. <A HREF="http://www.sciencedirect.com/science/article/pii/S0017931015309200">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJHMT2016.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Acoustic
waves in fractal media: non-integer dimensional spaces
approach&quot;,</B></EM><BR>Wave Motion. Vol.63. (2016) 18-220. <A HREF="http://www.sciencedirect.com/science/article/pii/S0165212516000044">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/WM2016.pdf">PDF</A> 
</P>
<LI><P>V.E. Tarasov <BR><EM><B>&quot;Local fractional derivatives of
differentiable functions are integer-order derivatives or
zero&quot;,</B></EM><BR>International Journal of Applied and
Computational Mathematics. Vol.2. No.2. (2016) 195-201. <A HREF="http://link.springer.com/article/10.1007%2Fs40819-015-0054-6">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJACM2016.pdf">PDF</A></P>
<UL>
	<UL>
		<H3 CLASS="western">2015 
		</H3>
	</UL>
</UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Lattice
fractional calculus&quot;,</B></EM><BR>Applied Mathematics and
Computation. Vol.257. (2015) 12-33. <A HREF="http://www.sciencedirect.com/science/article/pii/S0096300314015562">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AMC2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Exact
discrete analogs of derivatives of integer orders: Differences as
infinite series&quot;</B></EM><BR>Journal of Mathematics. Vol.2015.
(2015) Article ID 134842. (8 pages) <A HREF="http://dx.doi.org/10.1155/2015/134842">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JM2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractal
electrodynamics via non-integer dimensional space approach&quot;,</B></EM><BR>Physics
Letters A. Vol.379. No.36. (2015) 2055-2061. <A HREF="http://www.sciencedirect.com/science/article/pii/S0375960115005514">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2015-2.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Electromagnetic
waves in non-integer dimensional spaces and fractals&quot;,</B></EM><BR>Chaos,
Solitons and Fractals. Vol.81. Part A. (2015) 38-42. <A HREF="http://www.sciencedirect.com/science/article/pii/S0960077915002568">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CSF2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Comments
on 'The Minkowski's space-time is consistent with differential
geometry of fractional order&quot;,</B></EM><BR>Physics Letters A.
Vol.379. No.14-15. (2015) 1071-1072. <A HREF="http://www.sciencedirect.com/science/article/pii/S0375960115001176">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Comments
on 'Riemann-Christoffel tensor in differential geometry of
fractional order application to fractal space-time&quot;,</B></EM><BR>Fractals.
Vol.21. No.2. (2015) 1575001. <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0218348X15750018">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/F2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Non-linear
fractional field equations: weak non-linearity at power-law
non-locality&quot;,</B></EM><BR>Nonlinear Dynamics. Vol.80. No.4.
(2015) 1665-1672. <A HREF="http://link.springer.com/article/10.1007/s11071-014-1342-0">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2015.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
Liouville equation on lattice phase-space&quot;,</B></EM><BR>Physica
A: Statistical Mechanics and its Applications. Vol.421. (2015)
330-342. <A HREF="http://www.sciencedirect.com/science/article/pii/S0378437114009820">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PA2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.04351">(arXiv:1503.04351)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Vector
calculus in non-integer dimensional space and its applications to
fractal media&quot;,</B></EM><BR>Communications in Nonlinear Science
and Numerical Simulation. Vol.20. No.2. (2015) 360-374. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570414002317">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2015-1.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02022">(arXiv:1503.02022)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Elasticity
of fractal materials by continuum model with non-integer dimensional
space&quot;,</B></EM><BR>Comptes Rendus Mechanique. Vol.343. No.1.
(2015) 57-73. <A HREF="http://www.sciencedirect.com/science/article/pii/S163107211400179X">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CRM2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03060">(arXiv:1503.03060)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional-order
difference equations for physical lattices and some
applications&quot;,</B></EM><BR>Journal of Mathematical Physics.
Vol.56. No.10. (2015) 1035068. <A HREF="http://scitation.aip.org/content/aip/journal/jmp/56/10/10.1063/1.4933028">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2015.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Three-dimensional
lattice approach to fractional generalization of continuum gradient
elasticity&quot;,</B></EM><BR>Progress in Fractional Differentiation
and Applications. Vol.1. No.4. (2015) 243-258. <A HREF="http://naturalspublishing.com/Article.asp?ArtcID=9764">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PFDA2015.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, E.C. Aifantis,
<BR><EM><B>&quot;Non-standard extensions of gradient elasticity:
Fractional non-locality, memory and fractality&quot;,</B></EM><BR>Communications
in Nonlinear Science and Numerical Simulation. Vol.22. No.1-3.
(2015) 197-227. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570414004742">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2015-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1404.5241">(arXiv:1404.5241)
</A>
</P>
<LI><P>V.E. Tarasov <BR><EM><B>&quot;Lattice model with
nearest-neighbor and next-nearest-neighbor intearctions of gradient
elasticity&quot;,</B></EM><BR>Discontinuity, Nonlinearity, and
Complexity. Vol.4. No.1. (2015) 11-23. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/DNC2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03633">(arXiv:1503.03633)<!-- 2014 -->
</A>
</P>
<UL>
	<UL>
		<H3 CLASS="western">2014 
		</H3>
	</UL>
</UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
quantum fields theory: from lattice to continuum&quot;,</B></EM><BR>Advances
in High Energy Physics. Vol.2014. (2014) 957863. (14 pages) <A HREF="http://www.hindawi.com/journals/ahep/2014/957863/">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AHEP2014.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Toward
lattice fractional vector calculus&quot;,</B></EM><BR>Journal of
Physics A. Vol.47. No.35. (2014) 355204. (51 pages) <A HREF="http://iopscience.iop.org/1751-8121/47/35/355204">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2014.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Anisotropic
fractal media by vector calculus in non-integer dimensional
space&quot;,</B></EM><BR>Journal of Mathematical Physics. Vol.55.
No.8. (2014) 083510. <A HREF="http://scitation.aip.org/content/aip/journal/jmp/55/8/10.1063/1.4892155">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02392">(arXiv:1503.02392)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Flow
of fractal fluid in pipe: Non-integer dimensional space
approach&quot;,</B></EM><BR>Chaos, Solitons and Fractals. Vol.67.
(2014) 26-37. <A HREF="http://www.sciencedirect.com/science/article/pii/S0960077914001039">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CSF2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02842">(arXiv:1503.02842)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional-order
variational derivative&quot;,</B></EM><BR>International Journal of
Applied Mathematics. Vol.27. No.5. (2014) 491-518. <A HREF="http://www.diogenes.bg/ijam/contents/2014-27-5/7/index.html">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJAM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.07677">(arXiv:1502.07677)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Large
lattice fractional Fokker-Planck equation&quot;,</B></EM><BR>Journal
of Statistical Mechanics. Vol.2014. No.9. (2014) P09036. (26 pages)
<A HREF="http://iopscience.iop.org/1742-5468/2014/9/P09036">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JSM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03636">(arXiv:1503.03636)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
diffusion equations for lattice and continuum: Grunwald-Letnikov
differences and derivatives approach&quot;,</B></EM><BR>International
Journal of Statistical Mechanics. Vol.2014. (2014) 873529. (7 pages)
<A HREF="http://www.hindawi.com/archive/2014/873529/">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJSM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03201">(arXiv:1503.03201)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Lattice
with long-range interaction of power-law type for fractional
non-local elasticity&quot;</B></EM><BR>International Journal of
Solids and Structures. Vol.51. No.15-16. (2014) pp.2900-2907. <A HREF="http://www.sciencedirect.com/science/article/pii/S0020768314001693">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJSS2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.05492">(arXiv:1502.05492)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Lattice
model of fractional and gradient elasticity: Long-range interaction
of Grunwald-Letnikov-Riesz type&quot;</B></EM><BR>Mechanics of
Materials. Vol.70. No.1. (2014) 106-114. <A HREF="http://www.sciencedirect.com/science/article/pii/S016766361300255X">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MOM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.06268">(arXiv:1502.06268)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;General
lattice model of gradient elasticity&quot;</B></EM><BR>Modern
Physics Letters B. Vol.28. No.7. (2014) 1450054. (17 pages) <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217984914500547">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1501.01435">(arXiv:1501.01435)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, E.C. Aifantis
<BR><EM><B>&quot;Towards fractional gradient elasticity&quot;</B></EM><BR>Journal
of Mechanical Behavior of Materials. Vol.23. No.1-2. (2014) 41-46.
<A HREF="http://www.degruyter.com/view/j/jmbm.2014.23.issue-1-2/jmbm-2014-0006/jmbm-2014-0006.xml?format=INT">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMBM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1307.6999">(arXiv:1307.6999)
</A>
</P>
<LI><P>V.E. Tarasov <BR><EM><B>&quot;Fractional gradient elasticity
from spatial dispersion law&quot;</B></EM><BR>ISRN Condensed Matter
Physics. Vol.2014. (2014) 794097. (13 pages) <A HREF="http://www.hindawi.com/journals/isrn/2014/794097/">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ISRN-CMP2014.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1306.2572">(arXiv:1306.2572)<!-- 2013 -->
</A>
</P>
<UL>
	<UL>
		<H3 CLASS="western">2013 
		</H3>
	</UL>
</UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Uncertainty
relation for non-Hamiltonian quantum systems&quot;</B></EM><BR>Journal
of Mathematical Physics. Vol.54. No.1. (2013) 012112. (13 pages)
<A HREF="http://jmp.aip.org/resource/1/jmapaq/v54/i1/p012112_s1">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2013.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Review
of some promising fractional physical models&quot;</B></EM><BR>International
Journal of Modern Physics B. Vol.27. No.9. (2013) 1330005. (32
pages) <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217979213300053">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.07681">(arXiv:1502.07681)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
diffusion equations for open quantum systems&quot;</B></EM><BR>Nonlinear
Dynamics. Vol.71. No.4. (2013) 663-670. <A HREF="http://link.springer.com/article/10.1007/s11071-012-0498-8/fulltext.html">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2013.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;No
violation of the Leibniz rule. No fractional
derivative.&quot;</B></EM><BR>Communications in Nonlinear Science
and Numerical Simulation. Vol.18. No.11. (2013) 2945-2948. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570413001457">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1402.7161">(arXiv:1402.7161)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Power-law
spatial dispersion from fractional Liouville equation&quot;</B></EM><BR>Physics
of Plasmas. Vol.20. No.10. (2013) 102110. (10 pages) <A HREF="http://scitation.aip.org/content/aip/journal/pop/20/10/10.1063/1.4825144">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/POP2013.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1307.4930">(arXiv:1307.4930) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Lattice
model with power-law spatial dispersion for fractional
elasticity&quot;</B></EM><BR>Central European Journal of Physics.
Vol.11. No.11. (2013) 1580-1588. (10 pages) <A HREF="http://link.springer.com/article/10.2478%2Fs11534-013-0308-z">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CEJP2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1501.01201">(arXiv:1501.01201)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, J.J. Trujillo
<BR><EM><B>&quot;Fractional power-law spatial dispersion in
electrodynamics&quot;</B></EM><BR>Annals of Physics. Vol.334. (2013)
1-23. <A HREF="http://www.sciencedirect.com/science/article/pii/S0003491613000638">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.04349">(arXiv:1503.04349)
</A>
</P>
<LI><P>Y. Zhou, V.E. Tarasov, J.J. Trujillo, R. Garrappa
<BR><B>&quot;Editorial&quot; </B>European Physical Journal: Special
Topics. Vol.222. No.8. (2013) 1745-1748. <A HREF="http://link.springer.com/article/10.1140%2Fepjst%2Fe2013-01960-6">HTML</A><!-- 2012 -->
	</P>
<UL>
	<UL>
		<H3 CLASS="western">2012, 2011, 2010, . . . 
		</H3>
	</UL>
</UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Quantum
dissipation from power-law memory&quot;</B></EM><BR>Annals of
Physics. Vol.327. No.6. (2012) 1719-1729. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2012.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;The
fractional oscillator as an open system&quot;</B></EM><BR>Central
European Journal of Physics. Vol.10. No.2. (2012) 382-389. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CEJP2012.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Derivation
of uncertainty relation for quantum Hamiltonian systems&quot; [in
Russian]</B></EM><BR>Moskovskoe Nauchnoe Obozrenie. Vol.2011. No.10.
(2011) 3-6. <A HREF="http://www.ingnpublishing.com/journal/1/2011/10-14_oktyabr/tarasov/">HTML</A>
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MNO2011.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;New
methods of measurement of fractal dimension of solids&quot; [in
Russian]</B></EM><BR>Nauchnaya Perespektiva. Vol.2011. No.10. (2011)
77-79. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/NP2011.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Relativistic
non-Hamiltonian mechanics&quot;</B></EM><BR>Annals of Physics.
Vol.325. No.10. (2010) 2103-2119. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2010.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
dynamics of relativistic particle&quot;</B></EM><BR>International
Journal of Theoretical Physics. Vol.49. No.2. (2010) 293-303.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJTP2010.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5749">(arXiv:1107.5749)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, M. Edelman
<BR><EM><B>&quot;Fractional dissipative standard map&quot;</B></EM><BR>Chaos.
Vol.20. No.2. (2010) 023127. (7 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2010.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5464">(arXiv:1107.5464)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Quantum
Nanotechnology&quot;</B></EM><BR>International Journal of
Nanoscience. Vol.8. No.4-5. (2009) 337-344. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJNS2009.pdf">PDF</A></P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Differential
equations with fractional derivative and universal map with
memory&quot;</B></EM><BR>Journal of Physics A. Vol.42. No.46. (2009)
465102. (13 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2009-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1107.4205">(arXiv:1107.4205) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">M. Edelman, V.E. Tarasov
<BR><EM><B>&quot;Fractional standard map&quot;</B></EM><BR>Physics
Letters A. Vol.374. No.2. (2009) 279-285. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2009-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0909.5412">(arXiv:0909.5412) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Discrete
map with memory from fractional differential equation of arbitrary
positive order&quot;</B></EM><BR>Journal of Mathematical Physics.
Vol.50. No.12. (2009) 122703. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2009.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1107.4425">(arXiv:1107.4425) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
generalization of the quantum Markovian master equation&quot;</B></EM><BR>Theoretical
and Mathematical Physics. Vol.158. No.2. (2009) 179-195.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP2009-1.pdf">PDF</A><BR>(Teoreticheskaya
i Matematicheskaya Fizika. Vol.158. No.2. (2009) 214-233. in
Russian) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF2009-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0909.0965">(arXiv:0909.0965) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
integro-differential equations for electromagnetic waves in
dielectric media&quot;</B></EM><BR>Theoretical and Mathematical
Physics. Vol.158. No.3. (2009) 355-359. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP2009-2.pdf">PDF</A><BR>(Teoreticheskaya
i Matematicheskaya Fizika. Vol.158. No.3. (2009) 419-424. in
Russian) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF2009-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5892">(arXiv:1107.5892)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Weyl
quantization of fractional derivatives&quot;</B></EM><BR>Journal of
Mathematical Physics. Vol.49. No.10. (2008) 102112. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2008.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0907.2699">(arXiv:0907.2699) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
Heisenberg equation&quot; </B></EM><BR>Physics Letters A. Vol.372.
No.17. (2008) 2984-2988. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2008b.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0804.0586">(arXiv:0804.0586) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
vector calculus and fractional Maxwell's equations&quot;</B></EM><BR>Annals
of Physics. Vol.323. No.11. (2008) 2756-2778. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.2363">(arXiv:0907.2363)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Universal
electromagnetic waves in dielectrics&quot;</B></EM><BR>Journal of
Physics: Condensed Matter. Vol.20. No.17. (2008) 175223. (7 pages)
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCM2008-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.2163">(arXiv:0907.2163)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
equations of Curie-von Schweidler and Gauss laws&quot;</B></EM><BR>Journal
of Physics: Condensed Matter. Vol.20. No.14. (2008) 145212. (5
pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCM2008-1.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.1837">(arXiv:0907.1837)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
powers of derivatives in classical mechanics&quot;</B></EM><BR>Communications
in Applied Analysis. Vol.12. No.4. (2008) 441-450.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CAA2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5682">(arXiv:1107.5682)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional equations of kicked systems and discrete
maps&quot;</B></EM><BR>Journal of Physics A. Vol.41. No.43. (2008)
435101. (16 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2008-2.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1107.3953">(arXiv:1107.3953) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fokker-Planck equation with fractional coordinate
derivatives&quot;</B></EM><BR>Physica A. Vol.387. No.26. (2008)
6505-6512. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0805.0606">(arXiv:0805.0606)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Chains
with fractal dispersion law&quot; </B></EM><BR>Journal of Physics A.
Vol.41. No.3. (2008) 035101. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2008-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0804.0607">(arXiv:0804.0607) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional generalization of Kac
integral&quot;</B></EM><BR>Communications in Nonlinear Science and
Numerical Simulation. Vol.13. No.2. (2008) 248-258. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2008-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0704.1771">(arXiv:0704.1771) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional dynamics of systems with long-range
space interaction and temporal memory&quot;</B></EM><BR>Physica A.
Vol.383. No.2. (2007) 291-308. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2007.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/math-ph/0702065">(math-ph/0702065)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
Chapman-Kolmogorov equation&quot; </B></EM><BR>Modern Physics
Letters B. Vol.21. No.4. (2007) 163-174. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2007-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0710.0809">(arXiv:0710.0809) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Liouville
and Bogoliubov equations with fractional derivatives&quot; </B></EM><BR>Modern
Physics Letters B. Vol.21. No.5. (2007) 237-248. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2007-2.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0711.0859">(arXiv:0711.0859) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
derivative as fractional power of derivative&quot;</B></EM><BR>International
Journal of Mathematics. Vol.18. No.3. (2007) 281-299. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJM2007.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0711.2567">(arXiv:0711.2567) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Conservation laws and Hamiltonian's equations for
systems with long-range interaction and memory&quot;</B></EM><BR>Communications
in Nonlinear Science and Numerical Simulation. Vol.13. No.9. (2008)
1860-1878. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2008-2.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/math-ph/0703048">(math-ph/0703048)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fokker-Planck
equation for fractional systems&quot; </B></EM><BR>International
Journal of Modern Physics B. Vol.21. N.6. (2007) 955-967. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2007.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0710.2053">(arXiv:0710.2053) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">G.M. Zaslavsky, M. Edelman, V.E.
Tarasov <BR><EM><B>&quot;Dynamics of the chain of oscillators with
long-range interaction: from synchronization to chaos&quot;</B></EM><BR>Chaos.
Vol.17. No.4. (2007) 043124. (10 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2007.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0707.3941">(arXiv:0707.3941) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">N. Korabel, G.M. Zaslavsky, V.E.
Tarasov <BR><EM><B>&quot;Coupled oscillators with power-law
interaction and their fractional dynamics analogues&quot;
</B></EM><BR>Communications in Nonlinear Science and Numerical
Simulation. Vol.12. No.8. (2007) 1405-1417. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2006-2.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0603074">(math-ph/0603074)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Map
of discrete system into continuous&quot;</B></EM><BR>Journal of
Mathematical Physics. Vol.47. No.9. (2006) 092901. (24 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2006.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0711.2612">(arXiv:0711.2612) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
statistical mechanics&quot; </B></EM><BR>Chaos. Vol.16. No.3. (2006)
033108. (7 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2006-2.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/0710.1807">(arXiv:0710.1807)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Electromagnetic
fields on fractals&quot; </B></EM><BR>Modern Physics Letters A.
Vol.21. No.20. (2006) 1587-1600. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLA2006.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/0711.1783">(arXiv:0711.1783) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Continuous
limit of discrete systems with long-range interaction&quot; </B></EM><BR>Journal
of Physics A. Vol.39. No.48. (2006) 14895-14910. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-4.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/0711.0826">(arXiv:0711.0826) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
variations for dynamical systems: Hamilton and Lagrange approaches&quot;
</B></EM><BR>Journal of Physics A. Vol.39. No.26. (2006) 8409-8425.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-2.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0606048">(math-ph/0606048)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Psi-series
solution of fractional Ginzburg-Landau equation&quot; </B></EM><BR>Journal
of Physics A. Vol.39. No.26. (2006) 8395-8407. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-1.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/nlin.SI/0606070">(nlin.SI/0606070)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov
<BR><EM><B>&quot;Magnetohydrodynamics of fractal media&quot;
</B></EM><BR>Physics of Plasmas. Vol.13. No.5. (2006) 052107. (12
pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Plasmas2006.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0711.0305">(arXiv:0711.0305)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Nonholonomic constraints with fractional
derivatives&quot; </B></EM><BR>Journal of Physics A. Vol.39. No.31.
(2006) 9797-9815. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-3.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0603067">(math-ph/0603067)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional dynamics of systems with long-range
interaction&quot; </B></EM><BR>Communications in Nonlinear Science
and Numerical Simulation. Vol.11. No.8. (2006) 885-898. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2006-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/1107.5436">(arXiv:1107.5436) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Dynamics with low-level fractionality&quot;
</B></EM><BR>Physica A. Vol.368. No.2. (2006) 399-415. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2006.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/physics/0511138">(physics/0511138)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional dynamics of coupled oscillators with
long-range interaction&quot; </B></EM><BR>Chaos. Vol.16. No.2.
(2006) 023110. (13 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2006.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/nlin.PS/0512013">(nlin.PS/0512013)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Transport
equations from Liouville equations for fractional systems&quot;
</B></EM><BR>International Journal of Modern Physics B. Vol.20.
No.3. (2006) 341-353. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2006-1.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0604058">(cond-mat/0604058)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Gravitational
field of fractal distribution of particles&quot; </B></EM><BR>Celestial
Mechanics and Dynamical Astronomy. Vol.94. No.1. (2006) 1-15. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CMDA2006.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/astro-ph/0604491">(astro-ph/0604491)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
generalization of gradient and Hamiltonian systems&quot; </B></EM><BR>Journal
of Physics A. Vol.38. No.26. (2005) 5929-5943. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2005-2.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/math.DS/0602208">(math.DS/0602208)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Electromagnetic
field of fractal distribution of charged particles&quot; </B></EM><BR>Physics
of Plasmas. Vol.12. No.8. (2005) 082106 (9 pages). <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Plasmas2005.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/physics/0610010">(physics/0610010)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Multipole
moments of fractal distribution of charges&quot; </B></EM><BR>Modern
Physics Letters B. Vol.19. No.22. (2005) 1107-1118. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2005-2sc.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/physics/0606251">(physics/0606251)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
hydrodynamic equations for fractal media&quot; </B></EM><BR>Annals
of Physics. Vol.318. No.2. (2005) 286-307. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2005-2.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/physics/0602096">(physics/0602096)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Dynamics
of fractal solid&quot; </B></EM><BR>International Journal of Modern
Physics B. Vol.19. No.27. (2005) 4103-4114. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2005-2.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0710.0787">( arXiv:0710.0787) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
generalization of gradient systems&quot;</B></EM><BR>Letters in
Mathematical Physics. Vol.73. No.1. (2005) 49-58. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/LMP2005.pdf">PDF</A>
<BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0604007">(nlin.CD/0604007)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Wave
equation for fractal solid string&quot; </B></EM><BR>Modern Physics
Letters B. Vol.19. No.15. (2005) 721-728. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0605006">(physics/0605006)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Phase-space
metric for non-Hamiltonian systems&quot; </B></EM><BR>Journal of
Physics A. Vol.38. No.10/11. (2005) 2145-2155. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/math.DS/0602433">(math.DS/0602433)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Continuous
medium model for fractal media&quot; </B></EM><BR>Physics Letters A.
Vol.336. N.2/3. (2005) 167-174. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0506137">(cond-mat/0506137)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Possible
experimental test of continuous medium model for fractal media&quot;
</B></EM><BR>Physics Letters A. Vol.341. N.5/6. (2005) 467-472.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2005-2.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0602121">(physics/0602121)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Thermodynamics
of few-particle systems&quot; </B></EM><BR>International Journal of
Modern Physics B. Vol.19. No.5. (2005) 879-897. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2005-1.pdf">PDF</A>
<BR><A HREF="http://arxiv.org/abs/0706.3455">(arxiv:0706.3455) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
Fokker-Planck equation for fractal media&quot; </B></EM><BR>Chaos.
Vol.15. No.2. (2005) 023102. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0602029">(nlin.CD/0602029)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky
<BR><EM><B>&quot;Fractional Ginzburg-Landau equation for fractal
media&quot; </B></EM><BR>Physica A. Vol.354. (2005) 249-261.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0511144">(physics/0511144)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
Liouville and BBGKI equations&quot;</B></EM> <BR>Journal of Physics:
Conference Series. Vol.7. (2005) 17-33. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCS2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0602062">(nlin.CD/0602062)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Stationary
solutions of Liouville equations for non-Hamiltonian systems&quot;</B></EM>
<BR>Annals of Physics. Vol.316. No.2. (2005) 393-413.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0602409">(cond-mat/0602409)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
systems and fractional Bogoliubov hierarchy equations&quot;
</B></EM><BR>Physical Review E. Vol.71. No.1. (2005) 011102 (12
pages). <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PRE2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0505720">(cond-mat/0505720)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Path
integral for quantum operations&quot; </B></EM><BR>Journal of
Physics A. Vol.37. No.9. (2004) 3241-3257. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2004.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0706.2142">(arXiv:0706.2142)<!--<LI> V.E. Tarasov<br />

<em><b> “Fractional Liouville Equation.”</em></b><br /> Physical Review E. Vol.69. No.1. (2004) 0121xx. <br />–>

</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>&quot;Fractional
generalization of Liouville equations&quot; </B></EM><BR>Chaos.
Vol.14. No.1. (2004) 123-127. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2004.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0312044">(nlin.CD/0312044)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Classical
canonical distribution for dissipative systems&quot; </B></EM><BR>Modern
Physics Letters B. Vol.17. No.23. (2003) 1219-1226.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2003.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0311536">(cond-mat/0311536)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Pure
stationary states of open quantum systems&quot;</B></EM><BR>Physical
Review E. Vol.66. No.5. (2002) 056116. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PRE2002.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0311177">(quant-ph/0311177)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantum
computer with mixed states and four-valued logic&quot; </B></EM><BR>Journal
of Physics A. Vol.35. No.25. (2002) 5207-5235.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2002.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0312131">(quant-ph/0312131)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Stationary
states of dissipative quantum systems&quot; </B></EM><BR>Physics
Letters A. Vol.299. No.2/3. (2002) 173-178. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2002.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5907">(arXiv:1107.5907)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantization
of non-Hamiltonian and dissipative systems&quot; </B></EM><BR>Physics
Letters A. Vol.288. No.3/4. (2001) 173-182. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2001.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0311159">(quant-ph/0311159)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Weyl
quantization of dynamical systems with flat phase space&quot;
</B></EM><BR>Moscow University Physics Bulletin. Vol.56. No.6.
(2001) 5-10. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB2001e.pdf">PDF</A><BR>Vestnik
Moscovskogo Universiteta. Seria 3. Fizika i Astronomiya. Vol.56.
No.6. (2001) 6-9. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB2001r.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantization
of non-Hamiltonian systems&quot; </B></EM><BR>Theoretical Physics.
Vol.2. (2001) 150-160. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TP2001.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantum
dissipative systems: IV. Analogues of Lie algebras and groups&quot;
</B></EM><BR>Theoretical and Mathematical Physics. Vol.110. No.2.
(1997) 168-178. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1997-2e.pdf">PDF</A>
<BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol. 110. No.2.
(1997) 214-227. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1997-2.pdf">PDF
</A>in Russian) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantum
dissipative systems: III. Definition and algebraic structure&quot;
</B></EM><BR>Theoretical and Mathematical Physics. Vol.110. No.1.
(1997) 57-67. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1997-1e.pdf">PDF</A><BR>(Teoreticheskaia
i Matematicheskaia Fizika. Vol. 110. No.1. (1997) 73-85. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1997-1.pdf">PDF
</A>in Russian) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Bosonic
string in affine-metric curved space&quot; </B></EM><BR>Physics
Letters B. Vol.323. No.3/4. (1994) 296-304. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLB1994.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/hep-th/0401223">(hep-th/0401223)
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Two-loop
beta-function for nonlinear sigma model with affine-metric manifold&quot;
</B></EM><BR>Modern Physics Letters A. Vol.9. No.26. (1994)
2411-2419. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLA1994.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantum
dissipative systems: I. Canonical quantization and quantum Liouville
equation&quot; </B></EM><BR>Theoretical and Mathematical Physics.
Vol.100. No.3. (1994) 1100-1112. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1994-1.pdf">PDF</A><BR>(Teoreticheskaia
i Matematicheskaia Fizika. Vol.100. No.3. (1994) 402-417. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1994-1.pdf">PDF
</A>in Russian) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantum
dissipative systems: II. String in a curved affine-metric
space-time&quot; </B></EM><BR>Theoretical and Mathematical Physics.
Vol.101. No.1. (1994) 1184-1190. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1994-2.pdf">PDF</A><BR>(Teoreticheskaia
i Matematicheskaia Fizika. Vol.101. No.1. (1994) 38-46. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1994-2.pdf">PDF
</A>in Russian) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>&quot;Quantization,
generating functional and conformal anomaly for a nonlinear
affine-metric sigma-model&quot; </B></EM><BR>Physics of Atomic
Nuclei. Vol.56. No.11. (1993) 1608-1612. <BR>(Yadernaia Fizika.
Vol.56. No.11. (1993) 269-276.) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PAN1993-1.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">A.P. Demichev, M.Z. Iofa, Yu.A.
Kubyshin, V.E. Tarasov<BR><EM><B>&quot;Possible manifestations of
multidimensionality of space-time in a simple mode&quot; </B></EM><BR>Physics
of Atomic Nuclei. Vol.56. No.11. (1993) 1582-1584.<BR>(Yadernaia
Fizika. Vol.56. No.11. (1993) 222-226.) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PAN1993-2.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">V.V. Belokurov, V.E.
Tarasov<BR><EM><B>&quot;Invariant regularization of infrared
divergences in the background field methods for two-dimensional
nonlinear theories&quot; </B></EM><BR>Moscow University Physics
Bulletin. Vol.46. No.6. (1991) 14-17. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB1991.pdf">PDF</A>
	</P>
<LI><P>V.V. Belokurov, V.E. Tarasov<BR><EM><B>&quot;Ultraviolet
finiteness of nonlinear two-dimensional sigma-models on
affine-metric manifolds&quot; </B></EM><BR>Theoretical and
Mathematical Physics. Vol.78. No.3. (1989) 334-337.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1989.pdf">PDF</A><BR>(Teoreticheskaia
i Matematicheskaia Fizika. Vol.78. No.3. (1989) 471-474. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1989.pdf">PDF
</A>in Russian) 
</P>

</UL> <H3 CLASS=“western”>Articles in refereed Proceedings: </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">G.M. Zaslavsky, V.E.
Tarasov<BR>&quot;Fractional generalization of Ginzburg-Landau and
nonlinear Schroedinger equations&quot; <BR>in Proceedings of the
ASME International Design Engineering Technical Conferences and
<BR>Computers and Information in Engineering Conference - DETC 2005,
6 B. <BR>(September 24-28, 2005 Long Beach, CA) pp.1407-1414.
(DECT2005-84266). 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Canonical
Gibbs distribution for dissipative systems&quot; <BR>in Proc. XVII
Int. Workshop on High Energy Physics and Quantum Field Theory.
<BR>(Samara-Saratov, Russia, September 4-11, 2003) <BR>Ed. by M.N.
Dubinin and V.I. Savrin (MSU, Moscow, 2004). pp.432-442. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Pure
stationary states of non-Hamiltonian and dissipative quantum
systems&quot; <BR>in Proc. XVI Int. Workshop on High Energy Physics
and Quantum Field Theory. <BR>(September 6-12, Moscow, 2001) <BR>Ed.
by M.N. Dubinin and V.I. Savrin (MSU, Moscow, 2002). pp.389-397.
(quant-ph/0201033) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Dynamical
quantization&quot; <BR>in Proc. XV Int. Workshop on High Energy
Physics and Quantum Field Theory. <BR>(Tver, Russia, September 7-13,
2000) <BR>Ed. by M.N. Dubinin and V.I. Savrin (MSU, Moscow, 2001).
pp.362-371. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Quantum
theory and non-Hamiltonian systems: path-integral approach&quot; <BR>in
Proc. XIV Int. Workshop on High Energy Physics and Quantum Field
Theory. <BR>(Moscow, Russia, May 27 - June 2, 1999) <BR>Ed. by B.B.
Levtchenko and V.I. Savrin (MSU, Moscow, 2000). pp.637-640. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Quantum
non-Hamiltonian systems: definition and algebraic structures&quot;
<BR>in Proc. XI Int. Workshop on High Energy Physics and Quantum
Field Theory.<BR>(Sankt-Petersburg, Russia, September 12-18, 1996)
<BR>Ed. by B.B. Levtchenko. (MSU, Moscow, 1997). pp.368-371. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><!--<a href="http://theory.sinp.msu.ru/~tarasov/preprint/hepth96.ps">-->&quot;Analog
of Lie algebra and Lie group for quantum non-Hamiltonian systems&quot;
<BR>in Proc. X Int. Workshop on High Energy Physics and Quantum
Field Theory. <BR>(Zvenigorod, Russia, September 20-26, 1995) <BR>Ed.
by B.B. Levtchenko. (MSU, Moscow, 1996). pp.310-316.
(hep-th/9601063) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><!--<a href="http://xxx.lanl.gov/abs/hep-th/9506053">-->&quot;Strings
and dissipative mechanics&quot; <BR>in Proc. IX Int. Workshop on
High Energy Physics and Quantum Field Theory. <BR>(Zvenigorod,
Russia, September 16-22, 1994) <BR>Ed. by B.B. Levtchenko. (MSU,
Moscow, 1995). pp.332-339. (hep-th/9506053) 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Phase space
path integral for non-Hamiltonian systems&quot; <BR>in Proc. Joint
Int. Workshop on High Energy Physics and Quantum Field
Theory<BR>(Zvenigorod, Russia, September 15-21, 1993)<BR>Ed. by B.B.
Levtchenko. (MSU, Moscow, 1994). pp.205-209. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;CompHEP
catalogue. Higgs decay modes in Standard Model (H --&gt; 2x, 3x
processes)&quot; <BR>in Proc. 2-nd Workshop on Physics at VLEPP
(Protvino, Russia, June 2-4, 1992) Supplement. 1992. pp.89-106. 
</P>
<LI><P>V.E. Tarasov<BR>&quot;Nonlinear two-dimensional sigma-model:
nonmetricity from non-holonomic functional and inconstant string
tension&quot; <BR>in Proc. Int. Confer. on Current problems of
fundamental sciences.<BR>(Moscow, Russia, October 28 - November 1,
1991) Vol.3. Ed. by I.B. Fyodorov. <BR>(Moscow, Moscow State Bauman
Technical University), 1991. pp.62-64. 
</P>

</UL> <H3 CLASS=“western”>Preprints: </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR>&quot;Fractional
stability&quot; 2007, 5p. <A HREF="http://arxiv.org/abs/0711.2117">arXiv:0711.2117
</A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Quantum
computations by quantum operations with mixed states.&quot; <BR>2002.
11p. LANL E-print archiv: quant-ph/0201033. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Open n-qubit
system as a quantum computer with four-valued logic&quot; <BR>Preprint
SINP MSU. No.2001-31/671. 25p. LANL E-print archiv:
quant-ph/0112023. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Quantization
of Lorenz-type systems&quot; <BR>Preprint SINP MSU. No.2001-22/662.
15p. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Quantization
of non-Hamiltonian systems&quot; <BR>Preprint SINP MSU. No.
2000-33/637. 15p. LANL E-print archiv: quant-ph/0108120. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Dissipative
quantum mechanics: The generalization of the canonical quantization
and von Neumann equation&quot; <BR>Preprint ICTP. No.IC-94-192. 23p.
LANL E-print archiv: hep-th/9410025. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ICTPpreprint2.pdf">PDF</A>
	</P>
<LI><P STYLE="margin-bottom: 0in">A.P. Demichev, M.Z. Iofa, Yu.A.
Kubyshin, V.E. Tarasov<BR>&quot;Possible manifestations of
multidimensionality of space-time in a simple models&quot; <BR>Preprint
SNUTP. No.92-106, Seoul: Seoul National Univ. Press, 1992. 9p. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>&quot;Dissipative
quantum dynamics and nonlinear sigma-model&quot; <BR>Preprint SINP
MSU. No.92-33/282. 22p. 
</P>
<LI><P>V.E. Tarasov, V.V. Belokurov <BR>&quot;The correlation
between the connection and the metric as ultraviolet finiteness
condition&quot; <BR>Preprint ICTP. No.IC-90-168. Trieste, 1990. 22p.
<A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ICTP-preprint1.pdf">PDF</A>
	</P>

</UL> <H3 CLASS=“western”>Scientific reports: </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">M.Z. Iofa, Yu.A. Kubyshin, A.P.
Demichev, V.E. Tarasov <BR>&quot;Investigation of gauge and string
aspects of M-theory&quot; <BR>Information Bulletin of Russian
Foundation for Basic Research, Vol.7. (1999) No.2. p.438. (in
Russian) 
</P>
<LI><P STYLE="margin-bottom: 0in">M.Z. Iofa, A.P. Demichev, Yu.A.
Kubyshin, V.E. Tarasov <BR>&quot;Quantization of the gravity models
and higher-order effects of string perturbation theory&quot;
<BR>Information Bulletin of Russian Foundation for Basic Research,
Vol.4. (1996) No.2. p.152. (in Russian) 
</P>
<LI><P>V.V. Belokurov, M.Z. Iofa, V.E. Tarasov <BR>&quot;Higher-order
effects of string perturbation theory and two-dimensional black
holes&quot; <BR>Information Bulletin of Russian Foundation for Basic
Research, Vol.2. (1994) No.2. p.525. (in Russian) 
</P>

</UL> <H3 CLASS=“western”>Scientific Popular Articles: </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">S. Belyaeva, V.E. Tarasov
<BR>&quot;Quantum Computer&quot;, (in Russian: &quot;V labirintah
Kvantovogo Mozga&quot;) <BR>Vokrug Sveta. Vol.2779. No.8. August
2005. pp.86-92. <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=1095">(in
Russian) </A>
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR>&quot;Quantum
Fields and Superstrings&quot;, (in Russian: &quot;Muzika Sfer&quot;)
<BR>Vokrug Sveta. Vol.2772. No.1. January 2005. pp.30-40 <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=524">(in
Russian) </A>
</P>
<LI><P>V.E. Tarasov<BR>&quot;Quantum World&quot;, (in Russian:
&quot;Portchionnii Mikromir&quot;) <BR>Vokrug Sveta. Vol.2766. No.7.
July 2004. pp.76-86. <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=375">(in
Russian) </A>
</P>

</UL> <H3 CLASS=“western”>Other Articles and Books: </H3> <UL>

<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><B>&quot;Method
of Solving C5 Problems of United State Exam in Mathematics&quot;
</B><BR>(MAKS Press, Moscow, 2013). - 80 p. (ISBN 978-5-317-04432-9)
in Russian. 
</P>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><B>&quot;The
Coordinate Method for Solving C2 Problems of United State Exam in
Mathematics&quot; </B><BR>(MAKS Press, Moscow, 2012). - 48 p. (ISBN
978-5-317-04054-3) in Russian. 
</P>
<LI><P>G.P. Berman, A.A. Vasiliev, N.S. Erokhin, L.M. Zeleny, V.A.
Ignatchenko, A. Iomin, E.Ya. Kogan, A.K. Kolovsky, <BR>R.R. Mukhin,
A.I. Neishtadt, S.V. Prants, V.E. Tarasov, A.M. Fridman, <BR>&quot;G.M.
Zaslavsky 1935-2008&quot;, (in Russian) <BR>Applied Nonlinear
Dynamics. Vol.17. No.1. (2009). pp.137-149. <A HREF="http://www.sgtnd.narod.ru/wts/rus/Zaslav.pdf">PDF
(in Russian) </A>
</P>

</UL> <P><BR><BR> </P> <H3 CLASS=“western”>Other Articles in Russian: </H3> <P>V.V. Tarasova, V.E. Tarasov, Criteria hereditarity of economic process and memory effect Young scientist [Molodoj Uchenyj]. 2016. No. 14 (118). P. 396-399. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Marginal utility for economic processes with memory Almanac of Modern Science and Education [Almanah Sovremennoj Nauki i Obrazovaniya]. 2016. No. 7 (109). P. 108-113. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Price elasticity of demand with memory Economics, Sociology and Law. [Ekonomika, Sociologiya i Pravo]. 2016. No. 4-1. P. 98-106. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic indicators: Ambiguity and memory effects Economics. Management. Law. [Ekonomika. Upravlenie. Pravo] 2016. No. 3 (66). P. 3-5. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Elasticity of OTC cash turnover of currency market of Russian Federation Actual Problems of Humanities and Natural Sciences. [Aktualnye Problemy Gumanitarnyh i Estestvennyh Nauk]. 2016. No. 7-1 (90). P. 207-215. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, On applicability of point elasticity of demand on price to exchange trading on US dollar Scientific Perspective [Nauchnaya Perspektiva]. 2016. No. 6 (76). P. 6-11. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic indicator that generalizes average and marginal values Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 11-1 (76-1). P. 817-823. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Marginal values of non-integer order in economic analysis Azimuth Scientific Research: Economics and Management [Azimut Nauchnih Issledovanii: Ekonomika i Upravlenie]. 2016. No. 3 (16). P. 197-201. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, A generalization of concepts of accelerator and multiplier to take into account memory effects in macroeconomics Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 10-3 (75-3). P. 1121-1129. [in Russian] </P> <P>\item V.V. Tarasova, V.E. Tarasov, Deterministic factor analysis: methods of integro-differentiation of non-integral order Actual Problems of Economics and Law [Aktualnye Problemy Ekonomiki i Prava]. 2016. Vol. 10. No. 4. P. 77-87. DOI: 10.21202/1993-047X.10.2016.4.77-87 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Non-local measures of risk aversion in the economic process Economics: Theory and Practice [Ekonomika: Teoriya i Praktika]. 2016. No. (44). P. 54-58. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Hereditary generalization of Harrod-Domar model and memory effects Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 10-2 (75-2). P. 72-78. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Memory effects in hereditary Harrod-Domar model Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2016. No. 32 (74). P. 38-44. DOI: 10.20861/2304-2338-2016-74-002 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Keynesian model of economic growth with memory Economics and Management: Problems, Solutions [Ekonomika i Upravlenie: Problemy i Resheniya]. 2016. No. 10-2 (58). P. 21-29. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Memory effects in hereditary Keynes model Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2016. No. 38 (80). P. 56-61. DOI: 10.20861/2304-2338-2016-80-001 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Influence of memory effects on world economics and business Azimuth Scientific Research: Economics and Management [Azimut Nauchnih Issledovanii: Ekonomika i Upravlenie]. 2016. Vol. 5. No. 4 (17). P. 369-372. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Dynamic intersectoral models with memory that generalize Leontief model Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 2-1 (79-1). P. 913-924. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Risk aversion for investors with memory: Hereditary generalizations of Arrow-Pratt measure Financial Journal [Finansovyj Zhurnal]. 2017. No. 2 (36). P. 46-63. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Chronological exponent for processes with memory and dynamic intersectoral economic models Science and Education Today [Nauka i Obrazovanie Segodnya]. 2017. No. 4 (15). P. 29-39. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic model of natural growth with dynamic memory Actual Problems of Humanities and Natural Sciences. [Aktualnye Problemy Gumanitarnyh i Estestvennyh Nauk]. 2017. No. 4-2. P. 51-58. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Macroeconomic models with dynamic memory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No.3-2 (80-2). P. 26-35. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Notion of dynamic memory in economic theory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 6 (83). P. 868-880. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Exact discretization of economic accelerators and multipliers with memory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 7 (84). P. 1063-1069. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Discrete accelerator with memory in macroeconomics Economics. 2017. No. 8 (29). P. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Long-term and short-term memory in discrete economic models Competitiveness in a global world: economics, science, technology. [Konkurentosposobnost v Globalnom Mire: Ekonomika, Nauka, Tekhnologii] 2017. No. 7. P. 155-160. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Discrete accelerator with memory in macroeconomics Economics. 2017. No. 8 (29) P. 32-40. </P> <P>\V.V. Tarasova, V.E. Tarasov, Accelerators in macroeconomics: a comparison of discrete and continuous approaches Scientific Journal [Nauchnyy Zhurnal]. 2017. No. 8 (21). P. 4-14.</P> <P><BR><BR> </P> <P>V.V. Tarasova, V.E. Tarasov, Microeconomic meaning of derivatives of non-integer order Science and Education Today [Nauka i Obrazovanie Segodnya]. 2017. No. 8 (19). P. 32-39 </P> <P>\V.V. Tarasova, V.E. Tarasov, Model of economic growth with constant rate and dynamic memory Economics, Sociology and Law. [Ekonomika, Sociologiya i Pravo]. 2017. No. 8. P. 18-24. </P> <P STYLE=“border-top: none; border-bottom: 1.10pt double #808080; border-left: none; border-right: none; padding-top: 0in; padding-bottom: 0.02in; padding-left: 0in; padding-right: 0in”> <!–<H2> UNPUBLISHED:</H2> <BODY> <UL> <LI>“Quantum Mechanics of Non-Hamiltonian and Dissipative Systems.” - Monographs. Moscow: 2000. 750 pp. (RFBR-00-02-30040d) <LI>“Quantum Dissipative Systems: Definition and Algebraic Structures.” Talk on Workshop on Quantum Dissipation and Applications. (29 July - 9 August 1996, ICTP, Trieste, Italy)) 9p. </UL>–><BR><BR> </P> <P STYLE=“margin-bottom: 0in”><A HREF=“http://theory.sinp.msu.ru/~tarasov”>Back to V. Tarasov</A> </P> <HR> <ADDRESS>Last update: May 11, 2016<BR><A HREF=“mailto:tarasov@theory.sinp.msu.ru”>tarasov@theory.sinp.msu.ru</A> </ADDRESS> </BODY> </HTML>