<HTML>
<H2 CLASS=“western”>PAGE on RECONSTRUCTION ! </H2>
<HEAD>
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8"> <TITLE>FULL LIST OF PUBLICATIONS </TITLE> <META NAME="GENERATOR" CONTENT="LibreOffice 4.0.4.2 (Linux)"> <META NAME="CREATED" CONTENT="0;0"> <META NAME="CHANGEDBY" CONTENT="Vasily Tarasov"> <META NAME="CHANGED" CONTENT="20180122;13235400"> <META NAME="CHANGEDBY" CONTENT="Vasily Tarasov"> <STYLE TYPE="text/css"> <!-- H2.cjk { font-family: "AR PL UMing HK" } H2.ctl { font-family: "Lohit Devanagari" } H3.cjk { font-family: "AR PL UMing HK" } H3.ctl { font-family: "Lohit Devanagari" } --> </STYLE>
</HEAD> <BODY LANG=“en-US” DIR=“LTR”> <H2 CLASS=“western”>VASILY E. TARASOV </H2> <H2 CLASS=“western”>LIST OF PUBLICATIONS </H2> <H3 CLASS=“western”>BOOKS </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>"Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media"</B><BR>(Springer, HEP, 2011) 504 pages. See:<A HREF="http://www.springer.com/physics/complexity/book/978-3-642-14003-7"> Springer </A>and <A HREF="http://www.ozon.ru/context/detail/id/6005695/">Ozon </A>(ISBN: 978-3-642-14002-0) <A HREF="http://www.springerlink.com/content/978-3-642-14003-7#section=938115&page=1">Read Online </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>"Gravity, Black Holes and Relativistic Mechanics" </B><BR><A HREF="http://vuzkniga.ru/index.php?ex=shb&t=vb&id=420">(Vuzovskaya kniga, Moscow, 2015) 206 pages [in Russian]</A> (ISBN: 978-5-9502-0618-4) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>"Theoretical Physics Models with Integro-Differentiation of Fractional Order" </B><BR>(IKI, RCD, 2011) 568 pages. See:<A HREF="http://www.ozon.ru/context/detail/id/8685654/"> ozon.ru </A>(ISBN: 978-5-4344-013-8) in Russian </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>"Quantum Mechanics of Non-Hamiltonian and Dissipative Systems" </B><BR>(Elsevier Science, 2008) 540 pages. See:<A HREF="http://www.elsevier.com/books/quantum-mechanics-of-non-hamiltonian-and-dissipative-systems/tarasov/978-0-444-53091-2#"> Elsevier </A>and <A HREF="http://www.amazon.ca/Quantum-Mechanics-Non-Hamiltonian-Dissipative-Systems/dp/0444530916">Amazon </A>,<!--<A HREF="http://books.google.ru/books?id=pHK11tfdE3QC&printsec=frontcover&dq=Tarasov+Vasily+E."> Google Book </A>--><!--and <A HREF="http://gen.lib.rus.ec/search">Library Genesis</A>--> <BR>(ISBN-13: 978-0-444-53091-2 ISBN-10: 0-444-53091-65-7035-2390-7) <A HREF="http://books.google.ru/books?id=pHK11tfdE3QC&printsec=frontcover&dq=Quantum+Mechanics+of+Non-Hamiltonian+and+Dissipative+Systems&hl=ru&ei=Em1lTJj5EdCkOISu3MIN&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCgQ6AEwAA#v=onepage&q&f=false">Read Online</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><B>"Quantum Mechanics: Lectures on Foundations of the Theory" </B><BR>(Vuzovskaya kniga, Moscow, 2000) 326 pages. (ISBN: 5-89522-107-6) in Russian <A HREF="http://gen.lib.rus.ec/book/index.php?md5=FAA3DD1C53E68BABFA8FCC138F8D2B60">DJVU</A><BR><A HREF="http://www.vuzkniga.ru/index2.php?ex=shb&t=sell&id=48">Second Edition: Vuzovskaya kniga, Moscow, 2005. (ISBN: 5-9502016-5-5)</A> in Russian </P> <LI><P>V.E. Tarasov<BR><B>"Mathematical Introduction to Quantum Mechanics" </B><BR>(MAI Publishing Co., Moscow, 2000) 332 pages. <BR>(ISBN: 5-7035-2390-7) in Russian <A HREF="http://www.urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=17652">in Editorial URSS</A><!-- <LI> V.E. Tarasov <br> <em><b>
“Fractional Calculus and Physics on Fractals” </em></b><br /> in “Dynamical Chaos and Non-equilibrium Statistical Mechanics:<br /> From Rigorous Results to Applications in Nano-systems” Lecture Notes Series.<br /> (Singapore University Press and World Scientific Publishing Co., Singapore, 2009) to be published. </A> –></P> </UL>
<H3 CLASS=“western”>CHAPTERS in BOOKS </H3>
<UL> <LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>" Continuum Mechanics of Fractal Media" Chapter in {\it Encyclopedia of Continuum Mechanics}."</B></EM> <BR> Edited by H. Altenbach, A. Ochsner. Berlin, Heidelberg: Springer, 2018. pp. 1-8. </BR> ISBN: 978-3-662-53605-6 DOI: 10.1007/978-3-662-53605-6_69-1 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>" Fractional deterministic factor analysis of economic processes with memory and nonlocality. "</B></EM> <BR> Chapter 9. in {\it Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives}.</BR> Edited by M. Edelman, E. Macau, M.A.F. Sanjuan. New York: Springer International Publishing AG, 2018. pp. 173-189. <BR> DOI: 10.1007/978-3-319-68109-2_9 </BR></P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B>" Discretely and continuously distributed dynamical systems with fractional nonlocality. "</B></EM> <BR> In: {\it Fractional Dynamics} Edited by C. Cattani, H.M. Srivastava, X.-J. Yang.</BR> (De Gruyter Open, Warsaw, Berlin, 2015) Chapter 3. pp.s 31-49. DOI (Chapter): 10.1515/9783110472097-003</P>
<LI><P>V.E. Tarasov, <BR><EM><B>" Fractional Dynamics of Open Quantum Systems"</B></EM><BR> Chapter 19 (pages 447-480) in the book "Fractional Dynamics in Physics: Recent Advances" <BR> J. Klafter, S.C. Lim, R. Metzler (Eds.) (World Scientific, Singapore, 2012) (ISBN: 978-981-4304-58-8) <A HREF=“http://www.worldscibooks.com/physics/8087.html”>HTML</A> </P>
<LI><P>V.E. Tarasov, <BR><EM><B>"Fractional Zaslavsky and Henon map"</B></EM><BR>Chapter 1 (pages 1-26) in the book "Long-range Interactions, Stochasticity and Fractional Dynamics" <BR>A.C.J. Luo, V. Afraimovich (Eds.) (Springer and HEP, 2010) 275p. <A HREF=“http://www.springer.com/new+%26+forthcoming+titles+(defaut)/book/978-3-642-12342-9”>HTML</A>. <A HREF=“http://arxiv.org/abs/1107.5148”>(arXiv:1107.5148) </A> </P>
<LI><P>V.E. Tarasov, <BR><EM><B>"Quantum Mechanics"</B></EM> Chapter 2 (pages 60-124) in the book "Quantum Physics"<BR> Edited by G.G. Spirin (Aviaizdat, Moscow, 2002). 346 pages. in Russian <!–O.A. Gordeev, E.I. Konovalova, T.P. Martinenko, G.A. Odintsova, <br /> V.E. Tarasov, O.I. Tretiakova, E.P. Vaulin <br /> –>
</P>
</UL>
<H3 CLASS=“western”>ARTICLES in refereed journals </H3>
<UL>
<UL> <H3 CLASS="western">2018 </H3> </UL> </UL>
<UL> <LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Dynamic intersectoral models with power-law memory.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 54. P. 100-117.</BR> DOI: 10.1016/j.cnsns.2017.05.015 (arXiv:1712.09087) </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Concept of dynamic memory in economics.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. 2018. Vol.55. P.127-145.</BR> DOI: 10.1016/j.cnsns.2017.06.032 (arXiv:1712.09088)</P>
<UL>
<UL> <H3 CLASS="western">2017 </H3> </UL> </UL>
<LI><P>V.E. Tarasov, <BR><EM><B> Fractional mechanics of elastic solids: Continuum aspects.</B></EM><BR> Journal of Engineering Mechanics. Vol.143. No.5. (2017) Article ID: D4016001. 8 pages. DOI: 10.1061/(ASCE)EM.1943-7889.0001074. </FONT> </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Exact discretization of fractional Laplacian. </B></EM><BR> Computers and Mathematics with Applications. 2017. Vol.73. No.5. P.855-863. DOI: 10.1016/j.camwa.2017.01.012 </P>
<LI><P>V.E. Tarasov, V.V. Tarasova, <BR><EM><B> Time-dependent fractional dynamics with memory in quantum and economic physics.</B></EM><BR> Annals of Physics. 2017. Vol. 383. P. 579-599. DOI: 10.1016/j.aop.2017.05.017 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. </B></EM><BR> Fundamenta Informaticae. Vol. 151. (2017) P.431-442. DOI: 10.3233/FI-2017-1502 </FONT> </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Logistic map with memory from economic model.</B></EM><BR> Chaos, Solitons and Fractals. 2017. Vol. 95. P.84-91. DOI: 10.1016/j.chaos.2016.12.012 (arXiv:1712.09092) </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Accelerators in macroeconomics: Comparison of discrete and continuous approaches.</B></EM><BR> American Journal of Economics and Business Administration. 2017. Vol. 9. No. 3. P. 47-55. DOI: 10.3844/ajebasp.2017.47.55 (arXiv:1712.09605) </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Exact discretization of economic accelerator and multiplier with memory.</B></EM><BR> Fractal and Fractional. 2017. Vol. 1. No. 1. Article ID: 6. DOI: 10.3390/fractalfract1010006 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Accelerator and multiplier for macroeconomic processes with memory. </B></EM><BR> IRA-International Journal of Management and Social Sciences. 2017. Vol. 9. No. 3. P. 86-125. DOI: 10.21013/jmss.v9.v3.p1 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Exact solution of T-difference radial Schrodinger equation. </B></EM><BR> International Journal of Applied and Computational Mathematics. <BR> 2017. Vol. 3. No. 4. P. 2779-2784. DOI: 10.1007/s40819-016-0270-8 https://link.springer.com/article/10.1007/s40819-016-0270-8 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Discrete wave equation with infinite differences. </B></EM><BR> Applied Mathematics and Information Sciences Letters. 2017. Vol.5. No.2. P.41-44. DOI: 10.18576/amisl/050201 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic growth model with constant pace and dynamic memory. </B></EM><BR> Problems of Modern Science and Education. 2017. No.2 (84). P.40-45.
DOI: 10.20861/2304-2338-2017-84-001 (arXiv:1701.06299)
</P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic interpretation of fractional derivatives. </B></EM><BR> Progress in Fractional Differentiation and Applications. 2017. Vol.3. No.1. P.1-7. DOI: 10.18576/pfda/030101 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Comments on the article Long and short memory in economics: fractional-order difference and differentiation. </B></EM><BR> Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2017. No.31 (113). P.26-28. <BR> DOI: 10.20861/2304-2338-2017-113-002 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Logistic map with memory from economic model. </B></EM><BR> Chaos, Solitons and Fractals. 2017. Vol. 95. P.84-91. DOI: 10.1016/j.chaos.2016.12.012 </P>
<LI><P>V.E. Tarasov <BR><EM><B> Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. </B></EM><BR> Fundamenta Informaticae. 2017. Vol.151. P.431-442. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/FI2017.pdf”>PDF</A> </P>
<LI><P>V.V.Tarasova, V.E. Tarasov <BR»<EM><B> Economic interpretation of fractional derivatives. </B></EM><BR> Progress in Fractional Differentiation and Applications. 2017. Vol.3. No.1. P.1-7. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/PFDA2017.pdf”>PDF</A></P>
<LI><P>V.V.Tarasova, V.E. Tarasov <BR><EM><B> Logistic map with memory from economic model. </B></EM><BR> Chaos, Soliton and Frcatls. Vol.95. (2017) 84-91. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/CSF2017.pdf”>PDF</A></FONT></P>
<LI><P>V.E. Tarasov <BR><EM><B> Exact discretization of fractional Laplacian. </B></EM><BR> Computer and Mathematics with Applications. 2017. Vol.73. No.5. P.855-863. <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/CSF2017.pdf”>PDF</A></FONT></P>
<UL>
<UL> <H3 CLASS="western">2016 </H3> </UL> </UL>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discretization of Schrodinger equation.</B></EM><BR> Physics Letters A. Vol.380. No.1-2. (2016) 68-75. DOI: 10.1016/j.physleta.2015.10.039 </P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discretization by Fourier transforms.</B></EM><BR> Communications in Nonlinear Science and Numerical Simulation. Vol.37. (2016) 31-61. DOI: 10.1016/j.cnsns.2016.01.006 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> United lattice fractional integro-differentiation. </B></EM><BR> Fractional Calculus and Applied Analysis. Vol.19. No.3. (2016) 625-664. DOI: 10.1515/fca-2016-0034 </P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov, <BR><EM><B> Exact discrete analogs of canonical commutation and uncertainty relations. </B></EM><BR> Mathematics. Vol.4. No.3. (2016) Article ID 44. DOI: 10.3390/math4030044 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> What discrete model corresponds exactly to gradient elasticity equation? </B></EM><BR> Journal of Mechanics of Materials and Structures. Vol. 11. No. 4. (2016) 329-343 DOI: 10.2140/jomms.2016.11.329 < </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Some identities with generalized hypergeometric functions. </B></EM><BR> Applied Mathematics and Information Sciences. Vol.10. No.5. (2016) 1729-1734. DOI: 10.18576/amis/100511 </P>
<LI><P>V.E. Tarasov, </FONT> Geometric interpretation of fractional-order derivative. </B></EM><BR> Fractional Calculus and Applied Analysis. Vol.19. No.5. (2016) 1200-1221. DOI: 10.1515/fca-2016-0062 </FONT> </P>
<LI><P>V.E. Tarasov, <BR><EM><B>" Electric field in media with power-law spatial dispersion. </B></EM><BR> Modern Physics Letters B. Vol.30. No.10. (2016) Article ID: 1650132 (11 pages) DOI: 10.1142/S0217984916501323 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>" Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. </B></EM><BR> Nonlinear Dynamics. Vol.86. (2016) No.3. 1745-1759. DOI: 10.1007/s11071-016-2991-y </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Discrete model of dislocations in fractional nonlocal elasticity. </B></EM><BR> Journal of King Saud University - Science. Vol.28. No.1. (2016) 33-36. DOI 10.1016/j.jksus.2015.04.001 </P>
<LI><P>V.E. Tarasov, <BR><EM><B> Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. </B></EM><BR> Meccanica. Vol.51. No.1. (2016) 125-138. DOI: 10.1007/s11012-015-0190-4 </P>
<LI><P STYLE=“margin-bottom: 0in”>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Elasticity for economic processes with memory: fractional differential calculus approach. </B></EM><BR> Fractional Differential Calculus. 2016. Vol.6. No.2. P.219-232.DOI: 10.7153/fdc-06-14 </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B> Economic accelerator with memory: discrete time approach. </B></EM> <BR>Problems of Modern Science and Education. 2016. No. 36 (78). P. 37-42. DOI: 10.20861/2304-2338-2016-78-002 (arXiv:1612.07913) </P>
<LI><P>V.E. Tarasov, V.V. Tarasova, Long and short memory in economics: fractional-order difference and differentiation. </B></EM><BR> IRA-International Journal of Management and Social Sciences. 2016. Vol.5. No.2. P.327-334. DOI: 10.21013/jmss.v5.n2.p10 (arXiv:1612.07913) </P>
<LI><P>V.V. Tarasova, V.E. Tarasov, <BR><EM><B>" Fractional dynamics of natural growth and memory effect in economics", </B></BR> European Research. 2016. No. 12 (23). P. 30-37. DOI: 10.20861/2410-2873-2016-23-004 (arXiv:1612.09060) </P>
<LI><P>V.E. Tarasov <BR><EM><B>" Local fractional derivatives of differentiable functions are integer-order derivatives or zero",</B></EM> <BR>International Journal of Applied and Computational Mathematics. Vol.2. No.2. (2016) 195-201. DOI: 10.1007/s40819-015-0054-6 </P>
<LI><P>V.E. Tarasov <BR><EM><B>On chain rule for fractional derivatives.</B></EM> <BR>Communications in Nonlinear Science and Numerical Simulation. Vol.30. No.1-3. (2016) 1-4. DOI: 10.1016/j.cnsns.2015.06.007 </P>
<LI><P>V.E. Tarasov <BR><EM><B>" Leibniz rule and fractional derivatives of power functions", </B></EM> <BR>Journal of Computational and Nonlinear Dynamics. Vol.11. No.3. (2016) 031014. DOI: 10.1115/1.4031364 </P>
<LI><P>V.E. Tarasov <BR><EM><B>"Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives",</B></EM> <BR>Fractional Differential Calculus. Vol.6. No.1. (2016) 147-149. >DOI: 10.7153/fdc-06-10 </P>
<LI><P>V.E. Tarasov <BR><EM><B>"Heat transfer in fractal materials", </B></EM> <BR>International Journal of Heat and Mass Transfer. Vol.93. (2016) 427-430. DOI: 10.1016/j.ijheatmasstransfer.2015.09.086 </P> <LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>"Acoustic waves in fractal media: non-integer dimensional spaces approach",</B></EM> <BR>Wave Motion. Vol.63. (2016) 18-22. DOI: 10.1016/j.wavemoti.2016.01.003 </P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>"Poiseuille equation for steady flow of fractal fluid", </B></EM> <BR>International Journal of Modern Physics B. Vol.30. No.22. (2016) 1650128. (13 pages) DOI: 10.1142/S0217979216501289 </P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM> <B>"Exact discretization of Schroedinger equation",</B></EM> <BR>Physics Letters A. Vol.380. No.1-2. (2016) 68-75. <A HREF=“http://www.sciencedirect.com/science/article/pii/S0375960115009111”>HTML</A> <A HREF=“http://theory.sinp.msu.ru/~tarasov/PDF/PLA2016.pdf”>PDF</A> </P>
<LI><P STYLE=“margin-bottom: 0in”>V.E. Tarasov <BR><EM><B>"Exact discretization by Fouries transforms",</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.37. (2016) 31-61. <A HREF=“http://www.sciencedirect.com/science/article/pii/S1007570416000095”>HTML</A>
</P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Geometric interpretation of fractional-order derivative",</B></EM><BR>Fractional Calculus and Applied Analysis. Vol.19. No.5. (2016) 120012214. <A HREF="http://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-3.xml">HTML</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"United lattice fractional integro-differentiation",</B></EM><BR>Fractional Calculus and Applied Analysis. Vol.19. No.3. (2016) 625-664. <A HREF="http://www.degruyter.com/view/j/fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml">HTML</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"On chain rule for fractional derivatives",</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.30. No.1-3. (2016) 1-4. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570415002087">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"What discrete model corresponds exactly to a gradient elasticity equations?",</B></EM><BR>Journal of Mechanics of Materials and Structures. Vol.11. No.4. (2016) 329-343. <A HREF="http://www.msp.org/jomms/2016/11-4/p01.xhtml">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JOMMS2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Leibniz rule and fractional derivatives of power functions",</B></EM><BR>Journal of Computational and Nonlinear Dynamics. Vol.11. No.3. (2016) 0310144. (4 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JCND2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity",</B></EM><BR>Meccanica. Vol.51. No.1. (2016) 125-138. <A HREF="http://link.springer.com/article/10.1007%2Fs11012-015-0190-4">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/M2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Partial fractional derivatives of Riesz type and nonlinearity fractional differential equations",</B></EM><BR>Nonlinear Dynamics. Vol.86. (2016) 1745-1759. doi: 10.1007/s11071-016-2991-y <A HREF="http://link.springer.com/article/10.1007/s11071-016-2991-y">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.V. Tarasova, V.E. Tarasov <BR><EM><B>"Elasticity for economic processes with memory: fractional differential calculus approach",</B></EM><BR>Fractional Differential Calculus. Vol.6. No.2. (2016) 219-232. <A HREF="http://fdc.ele-math.com/forthcoming">HTML</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, V.V.Tarasova <BR><EM><B>"Long and short memory in economics: fractional-order difference and differentiation",</B></EM><BR>IRA-International Journal of Managment and Social Sciences. Vol.5. No.2. (2016) 327-334. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IRA2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.V. Tarasova, V.E. Tarasov <BR><EM><B>"Price Elasticity of Demand with Memory" [in Russian],</B></EM><BR>Economics, Sociology and Law. Vol.2016. No.4-1. (2016) 98-106. <A HREF="http://naukaplus.ru/archive/2016/4/1/24">HTML</A> <A HREF="http://elibrary.ru/item.asp?id=26093967&">HTML</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives",</B></EM><BR>Fractional Differential Calculus. Vol.6. No.1. (2016) 147-149. <A HREF="http://fdc.ele-math.com/forthcoming">HTML</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Poiseuille equation for steady flow of fractal fluid",</B></EM><BR>Internationsl Journal of Modern Physics B. Vol.30. No.22. (2016) 1650128 (13 pages). <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217979216501289">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Electric field in media with power-law spatial dispersion",</B></EM><BR>Modern Physics Letters B. Vol.30. No.10. (2016) 1650132 (11 pages). <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217984916501323">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Discrete models of dislocations in fractional nonlocal elasticity",</B></EM><BR>Journal of King Saud University - Science. Vol.28. No.1. (2016) 33-36. <A HREF="http://www.sciencedirect.com/science/article/pii/S1018364715000361">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JKSUS2016.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Heat transfer in fractal materials",</B></EM><BR>International Journal of Heat and Mass Transfer. Vol.93. (2016) 427-430. <A HREF="http://www.sciencedirect.com/science/article/pii/S0017931015309200">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJHMT2016.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Acoustic waves in fractal media: non-integer dimensional spaces approach",</B></EM><BR>Wave Motion. Vol.63. (2016) 18-220. <A HREF="http://www.sciencedirect.com/science/article/pii/S0165212516000044">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/WM2016.pdf">PDF</A> </P> <LI><P>V.E. Tarasov <BR><EM><B>"Local fractional derivatives of differentiable functions are integer-order derivatives or zero",</B></EM><BR>International Journal of Applied and Computational Mathematics. Vol.2. No.2. (2016) 195-201. <A HREF="http://link.springer.com/article/10.1007%2Fs40819-015-0054-6">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJACM2016.pdf">PDF</A></P> <UL> <UL> <H3 CLASS="western">2015 </H3> </UL> </UL> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Lattice fractional calculus",</B></EM><BR>Applied Mathematics and Computation. Vol.257. (2015) 12-33. <A HREF="http://www.sciencedirect.com/science/article/pii/S0096300314015562">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AMC2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Exact discrete analogs of derivatives of integer orders: Differences as infinite series"</B></EM><BR>Journal of Mathematics. Vol.2015. (2015) Article ID 134842. (8 pages) <A HREF="http://dx.doi.org/10.1155/2015/134842">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JM2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractal electrodynamics via non-integer dimensional space approach",</B></EM><BR>Physics Letters A. Vol.379. No.36. (2015) 2055-2061. <A HREF="http://www.sciencedirect.com/science/article/pii/S0375960115005514">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2015-2.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Electromagnetic waves in non-integer dimensional spaces and fractals",</B></EM><BR>Chaos, Solitons and Fractals. Vol.81. Part A. (2015) 38-42. <A HREF="http://www.sciencedirect.com/science/article/pii/S0960077915002568">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CSF2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Comments on 'The Minkowski's space-time is consistent with differential geometry of fractional order",</B></EM><BR>Physics Letters A. Vol.379. No.14-15. (2015) 1071-1072. <A HREF="http://www.sciencedirect.com/science/article/pii/S0375960115001176">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Comments on 'Riemann-Christoffel tensor in differential geometry of fractional order application to fractal space-time",</B></EM><BR>Fractals. Vol.21. No.2. (2015) 1575001. <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0218348X15750018">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/F2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Non-linear fractional field equations: weak non-linearity at power-law non-locality",</B></EM><BR>Nonlinear Dynamics. Vol.80. No.4. (2015) 1665-1672. <A HREF="http://link.springer.com/article/10.1007/s11071-014-1342-0">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2015.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional Liouville equation on lattice phase-space",</B></EM><BR>Physica A: Statistical Mechanics and its Applications. Vol.421. (2015) 330-342. <A HREF="http://www.sciencedirect.com/science/article/pii/S0378437114009820">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PA2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.04351">(arXiv:1503.04351) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Vector calculus in non-integer dimensional space and its applications to fractal media",</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.20. No.2. (2015) 360-374. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570414002317">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2015-1.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02022">(arXiv:1503.02022) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Elasticity of fractal materials by continuum model with non-integer dimensional space",</B></EM><BR>Comptes Rendus Mechanique. Vol.343. No.1. (2015) 57-73. <A HREF="http://www.sciencedirect.com/science/article/pii/S163107211400179X">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CRM2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03060">(arXiv:1503.03060) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional-order difference equations for physical lattices and some applications",</B></EM><BR>Journal of Mathematical Physics. Vol.56. No.10. (2015) 1035068. <A HREF="http://scitation.aip.org/content/aip/journal/jmp/56/10/10.1063/1.4933028">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2015.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity",</B></EM><BR>Progress in Fractional Differentiation and Applications. Vol.1. No.4. (2015) 243-258. <A HREF="http://naturalspublishing.com/Article.asp?ArtcID=9764">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PFDA2015.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, E.C. Aifantis, <BR><EM><B>"Non-standard extensions of gradient elasticity: Fractional non-locality, memory and fractality",</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.22. No.1-3. (2015) 197-227. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570414004742">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2015-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1404.5241">(arXiv:1404.5241) </A> </P> <LI><P>V.E. Tarasov <BR><EM><B>"Lattice model with nearest-neighbor and next-nearest-neighbor intearctions of gradient elasticity",</B></EM><BR>Discontinuity, Nonlinearity, and Complexity. Vol.4. No.1. (2015) 11-23. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/DNC2015.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03633">(arXiv:1503.03633)<!-- 2014 --> </A> </P> <UL> <UL> <H3 CLASS="western">2014 </H3> </UL> </UL> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional quantum fields theory: from lattice to continuum",</B></EM><BR>Advances in High Energy Physics. Vol.2014. (2014) 957863. (14 pages) <A HREF="http://www.hindawi.com/journals/ahep/2014/957863/">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AHEP2014.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Toward lattice fractional vector calculus",</B></EM><BR>Journal of Physics A. Vol.47. No.35. (2014) 355204. (51 pages) <A HREF="http://iopscience.iop.org/1751-8121/47/35/355204">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2014.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Anisotropic fractal media by vector calculus in non-integer dimensional space",</B></EM><BR>Journal of Mathematical Physics. Vol.55. No.8. (2014) 083510. <A HREF="http://scitation.aip.org/content/aip/journal/jmp/55/8/10.1063/1.4892155">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02392">(arXiv:1503.02392) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Flow of fractal fluid in pipe: Non-integer dimensional space approach",</B></EM><BR>Chaos, Solitons and Fractals. Vol.67. (2014) 26-37. <A HREF="http://www.sciencedirect.com/science/article/pii/S0960077914001039">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CSF2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.02842">(arXiv:1503.02842) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional-order variational derivative",</B></EM><BR>International Journal of Applied Mathematics. Vol.27. No.5. (2014) 491-518. <A HREF="http://www.diogenes.bg/ijam/contents/2014-27-5/7/index.html">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJAM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.07677">(arXiv:1502.07677) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Large lattice fractional Fokker-Planck equation",</B></EM><BR>Journal of Statistical Mechanics. Vol.2014. No.9. (2014) P09036. (26 pages) <A HREF="http://iopscience.iop.org/1742-5468/2014/9/P09036">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JSM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03636">(arXiv:1503.03636) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional diffusion equations for lattice and continuum: Grunwald-Letnikov differences and derivatives approach",</B></EM><BR>International Journal of Statistical Mechanics. Vol.2014. (2014) 873529. (7 pages) <A HREF="http://www.hindawi.com/archive/2014/873529/">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJSM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.03201">(arXiv:1503.03201) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Lattice with long-range interaction of power-law type for fractional non-local elasticity"</B></EM><BR>International Journal of Solids and Structures. Vol.51. No.15-16. (2014) pp.2900-2907. <A HREF="http://www.sciencedirect.com/science/article/pii/S0020768314001693">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJSS2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.05492">(arXiv:1502.05492) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Lattice model of fractional and gradient elasticity: Long-range interaction of Grunwald-Letnikov-Riesz type"</B></EM><BR>Mechanics of Materials. Vol.70. No.1. (2014) 106-114. <A HREF="http://www.sciencedirect.com/science/article/pii/S016766361300255X">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MOM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.06268">(arXiv:1502.06268) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"General lattice model of gradient elasticity"</B></EM><BR>Modern Physics Letters B. Vol.28. No.7. (2014) 1450054. (17 pages) <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217984914500547">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1501.01435">(arXiv:1501.01435) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, E.C. Aifantis <BR><EM><B>"Towards fractional gradient elasticity"</B></EM><BR>Journal of Mechanical Behavior of Materials. Vol.23. No.1-2. (2014) 41-46. <A HREF="http://www.degruyter.com/view/j/jmbm.2014.23.issue-1-2/jmbm-2014-0006/jmbm-2014-0006.xml?format=INT">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMBM2014.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1307.6999">(arXiv:1307.6999) </A> </P> <LI><P>V.E. Tarasov <BR><EM><B>"Fractional gradient elasticity from spatial dispersion law"</B></EM><BR>ISRN Condensed Matter Physics. Vol.2014. (2014) 794097. (13 pages) <A HREF="http://www.hindawi.com/journals/isrn/2014/794097/">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ISRN-CMP2014.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1306.2572">(arXiv:1306.2572)<!-- 2013 --> </A> </P> <UL> <UL> <H3 CLASS="western">2013 </H3> </UL> </UL> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Uncertainty relation for non-Hamiltonian quantum systems"</B></EM><BR>Journal of Mathematical Physics. Vol.54. No.1. (2013) 012112. (13 pages) <A HREF="http://jmp.aip.org/resource/1/jmapaq/v54/i1/p012112_s1">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2013.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Review of some promising fractional physical models"</B></EM><BR>International Journal of Modern Physics B. Vol.27. No.9. (2013) 1330005. (32 pages) <A HREF="http://www.worldscientific.com/doi/abs/10.1142/S0217979213300053">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1502.07681">(arXiv:1502.07681) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional diffusion equations for open quantum systems"</B></EM><BR>Nonlinear Dynamics. Vol.71. No.4. (2013) 663-670. <A HREF="http://link.springer.com/article/10.1007/s11071-012-0498-8/fulltext.html">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ND2013.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"No violation of the Leibniz rule. No fractional derivative."</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.18. No.11. (2013) 2945-2948. <A HREF="http://www.sciencedirect.com/science/article/pii/S1007570413001457">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1402.7161">(arXiv:1402.7161) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Power-law spatial dispersion from fractional Liouville equation"</B></EM><BR>Physics of Plasmas. Vol.20. No.10. (2013) 102110. (10 pages) <A HREF="http://scitation.aip.org/content/aip/journal/pop/20/10/10.1063/1.4825144">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/POP2013.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1307.4930">(arXiv:1307.4930) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Lattice model with power-law spatial dispersion for fractional elasticity"</B></EM><BR>Central European Journal of Physics. Vol.11. No.11. (2013) 1580-1588. (10 pages) <A HREF="http://link.springer.com/article/10.2478%2Fs11534-013-0308-z">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CEJP2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1501.01201">(arXiv:1501.01201) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, J.J. Trujillo <BR><EM><B>"Fractional power-law spatial dispersion in electrodynamics"</B></EM><BR>Annals of Physics. Vol.334. (2013) 1-23. <A HREF="http://www.sciencedirect.com/science/article/pii/S0003491613000638">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2013.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1503.04349">(arXiv:1503.04349) </A> </P> <LI><P>Y. Zhou, V.E. Tarasov, J.J. Trujillo, R. Garrappa <BR><B>"Editorial" </B>European Physical Journal: Special Topics. Vol.222. No.8. (2013) 1745-1748. <A HREF="http://link.springer.com/article/10.1140%2Fepjst%2Fe2013-01960-6">HTML</A><!-- 2012 --> </P> <UL> <UL> <H3 CLASS="western">2012, 2011, 2010, . . . </H3> </UL> </UL> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Quantum dissipation from power-law memory"</B></EM><BR>Annals of Physics. Vol.327. No.6. (2012) 1719-1729. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2012.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"The fractional oscillator as an open system"</B></EM><BR>Central European Journal of Physics. Vol.10. No.2. (2012) 382-389. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CEJP2012.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Derivation of uncertainty relation for quantum Hamiltonian systems" [in Russian]</B></EM><BR>Moskovskoe Nauchnoe Obozrenie. Vol.2011. No.10. (2011) 3-6. <A HREF="http://www.ingnpublishing.com/journal/1/2011/10-14_oktyabr/tarasov/">HTML</A> <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MNO2011.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"New methods of measurement of fractal dimension of solids" [in Russian]</B></EM><BR>Nauchnaya Perespektiva. Vol.2011. No.10. (2011) 77-79. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/NP2011.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Relativistic non-Hamiltonian mechanics"</B></EM><BR>Annals of Physics. Vol.325. No.10. (2010) 2103-2119. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2010.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional dynamics of relativistic particle"</B></EM><BR>International Journal of Theoretical Physics. Vol.49. No.2. (2010) 293-303. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJTP2010.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5749">(arXiv:1107.5749) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, M. Edelman <BR><EM><B>"Fractional dissipative standard map"</B></EM><BR>Chaos. Vol.20. No.2. (2010) 023127. (7 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2010.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5464">(arXiv:1107.5464) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Quantum Nanotechnology"</B></EM><BR>International Journal of Nanoscience. Vol.8. No.4-5. (2009) 337-344. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJNS2009.pdf">PDF</A></P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Differential equations with fractional derivative and universal map with memory"</B></EM><BR>Journal of Physics A. Vol.42. No.46. (2009) 465102. (13 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2009-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1107.4205">(arXiv:1107.4205) </A> </P> <LI><P STYLE="margin-bottom: 0in">M. Edelman, V.E. Tarasov <BR><EM><B>"Fractional standard map"</B></EM><BR>Physics Letters A. Vol.374. No.2. (2009) 279-285. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2009-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0909.5412">(arXiv:0909.5412) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Discrete map with memory from fractional differential equation of arbitrary positive order"</B></EM><BR>Journal of Mathematical Physics. Vol.50. No.12. (2009) 122703. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2009.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1107.4425">(arXiv:1107.4425) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional generalization of the quantum Markovian master equation"</B></EM><BR>Theoretical and Mathematical Physics. Vol.158. No.2. (2009) 179-195. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP2009-1.pdf">PDF</A><BR>(Teoreticheskaya i Matematicheskaya Fizika. Vol.158. No.2. (2009) 214-233. in Russian) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF2009-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0909.0965">(arXiv:0909.0965) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional integro-differential equations for electromagnetic waves in dielectric media"</B></EM><BR>Theoretical and Mathematical Physics. Vol.158. No.3. (2009) 355-359. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP2009-2.pdf">PDF</A><BR>(Teoreticheskaya i Matematicheskaya Fizika. Vol.158. No.3. (2009) 419-424. in Russian) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF2009-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5892">(arXiv:1107.5892) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Weyl quantization of fractional derivatives"</B></EM><BR>Journal of Mathematical Physics. Vol.49. No.10. (2008) 102112. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2008.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0907.2699">(arXiv:0907.2699) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional Heisenberg equation" </B></EM><BR>Physics Letters A. Vol.372. No.17. (2008) 2984-2988. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2008b.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0804.0586">(arXiv:0804.0586) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional vector calculus and fractional Maxwell's equations"</B></EM><BR>Annals of Physics. Vol.323. No.11. (2008) 2756-2778. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.2363">(arXiv:0907.2363) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Universal electromagnetic waves in dielectrics"</B></EM><BR>Journal of Physics: Condensed Matter. Vol.20. No.17. (2008) 175223. (7 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCM2008-2.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.2163">(arXiv:0907.2163) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional equations of Curie-von Schweidler and Gauss laws"</B></EM><BR>Journal of Physics: Condensed Matter. Vol.20. No.14. (2008) 145212. (5 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCM2008-1.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0907.1837">(arXiv:0907.1837) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional powers of derivatives in classical mechanics"</B></EM><BR>Communications in Applied Analysis. Vol.12. No.4. (2008) 441-450. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CAA2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5682">(arXiv:1107.5682) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional equations of kicked systems and discrete maps"</B></EM><BR>Journal of Physics A. Vol.41. No.43. (2008) 435101. (16 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2008-2.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1107.3953">(arXiv:1107.3953) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fokker-Planck equation with fractional coordinate derivatives"</B></EM><BR>Physica A. Vol.387. No.26. (2008) 6505-6512. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2008.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0805.0606">(arXiv:0805.0606) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Chains with fractal dispersion law" </B></EM><BR>Journal of Physics A. Vol.41. No.3. (2008) 035101. (6 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2008-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0804.0607">(arXiv:0804.0607) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional generalization of Kac integral"</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.13. No.2. (2008) 248-258. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2008-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0704.1771">(arXiv:0704.1771) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional dynamics of systems with long-range space interaction and temporal memory"</B></EM><BR>Physica A. Vol.383. No.2. (2007) 291-308. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2007.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/math-ph/0702065">(math-ph/0702065) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional Chapman-Kolmogorov equation" </B></EM><BR>Modern Physics Letters B. Vol.21. No.4. (2007) 163-174. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2007-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0710.0809">(arXiv:0710.0809) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Liouville and Bogoliubov equations with fractional derivatives" </B></EM><BR>Modern Physics Letters B. Vol.21. No.5. (2007) 237-248. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2007-2.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0711.0859">(arXiv:0711.0859) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional derivative as fractional power of derivative"</B></EM><BR>International Journal of Mathematics. Vol.18. No.3. (2007) 281-299. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJM2007.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0711.2567">(arXiv:0711.2567) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Conservation laws and Hamiltonian's equations for systems with long-range interaction and memory"</B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.13. No.9. (2008) 1860-1878. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2008-2.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/math-ph/0703048">(math-ph/0703048) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fokker-Planck equation for fractional systems" </B></EM><BR>International Journal of Modern Physics B. Vol.21. N.6. (2007) 955-967. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2007.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0710.2053">(arXiv:0710.2053) </A> </P> <LI><P STYLE="margin-bottom: 0in">G.M. Zaslavsky, M. Edelman, V.E. Tarasov <BR><EM><B>"Dynamics of the chain of oscillators with long-range interaction: from synchronization to chaos"</B></EM><BR>Chaos. Vol.17. No.4. (2007) 043124. (10 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2007.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0707.3941">(arXiv:0707.3941) </A> </P> <LI><P STYLE="margin-bottom: 0in">N. Korabel, G.M. Zaslavsky, V.E. Tarasov <BR><EM><B>"Coupled oscillators with power-law interaction and their fractional dynamics analogues" </B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.12. No.8. (2007) 1405-1417. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2006-2.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0603074">(math-ph/0603074) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Map of discrete system into continuous"</B></EM><BR>Journal of Mathematical Physics. Vol.47. No.9. (2006) 092901. (24 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JMP2006.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0711.2612">(arXiv:0711.2612) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional statistical mechanics" </B></EM><BR>Chaos. Vol.16. No.3. (2006) 033108. (7 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2006-2.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/0710.1807">(arXiv:0710.1807) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Electromagnetic fields on fractals" </B></EM><BR>Modern Physics Letters A. Vol.21. No.20. (2006) 1587-1600. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLA2006.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/0711.1783">(arXiv:0711.1783) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Continuous limit of discrete systems with long-range interaction" </B></EM><BR>Journal of Physics A. Vol.39. No.48. (2006) 14895-14910. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-4.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/0711.0826">(arXiv:0711.0826) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional variations for dynamical systems: Hamilton and Lagrange approaches" </B></EM><BR>Journal of Physics A. Vol.39. No.26. (2006) 8409-8425. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-2.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0606048">(math-ph/0606048) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Psi-series solution of fractional Ginzburg-Landau equation" </B></EM><BR>Journal of Physics A. Vol.39. No.26. (2006) 8395-8407. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-1.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/nlin.SI/0606070">(nlin.SI/0606070) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Magnetohydrodynamics of fractal media" </B></EM><BR>Physics of Plasmas. Vol.13. No.5. (2006) 052107. (12 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Plasmas2006.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0711.0305">(arXiv:0711.0305) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Nonholonomic constraints with fractional derivatives" </B></EM><BR>Journal of Physics A. Vol.39. No.31. (2006) 9797-9815. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2006-3.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/math-ph/0603067">(math-ph/0603067) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional dynamics of systems with long-range interaction" </B></EM><BR>Communications in Nonlinear Science and Numerical Simulation. Vol.11. No.8. (2006) 885-898. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CNSNS2006-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/1107.5436">(arXiv:1107.5436) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Dynamics with low-level fractionality" </B></EM><BR>Physica A. Vol.368. No.2. (2006) 399-415. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2006.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/physics/0511138">(physics/0511138) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional dynamics of coupled oscillators with long-range interaction" </B></EM><BR>Chaos. Vol.16. No.2. (2006) 023110. (13 pages) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2006.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/nlin.PS/0512013">(nlin.PS/0512013) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Transport equations from Liouville equations for fractional systems" </B></EM><BR>International Journal of Modern Physics B. Vol.20. No.3. (2006) 341-353. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2006-1.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0604058">(cond-mat/0604058) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Gravitational field of fractal distribution of particles" </B></EM><BR>Celestial Mechanics and Dynamical Astronomy. Vol.94. No.1. (2006) 1-15. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/CMDA2006.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/astro-ph/0604491">(astro-ph/0604491) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional generalization of gradient and Hamiltonian systems" </B></EM><BR>Journal of Physics A. Vol.38. No.26. (2005) 5929-5943. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2005-2.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/math.DS/0602208">(math.DS/0602208) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Electromagnetic field of fractal distribution of charged particles" </B></EM><BR>Physics of Plasmas. Vol.12. No.8. (2005) 082106 (9 pages). <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Plasmas2005.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/physics/0610010">(physics/0610010) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Multipole moments of fractal distribution of charges" </B></EM><BR>Modern Physics Letters B. Vol.19. No.22. (2005) 1107-1118. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2005-2sc.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/physics/0606251">(physics/0606251) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional hydrodynamic equations for fractal media" </B></EM><BR>Annals of Physics. Vol.318. No.2. (2005) 286-307. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2005-2.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/physics/0602096">(physics/0602096) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Dynamics of fractal solid" </B></EM><BR>International Journal of Modern Physics B. Vol.19. No.27. (2005) 4103-4114. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2005-2.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0710.0787">( arXiv:0710.0787) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional generalization of gradient systems"</B></EM><BR>Letters in Mathematical Physics. Vol.73. No.1. (2005) 49-58. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/LMP2005.pdf">PDF</A> <BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0604007">(nlin.CD/0604007) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Wave equation for fractal solid string" </B></EM><BR>Modern Physics Letters B. Vol.19. No.15. (2005) 721-728. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0605006">(physics/0605006) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Phase-space metric for non-Hamiltonian systems" </B></EM><BR>Journal of Physics A. Vol.38. No.10/11. (2005) 2145-2155. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/math.DS/0602433">(math.DS/0602433) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Continuous medium model for fractal media" </B></EM><BR>Physics Letters A. Vol.336. N.2/3. (2005) 167-174. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0506137">(cond-mat/0506137) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Possible experimental test of continuous medium model for fractal media" </B></EM><BR>Physics Letters A. Vol.341. N.5/6. (2005) 467-472. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2005-2.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0602121">(physics/0602121) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Thermodynamics of few-particle systems" </B></EM><BR>International Journal of Modern Physics B. Vol.19. No.5. (2005) 879-897. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/IJMPB2005-1.pdf">PDF</A> <BR><A HREF="http://arxiv.org/abs/0706.3455">(arxiv:0706.3455) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional Fokker-Planck equation for fractal media" </B></EM><BR>Chaos. Vol.15. No.2. (2005) 023102. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0602029">(nlin.CD/0602029) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov, G.M. Zaslavsky <BR><EM><B>"Fractional Ginzburg-Landau equation for fractal media" </B></EM><BR>Physica A. Vol.354. (2005) 249-261. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Physica2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/physics/0511144">(physics/0511144) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional Liouville and BBGKI equations"</B></EM> <BR>Journal of Physics: Conference Series. Vol.7. (2005) 17-33. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPCS2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0602062">(nlin.CD/0602062) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Stationary solutions of Liouville equations for non-Hamiltonian systems"</B></EM> <BR>Annals of Physics. Vol.316. No.2. (2005) 393-413. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/AP2005-1.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0602409">(cond-mat/0602409) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional systems and fractional Bogoliubov hierarchy equations" </B></EM><BR>Physical Review E. Vol.71. No.1. (2005) 011102 (12 pages). <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PRE2005.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0505720">(cond-mat/0505720) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Path integral for quantum operations" </B></EM><BR>Journal of Physics A. Vol.37. No.9. (2004) 3241-3257. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2004.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/0706.2142">(arXiv:0706.2142)<!--<LI> V.E. Tarasov<br />
<em><b> “Fractional Liouville Equation.”</em></b><br /> Physical Review E. Vol.69. No.1. (2004) 0121xx. <br />–>
</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><EM><B>"Fractional generalization of Liouville equations" </B></EM><BR>Chaos. Vol.14. No.1. (2004) 123-127. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/Chaos2004.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/nlin.CD/0312044">(nlin.CD/0312044) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Classical canonical distribution for dissipative systems" </B></EM><BR>Modern Physics Letters B. Vol.17. No.23. (2003) 1219-1226. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLB2003.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/cond-mat/0311536">(cond-mat/0311536) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Pure stationary states of open quantum systems"</B></EM><BR>Physical Review E. Vol.66. No.5. (2002) 056116. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PRE2002.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0311177">(quant-ph/0311177) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantum computer with mixed states and four-valued logic" </B></EM><BR>Journal of Physics A. Vol.35. No.25. (2002) 5207-5235. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/JPA2002.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0312131">(quant-ph/0312131) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Stationary states of dissipative quantum systems" </B></EM><BR>Physics Letters A. Vol.299. No.2/3. (2002) 173-178. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2002.pdf">PDF</A><BR><A HREF="http://arxiv.org/abs/1107.5907">(arXiv:1107.5907) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantization of non-Hamiltonian and dissipative systems" </B></EM><BR>Physics Letters A. Vol.288. No.3/4. (2001) 173-182. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLA2001.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/quant-ph/0311159">(quant-ph/0311159) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Weyl quantization of dynamical systems with flat phase space" </B></EM><BR>Moscow University Physics Bulletin. Vol.56. No.6. (2001) 5-10. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB2001e.pdf">PDF</A><BR>Vestnik Moscovskogo Universiteta. Seria 3. Fizika i Astronomiya. Vol.56. No.6. (2001) 6-9. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB2001r.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantization of non-Hamiltonian systems" </B></EM><BR>Theoretical Physics. Vol.2. (2001) 150-160. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TP2001.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantum dissipative systems: IV. Analogues of Lie algebras and groups" </B></EM><BR>Theoretical and Mathematical Physics. Vol.110. No.2. (1997) 168-178. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1997-2e.pdf">PDF</A> <BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol. 110. No.2. (1997) 214-227. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1997-2.pdf">PDF </A>in Russian) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantum dissipative systems: III. Definition and algebraic structure" </B></EM><BR>Theoretical and Mathematical Physics. Vol.110. No.1. (1997) 57-67. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1997-1e.pdf">PDF</A><BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol. 110. No.1. (1997) 73-85. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1997-1.pdf">PDF </A>in Russian) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Bosonic string in affine-metric curved space" </B></EM><BR>Physics Letters B. Vol.323. No.3/4. (1994) 296-304. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PLB1994.pdf">PDF</A><BR><A HREF="http://xxx.lanl.gov/abs/hep-th/0401223">(hep-th/0401223) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Two-loop beta-function for nonlinear sigma model with affine-metric manifold" </B></EM><BR>Modern Physics Letters A. Vol.9. No.26. (1994) 2411-2419. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MPLA1994.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantum dissipative systems: I. Canonical quantization and quantum Liouville equation" </B></EM><BR>Theoretical and Mathematical Physics. Vol.100. No.3. (1994) 1100-1112. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1994-1.pdf">PDF</A><BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol.100. No.3. (1994) 402-417. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1994-1.pdf">PDF </A>in Russian) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantum dissipative systems: II. String in a curved affine-metric space-time" </B></EM><BR>Theoretical and Mathematical Physics. Vol.101. No.1. (1994) 1184-1190. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1994-2.pdf">PDF</A><BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol.101. No.1. (1994) 38-46. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1994-2.pdf">PDF </A>in Russian) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><EM><B>"Quantization, generating functional and conformal anomaly for a nonlinear affine-metric sigma-model" </B></EM><BR>Physics of Atomic Nuclei. Vol.56. No.11. (1993) 1608-1612. <BR>(Yadernaia Fizika. Vol.56. No.11. (1993) 269-276.) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PAN1993-1.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">A.P. Demichev, M.Z. Iofa, Yu.A. Kubyshin, V.E. Tarasov<BR><EM><B>"Possible manifestations of multidimensionality of space-time in a simple mode" </B></EM><BR>Physics of Atomic Nuclei. Vol.56. No.11. (1993) 1582-1584.<BR>(Yadernaia Fizika. Vol.56. No.11. (1993) 222-226.) <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/PAN1993-2.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">V.V. Belokurov, V.E. Tarasov<BR><EM><B>"Invariant regularization of infrared divergences in the background field methods for two-dimensional nonlinear theories" </B></EM><BR>Moscow University Physics Bulletin. Vol.46. No.6. (1991) 14-17. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/MUPB1991.pdf">PDF</A> </P> <LI><P>V.V. Belokurov, V.E. Tarasov<BR><EM><B>"Ultraviolet finiteness of nonlinear two-dimensional sigma-models on affine-metric manifolds" </B></EM><BR>Theoretical and Mathematical Physics. Vol.78. No.3. (1989) 334-337. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMP1989.pdf">PDF</A><BR>(Teoreticheskaia i Matematicheskaia Fizika. Vol.78. No.3. (1989) 471-474. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/TMF1989.pdf">PDF </A>in Russian) </P>
</UL> <H3 CLASS=“western”>Articles in refereed Proceedings: </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">G.M. Zaslavsky, V.E. Tarasov<BR>"Fractional generalization of Ginzburg-Landau and nonlinear Schroedinger equations" <BR>in Proceedings of the ASME International Design Engineering Technical Conferences and <BR>Computers and Information in Engineering Conference - DETC 2005, 6 B. <BR>(September 24-28, 2005 Long Beach, CA) pp.1407-1414. (DECT2005-84266). </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Canonical Gibbs distribution for dissipative systems" <BR>in Proc. XVII Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(Samara-Saratov, Russia, September 4-11, 2003) <BR>Ed. by M.N. Dubinin and V.I. Savrin (MSU, Moscow, 2004). pp.432-442. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Pure stationary states of non-Hamiltonian and dissipative quantum systems" <BR>in Proc. XVI Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(September 6-12, Moscow, 2001) <BR>Ed. by M.N. Dubinin and V.I. Savrin (MSU, Moscow, 2002). pp.389-397. (quant-ph/0201033) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Dynamical quantization" <BR>in Proc. XV Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(Tver, Russia, September 7-13, 2000) <BR>Ed. by M.N. Dubinin and V.I. Savrin (MSU, Moscow, 2001). pp.362-371. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Quantum theory and non-Hamiltonian systems: path-integral approach" <BR>in Proc. XIV Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(Moscow, Russia, May 27 - June 2, 1999) <BR>Ed. by B.B. Levtchenko and V.I. Savrin (MSU, Moscow, 2000). pp.637-640. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Quantum non-Hamiltonian systems: definition and algebraic structures" <BR>in Proc. XI Int. Workshop on High Energy Physics and Quantum Field Theory.<BR>(Sankt-Petersburg, Russia, September 12-18, 1996) <BR>Ed. by B.B. Levtchenko. (MSU, Moscow, 1997). pp.368-371. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><!--<a href="http://theory.sinp.msu.ru/~tarasov/preprint/hepth96.ps">-->"Analog of Lie algebra and Lie group for quantum non-Hamiltonian systems" <BR>in Proc. X Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(Zvenigorod, Russia, September 20-26, 1995) <BR>Ed. by B.B. Levtchenko. (MSU, Moscow, 1996). pp.310-316. (hep-th/9601063) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR><!--<a href="http://xxx.lanl.gov/abs/hep-th/9506053">-->"Strings and dissipative mechanics" <BR>in Proc. IX Int. Workshop on High Energy Physics and Quantum Field Theory. <BR>(Zvenigorod, Russia, September 16-22, 1994) <BR>Ed. by B.B. Levtchenko. (MSU, Moscow, 1995). pp.332-339. (hep-th/9506053) </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Phase space path integral for non-Hamiltonian systems" <BR>in Proc. Joint Int. Workshop on High Energy Physics and Quantum Field Theory<BR>(Zvenigorod, Russia, September 15-21, 1993)<BR>Ed. by B.B. Levtchenko. (MSU, Moscow, 1994). pp.205-209. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"CompHEP catalogue. Higgs decay modes in Standard Model (H --> 2x, 3x processes)" <BR>in Proc. 2-nd Workshop on Physics at VLEPP (Protvino, Russia, June 2-4, 1992) Supplement. 1992. pp.89-106. </P> <LI><P>V.E. Tarasov<BR>"Nonlinear two-dimensional sigma-model: nonmetricity from non-holonomic functional and inconstant string tension" <BR>in Proc. Int. Confer. on Current problems of fundamental sciences.<BR>(Moscow, Russia, October 28 - November 1, 1991) Vol.3. Ed. by I.B. Fyodorov. <BR>(Moscow, Moscow State Bauman Technical University), 1991. pp.62-64. </P>
</UL> <H3 CLASS=“western”>Preprints: </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR>"Fractional stability" 2007, 5p. <A HREF="http://arxiv.org/abs/0711.2117">arXiv:0711.2117 </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Quantum computations by quantum operations with mixed states." <BR>2002. 11p. LANL E-print archiv: quant-ph/0201033. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Open n-qubit system as a quantum computer with four-valued logic" <BR>Preprint SINP MSU. No.2001-31/671. 25p. LANL E-print archiv: quant-ph/0112023. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Quantization of Lorenz-type systems" <BR>Preprint SINP MSU. No.2001-22/662. 15p. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Quantization of non-Hamiltonian systems" <BR>Preprint SINP MSU. No. 2000-33/637. 15p. LANL E-print archiv: quant-ph/0108120. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Dissipative quantum mechanics: The generalization of the canonical quantization and von Neumann equation" <BR>Preprint ICTP. No.IC-94-192. 23p. LANL E-print archiv: hep-th/9410025. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ICTPpreprint2.pdf">PDF</A> </P> <LI><P STYLE="margin-bottom: 0in">A.P. Demichev, M.Z. Iofa, Yu.A. Kubyshin, V.E. Tarasov<BR>"Possible manifestations of multidimensionality of space-time in a simple models" <BR>Preprint SNUTP. No.92-106, Seoul: Seoul National Univ. Press, 1992. 9p. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov<BR>"Dissipative quantum dynamics and nonlinear sigma-model" <BR>Preprint SINP MSU. No.92-33/282. 22p. </P> <LI><P>V.E. Tarasov, V.V. Belokurov <BR>"The correlation between the connection and the metric as ultraviolet finiteness condition" <BR>Preprint ICTP. No.IC-90-168. Trieste, 1990. 22p. <A HREF="http://theory.sinp.msu.ru/~tarasov/PDF/ICTP-preprint1.pdf">PDF</A> </P>
</UL> <H3 CLASS=“western”>Scientific reports: </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">M.Z. Iofa, Yu.A. Kubyshin, A.P. Demichev, V.E. Tarasov <BR>"Investigation of gauge and string aspects of M-theory" <BR>Information Bulletin of Russian Foundation for Basic Research, Vol.7. (1999) No.2. p.438. (in Russian) </P> <LI><P STYLE="margin-bottom: 0in">M.Z. Iofa, A.P. Demichev, Yu.A. Kubyshin, V.E. Tarasov <BR>"Quantization of the gravity models and higher-order effects of string perturbation theory" <BR>Information Bulletin of Russian Foundation for Basic Research, Vol.4. (1996) No.2. p.152. (in Russian) </P> <LI><P>V.V. Belokurov, M.Z. Iofa, V.E. Tarasov <BR>"Higher-order effects of string perturbation theory and two-dimensional black holes" <BR>Information Bulletin of Russian Foundation for Basic Research, Vol.2. (1994) No.2. p.525. (in Russian) </P>
</UL> <H3 CLASS=“western”>Scientific Popular Articles: </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">S. Belyaeva, V.E. Tarasov <BR>"Quantum Computer", (in Russian: "V labirintah Kvantovogo Mozga") <BR>Vokrug Sveta. Vol.2779. No.8. August 2005. pp.86-92. <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=1095">(in Russian) </A> </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR>"Quantum Fields and Superstrings", (in Russian: "Muzika Sfer") <BR>Vokrug Sveta. Vol.2772. No.1. January 2005. pp.30-40 <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=524">(in Russian) </A> </P> <LI><P>V.E. Tarasov<BR>"Quantum World", (in Russian: "Portchionnii Mikromir") <BR>Vokrug Sveta. Vol.2766. No.7. July 2004. pp.76-86. <A HREF="http://www.vokrugsveta.ru/publishing/vs/archives/?item_id=375">(in Russian) </A> </P>
</UL> <H3 CLASS=“western”>Other Articles and Books: </H3> <UL>
<LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><B>"Method of Solving C5 Problems of United State Exam in Mathematics" </B><BR>(MAKS Press, Moscow, 2013). - 80 p. (ISBN 978-5-317-04432-9) in Russian. </P> <LI><P STYLE="margin-bottom: 0in">V.E. Tarasov <BR><B>"The Coordinate Method for Solving C2 Problems of United State Exam in Mathematics" </B><BR>(MAKS Press, Moscow, 2012). - 48 p. (ISBN 978-5-317-04054-3) in Russian. </P> <LI><P>G.P. Berman, A.A. Vasiliev, N.S. Erokhin, L.M. Zeleny, V.A. Ignatchenko, A. Iomin, E.Ya. Kogan, A.K. Kolovsky, <BR>R.R. Mukhin, A.I. Neishtadt, S.V. Prants, V.E. Tarasov, A.M. Fridman, <BR>"G.M. Zaslavsky 1935-2008", (in Russian) <BR>Applied Nonlinear Dynamics. Vol.17. No.1. (2009). pp.137-149. <A HREF="http://www.sgtnd.narod.ru/wts/rus/Zaslav.pdf">PDF (in Russian) </A> </P>
</UL> <P><BR><BR> </P> <H3 CLASS=“western”>Other Articles in Russian: </H3> <P>V.V. Tarasova, V.E. Tarasov, Criteria hereditarity of economic process and memory effect Young scientist [Molodoj Uchenyj]. 2016. No. 14 (118). P. 396-399. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Marginal utility for economic processes with memory Almanac of Modern Science and Education [Almanah Sovremennoj Nauki i Obrazovaniya]. 2016. No. 7 (109). P. 108-113. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Price elasticity of demand with memory Economics, Sociology and Law. [Ekonomika, Sociologiya i Pravo]. 2016. No. 4-1. P. 98-106. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic indicators: Ambiguity and memory effects Economics. Management. Law. [Ekonomika. Upravlenie. Pravo] 2016. No. 3 (66). P. 3-5. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Elasticity of OTC cash turnover of currency market of Russian Federation Actual Problems of Humanities and Natural Sciences. [Aktualnye Problemy Gumanitarnyh i Estestvennyh Nauk]. 2016. No. 7-1 (90). P. 207-215. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, On applicability of point elasticity of demand on price to exchange trading on US dollar Scientific Perspective [Nauchnaya Perspektiva]. 2016. No. 6 (76). P. 6-11. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic indicator that generalizes average and marginal values Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 11-1 (76-1). P. 817-823. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Marginal values of non-integer order in economic analysis Azimuth Scientific Research: Economics and Management [Azimut Nauchnih Issledovanii: Ekonomika i Upravlenie]. 2016. No. 3 (16). P. 197-201. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, A generalization of concepts of accelerator and multiplier to take into account memory effects in macroeconomics Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 10-3 (75-3). P. 1121-1129. [in Russian] </P> <P>\item V.V. Tarasova, V.E. Tarasov, Deterministic factor analysis: methods of integro-differentiation of non-integral order Actual Problems of Economics and Law [Aktualnye Problemy Ekonomiki i Prava]. 2016. Vol. 10. No. 4. P. 77-87. DOI: 10.21202/1993-047X.10.2016.4.77-87 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Non-local measures of risk aversion in the economic process Economics: Theory and Practice [Ekonomika: Teoriya i Praktika]. 2016. No. (44). P. 54-58. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Hereditary generalization of Harrod-Domar model and memory effects Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2016. No. 10-2 (75-2). P. 72-78. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Memory effects in hereditary Harrod-Domar model Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2016. No. 32 (74). P. 38-44. DOI: 10.20861/2304-2338-2016-74-002 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Keynesian model of economic growth with memory Economics and Management: Problems, Solutions [Ekonomika i Upravlenie: Problemy i Resheniya]. 2016. No. 10-2 (58). P. 21-29. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Memory effects in hereditary Keynes model Problems of Modern Science and Education [Problemy Sovremennoj Nauki i Obrazovaniya]. 2016. No. 38 (80). P. 56-61. DOI: 10.20861/2304-2338-2016-80-001 [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Influence of memory effects on world economics and business Azimuth Scientific Research: Economics and Management [Azimut Nauchnih Issledovanii: Ekonomika i Upravlenie]. 2016. Vol. 5. No. 4 (17). P. 369-372. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Dynamic intersectoral models with memory that generalize Leontief model Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 2-1 (79-1). P. 913-924. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Risk aversion for investors with memory: Hereditary generalizations of Arrow-Pratt measure Financial Journal [Finansovyj Zhurnal]. 2017. No. 2 (36). P. 46-63. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Chronological exponent for processes with memory and dynamic intersectoral economic models Science and Education Today [Nauka i Obrazovanie Segodnya]. 2017. No. 4 (15). P. 29-39. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Economic model of natural growth with dynamic memory Actual Problems of Humanities and Natural Sciences. [Aktualnye Problemy Gumanitarnyh i Estestvennyh Nauk]. 2017. No. 4-2. P. 51-58. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Macroeconomic models with dynamic memory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No.3-2 (80-2). P. 26-35. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Notion of dynamic memory in economic theory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 6 (83). P. 868-880. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Exact discretization of economic accelerators and multipliers with memory Journal of Economy and Entrepreneurship [Ekonomika i Predprinimatelstvo]. 2017. No. 7 (84). P. 1063-1069. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Discrete accelerator with memory in macroeconomics Economics. 2017. No. 8 (29). P. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Long-term and short-term memory in discrete economic models Competitiveness in a global world: economics, science, technology. [Konkurentosposobnost v Globalnom Mire: Ekonomika, Nauka, Tekhnologii] 2017. No. 7. P. 155-160. [in Russian] </P> <P>V.V. Tarasova, V.E. Tarasov, Discrete accelerator with memory in macroeconomics Economics. 2017. No. 8 (29) P. 32-40. </P> <P>\V.V. Tarasova, V.E. Tarasov, Accelerators in macroeconomics: a comparison of discrete and continuous approaches Scientific Journal [Nauchnyy Zhurnal]. 2017. No. 8 (21). P. 4-14.</P> <P><BR><BR> </P> <P>V.V. Tarasova, V.E. Tarasov, Microeconomic meaning of derivatives of non-integer order Science and Education Today [Nauka i Obrazovanie Segodnya]. 2017. No. 8 (19). P. 32-39 </P> <P>\V.V. Tarasova, V.E. Tarasov, Model of economic growth with constant rate and dynamic memory Economics, Sociology and Law. [Ekonomika, Sociologiya i Pravo]. 2017. No. 8. P. 18-24. </P> <P STYLE=“border-top: none; border-bottom: 1.10pt double #808080; border-left: none; border-right: none; padding-top: 0in; padding-bottom: 0.02in; padding-left: 0in; padding-right: 0in”> <!–<H2> UNPUBLISHED:</H2> <BODY> <UL> <LI>“Quantum Mechanics of Non-Hamiltonian and Dissipative Systems.” - Monographs. Moscow: 2000. 750 pp. (RFBR-00-02-30040d) <LI>“Quantum Dissipative Systems: Definition and Algebraic Structures.” Talk on Workshop on Quantum Dissipation and Applications. (29 July - 9 August 1996, ICTP, Trieste, Italy)) 9p. </UL>–><BR><BR> </P> <P STYLE=“margin-bottom: 0in”><A HREF=“http://theory.sinp.msu.ru/~tarasov”>Back to V. Tarasov</A> </P> <HR> <ADDRESS>Last update: May 11, 2016<BR><A HREF=“mailto:tarasov@theory.sinp.msu.ru”>tarasov@theory.sinp.msu.ru</A> </ADDRESS> </BODY> </HTML>